®

Check for
updates

Security Improvements by Separating the
Cryptographic Protocol from the Network
Stack onto a Multi-MCU Architecture

Tobias Frauenschliger®™), Sebastian Renner, and Jiirgen Mottok

Laboratory for Safe and Secure Systems (LaS?®), Technical University of Applied
Sciences Regensburg, 93053 Regensburg, Germany
{tobias .frauenschlaeger,sebastianl.renner,
juergen.mottok}@oth-regensburg.de

Abstract. The number of IoT devices in SCADA and ICS systems is
rising quickly, especially in the domain of critical infrastructures. But
these kinds of systems are performing mission critical tasks like con-
trolling devices in industrial facilities or substations in the smart grid.
Therefore, they are subject to a lot of regulatory standards. Yet, to pro-
vide remote access over the internet, special architectures are developed
to integrate a network interface into these devices without inferring with
the actual functionality. However, these architectures either lack security
measures against cyber-attacks or do not offer the necessary performance
for time-critical communication interfaces. To solve that, an architecture
consisting of three units is introduced in this paper to provide a network
interface with extensive security measures and a high performance. The
main feature is the isolation of the cryptographic functionality onto an
additional MCU. After proposing the basic concept, the paper presents
many implementation details. Based on the current state of implemen-
tation, a concept validation of the realized architecture is described.

Keywords: Cyber-security - Functional safety - Network security -
Industrial Internet of Things - Industrial Control System - Supervisory
Control and Data Acquisition System - Multi microcontroller setup *
Dos prevention - Critical infrastructures

1 Introduction

With the tremendous growth of the Internet-of-Things (IoT), nowadays nearly
everything is connected to the internet, which greatly improves the functional-
ity of many different device categories and even enables new use-cases. By now,
this trend reached the industrial sector and critical infrastructures in the form
of Industrial IoT (IIoT). Supervisory Control and Data Acquisition Systems
(SCADA), e.g. the power grid or water supply, or Industrial Control Systems
(ICS) like production facilities are connected to the internet to provide an inter-
face to an external instance. This enables new possibilities regarding supervision,
maintenance, control and automation.

© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 185-199, 2020.
https://doi.org/10.1007/978-3-030-52794-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_14

186 T. Frauenschlager et al.

Most of these systems feature a single point-to-point connection between an
end-device in the field and the control unit of the operator. This end-device
can be a single PLC (Programmable Logic Controller) or a gateway concentrat-
ing local data traffic. Due to the importance of error-free functionality of these
systems, intense safety measures are applied to all components.

Unlike functional safety, cyber-security has rather been neglected in the past.
For a long time, hardly any security measures were applied to these networks
providing a huge attack surface for an adversary to cause serious damage. To
prevent a scenario like that, new standards were issued prescribing minimal
requirements for cyber-security measures. In order to comply with these new
standards, a device has to meet new additional requirements. This turns out to
be a non-trivial task, as extensive measures are necessary. Therefore, a compre-
hensive solution must be developed.

In the research project Energy Safe and Secure System Module (ES*M), such
a solution is developed at the moment [10]. Currently focused on the power
grid, a module consisting of four Microcontroller Units (MCUs) is developed
to secure the communication between a substation and the controlling station
of an energy provider. However, the created system architecture can easily be
ported to any other SCADA, ICS or automotive system. The key characteristic
of this architecture is the separation of the cryptographic functionality from
the network communication onto two independent MCUs. This separation with
its characteristics and implementation details will be further presented in this

paper.

1.1 Contribution

Building upon existing work, the paper contributes the following points to the
topic of secure communication architectures.

— Higher security confidence: Complete isolation of the cryptographically sen-
sitive data from the network communication onto two separate MCUs

— Small size: The reduction of complexity and code size results in more testable
and maintainable software for each MCU

— Transparent functionality: No influence on the actual task of the system

— Efficiency: Performance guarantees are given

1.2 Structure

The paper is structured as follows. In Sect. 2, the background and the context of
the paper is presented. Based on this, Sect.3 evaluates related work. Section 4
describes the basic concept of the architecture, while in Sect.5 the concrete
implementation is introduced. As the implementation isn’t completely finished
at the time of writing, Sect.6 only presents basic performance characteristics
of the system and mainly depicts the concepts we plan for a comprehensive
validation of the architecture in the future. Section 7 concludes the paper with
an outlook to future work.

Security Improvements with a Multi-MCU Architecture 187

2 Background

2.1 Regulatory Context

Within the current research context, in [2] the regulatory security measures are
outlined that must be applied to communication interfaces inside the power grid.
In this standard, the usage of the Transport Layer Security (TLS) protocol is
prescribed for all TCP/IP based connections. This results in the application of
both symmetric and asymmetric cryptography as well as X.509 certificates for
securing the communication channel. Because most of the application specific
protocols running on top of the communication interface assume a persistent
connection, the maximum TLS session time is set to 24 h in the standard. This
is a trade-off between the lifetime of the secure channel and the time in between
new connection setups.

Next to the security related prescriptions, the field of application within
critical infrastructures or industrial facilities results in extensive functional safety
requirements. In [1], the definition of so called Safety Integrity Levels (SIL) can
be found. Based on this classification, specific measures can be derived that must
be implemented by a device. In the given context, many of the devices in question
can be classified to be SIL3, which implies a device availability of >99.99999%
and an error-rate of <10~7. To reach such numbers, both a periodic self-test of
each MCU and additional monitoring by an independent instance is necessary.

2.2 Attack Vectors

Based on analyses of cyber-attacks on SCADA systems [5] and on IoT smart-
world critical infrastructures [6], two different attack vectors can be identified.
Firstly, due to a lack of proper security measures regarding confidentiality,
integrity and authenticity, the communication can easily be eavesdropped or
even modified by an adversary. On the one hand, this can reveal sensitive data,
but on the other hand, the attacker can also harm both communication parties
in various ways. Through modifications of the data traffic, the operation of a
device or the whole system can be manipulated in a malicious way, so the actual
functionality is not executed correctly. This could stop the system or even cause
serious physical damage. Also, modified data may result in wrong status infor-
mation about the system leading to incorrect operation or maintenance steps.
The second attack vector is a Denial-of-Service (DoS) attack. In this scenario,
the communication interface is flooded with data, so proper communication is
not possible anymore. This, again, may cause the system to fail in its actual task
and prevent surveillance or control functionality.

The usage of TLS in the communication channel will prevent all possible
attacks of the first attack vector. Because a DoS attack is very hard to prevent,
it must be ensured that such attacks will not interfere with the actual task,
causing malfunction in the device functionality. Also, the network interface of
the device must be fully operational as soon as the DoS attack is over. In order
to assure that, the internal functionality and also the functional safety measures
must be well prepared for this kind of situation.

188 T. Frauenschlager et al.

3 Related Work

To overcome the possible attacks while conforming to the regulatory context
described in Sect. 2, an extensive security solution is necessary. Niedermaier et
al. proposed a Dual-MCU architecture that secures a device in an ICS system
from a DoS attack [8]. Instead of putting both the control and the network func-
tionality onto a single MCU, the features are split onto two MCUs. One handles
all the network communication, in the following referred to as NW-MCU, while
the second one performs the actual control job relevant to the overall system,
further named I0-MCU. The communication between the two is done over a
SPI (Serial Peripheral Interface) connection in a timely deterministic fashion.
In the case of a DoS attack, all additional processing is done on the NW-MCU
without influencing the IO-MCU. The result is an unaltered behavior regard-
ing the control functionality during and also after a DoS attack. An additional
benefit of this split architecture is the reduction in complexity and code size on
each MCU. This simplifies software testing, reduces bugs and enables an easier
certification.

This proposed architecture is a proper security solution for the second attack
vector, but it lacks cryptographic measures against eavesdropping or manipu-
lating the data traffic described in the first attack scenario. Therefore, adequate
measures must be integrated, namely in the form of inserting TLS into the pro-
tocol stack. This could be done directly on either the NW-MCU or the IO-MCU,
keeping the proposed architecture as is. However, this would on the one hand
lead to cryptographically sensitive data being stored in memory that is directly
accessible over the network interface. Due to bugs and vulnerabilities in the soft-
ware in use, this sensitive data, e.g. certificates or private keys, can be obtained
by an adversary. In high-class processors, this problem is normally addressed
by hardware additions called Trust Zones [7] that isolate memory regions from
unauthorized processes. But within this research context, only simple MCUs in
the form of System-on-Chip modules are used that do not provide such func-
tionality. On the other hand, adding TLS to the IO-MCU would increase the
workload and the complexity of its software, resulting in the need for a more
powerful MCU. However, this should be avoided, as it would create other chal-
lenges related to the regulatory context and certification efforts.

A Possible Solution for that are Secure Elements. In 2016, Pascal Urien pre-
sented so called security modules based on secure elements that include complete
TLS/DTLS protocol functionality for the application in IoT devices [11]. These
modules are low power and low priced external chips with their own CPU and,
most importantly, tamper-proof memory. The communication between the mod-
ule and a main MCU is done using the ISO 7816 communication interface [3].
To provide TLS functionality to the application, a software bridge runs on the
main MCU. It receives the cipher text from the network stack and sends it
to the secure element for processing. After decryption, the plain text is sent
back to the MCU, where the software bridge forwards the data to the actual
application software. A transmission of plain text over the secure channel works

Security Improvements with a Multi-MCU Architecture 189

accordingly in the opposite direction. This enables a secure communication using
TLS without storing cryptographically sensitive data on the main MCU.

The combination of both approaches, namely the addition of a NW-MCU
and a secure element implementing TLS, could address all in Sect. 2.2 described
attacks. However, this solution would still have problems. Firstly, when connect-
ing the secure element to the NW-MCU, the decrypted plain text sent back
from the secure element is stored on the NW-MCU until it is forwarded to the
IO-MCU. Thus, it would still be possible for an adversary to read or modify
the plain text due to vulnerabilities in the software. Connecting the secure ele-
ment to the IO-MCU would prevent that issue, but in this case the workload
and complexity of the IO-MCU would again be increased, as it would have to
communicate with two parties at the same time. Secondly, the ISO 7816 based
communication between a MCU and the secure element and the CPU inside the
secure element itself are both very slow, causing a large delay of up to several
hundred milliseconds in the processing of the data [11]. In case of high traffic, this
may quickly become a bottleneck, no matter to which MCU the secure element
would be connected.

Based on this work, in the next section we introduce an extended architecture
to resolve the issues in current designs. This architecture introduces an additional
MCU to further isolate the TLS functionality from the network stack without
increasing the load of the MCU running the actual application.

4 Basic Concept

Building on the introduced architecture from Sect. 3, another split of function-
ality is performed. Providing a clear and consistent naming scheme, the name
NW-MCU is kept for the existing MCU handling all the network related func-
tionality. The MCU running the actual application, named I0-MCU in [8], is
now called APP-MCU, as the application is not limited to I/O control in the
context of this paper. In addition to these two MCUs, a new MCU is added imple-
menting the TLS functionality, named Crypto-MCU. 1t is inserted in between
the NW-MCU and the APP-MCU, keeping the functionality of both unchanged.
The resulting architecture is shown in Fig. 1.

Network
APP-MCU HCrypto-MCUH NW-MCU }7

Fig. 1. New architecture with the additional Crypto-MCU

Control-
functionality

As can be seen in Fig. 1, the NW-MCU still handles all network related func-
tionality including the protection against DoS attacks. The raw TCP payload
received over the network interface is forwarded to the Crypto-MCU without any

190 T. Frauenschlager et al.

processing. This payload contains the TLS records, which are then processed on
the Crypto-MCU. Thereafter, the decrypted plain text is sent to the APP-MCU,
which is finally using and interpreting it. Data sent from the APP-MCU to the
network is processed in the opposite direction through all three MCUs. The com-
munication between the MCUs is based on SPI with additional hardware flow
control for timely determinism and improved robustness.

With this architecture, the cryptographically sensitive data, like keys, cer-
tificates and the decrypted plain text, are completely isolated from the network
interface and therefore not accessible from the outside. Even if an adversary
gains access to the NW-MCU due to a software vulnerability, he cannot obtain
or even modify the sensitive data because of the physical separation onto two
different MCUs.

To further increase the security of the architecture, two additional compo-
nents are added. On the one hand, a dedicated Random Number Generator
(RNG) is placed on the printed circuit board (PCB), generating high entropy
random numbers. The selected device is certified in the strongest class PTG.3 [9],
which is suitable for any cryptographic application. With it, proper ephemeral
keys can be generated. On the other hand, a secure element, as already mentioned
in Sect. 3, is added to the system, connected to the Crypto-MCU. However, it is
not used to implement the complete TLS functionality, but merely for authenti-
cation during the TLS handshake. Certified to Common Criteria EAL 5+ [4], it
provides a tamper-proof storage for certificates and private keys, and even fea-
tures an on-device key generation, resulting in the private keys never leaving the
secure element. This ensures maximum security. All in all, the proposed archi-
tecture builds an extensive security solution that can protect a device, meaning
the APP-MCU in this context, from both attack vectors described in Sect. 2.

5 Implementation

To prove the security improvements of our proposed architecture, we created
a prototype containing all of the described components. The details of specific
implementations are presented in this section.

5.1 Hardware Setup

The created prototype with all the described components can be seen in Fig. 2.
It shows three boards, each containing one MCU. The green board in the mid-
dle is a custom PCB containing the Crypto-MCU, the secure element and the
dedicated RNG. The boards on the left and the right side are off-the-shelf devel-
opment boards from STMicroeletronics', representing the APP-MCU and the
NW-MCU. For easy development, all three MCUs are of the same type in this
setup. The two development boards contain the MCU STM32H743ZIT? that is

! https://www.st.com/en/evaluation-tools/nucleo-h743zi.html.
2 https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html.

https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html

Security Improvements with a Multi-MCU Architecture 191

based on an ARM Cortex-M7 core with a 480 MHz clock frequency. The Crypto-
MCU is of the type STM32H753ZIT, which offers the same features as noted
above, except for additional hardware accelerators for the Advanced Encryp-
tion Standard (AES) algorithm. The MCU type has been chosen due to the
high performance while still being a System-on-Chip design, the huge amount
of communication interfaces for potential future evaluations and the extensive
options for hardware-based network packet filtering.

Fig. 2. Current hardware setup with the separation onto three controllers

5.2 Communication Between the MCUs

Before we dive into the specific software details of each MCU, the communication
interface between the MCUs is presented. As already mentioned, the communi-
cation is based on SPI. However, not the default master-slave topology is used,
but a more flexible multi-master system is deployed. This way, a communication
with equally distributed access rights is possible, enabling both MCUs to initiate
a data transmission whenever they want to. To achieve this, both participants
can act as either master or slave depending on the transmission direction. This
is configured in software using a flow control based on additional I/O lines. By
sharing the SPI lines between the two participants, only half-duplex transmis-
sion is possible. For the current prototype, we use this interface for both com-
munications between the three MCUs. But in case of another, maybe simpler
APP-MCU, the interface between it and the Crypto-MCU can be changed to a
different connection type, e.g. standard SPI or UART (Universal Asynchronous
Receiver Transmitter).

For the message transmission over this interface, a proprietary protocol con-
sisting of a Header and optional Payload has been defined. The header contains
the type of the message, the length of the optionally following payload and a

192 T. Frauenschléger et al.

CRC (Cyclic Redundancy Check) field, each occupying 2 bytes. Currently, there
are five different message types defined, further described in Table 1.

Table 1. Message Types and their Meaning

Message type Meaning

Connection_Start Command to start a new network connection. This can
either mean actively connecting to a server or listening
for incoming connections

Connection_Established | Notification that a new connection has been established

Connection_Stop Command to stop the current network activity. This
can either mean to close an active connection or to stop
listening for incoming connections

Connection_Closed Notification that all network activities are stopped

Payload Transmission of network payload

The first four message types are used for controlling and synchronizing the
state machines on the different MCUs. Messages with the ‘Payload’ type are then
used to actually exchange payload data between the MCUs. Based on these mes-
sages, the cooperation of the MCUs with their distinct functionality is managed.

5.3 Software of the Crypto-MCU

To reduce the amount of additional work for the critical APP-MCU, the Crypto-
MCU is considered to be the master of the system related to network function-
ality. This means that it controls the NW-MCU with its functionality, while
simultaneously exchanging the plain text network data with the APP-MCU. In
order to provide a clear and scalable architecture, the software is written in the
C++ programming language (Version 2014). This enables bundling functional-
ity inside classes with a properly abstracted interface. This way, a loose coupling
of the different software components is possible. Additionally, the FreeRTOS?
kernel (Version 10.3.1) is integrated to provide a runtime environment. This
real-time operating system is well-suited for MCUs and built with an empha-
sis on reliability and ease of use. The main functionality of the Crypto-MCU is
modeled in three functional units called PayloadProcessor, PayloadTransceiver
and InterControllerConnection, each represented by a single class. The Pay-
loadTransceiver and InterControllerConnection classes are used for the payload
exchange between the Crypto-MCU and the NW-MCU as well as the APP-MCU.
This leads to a double instantiation of both classes. The PayloadProcessor class
isolates the actual TLS functionality from the remaining code. The overall struc-
ture is shown in Fig. 3, with each unit and other implementation related details
explained in more detail in the following sections.

3 https://www.freertos.org/.

https://www.freertos.org/

Security Improvements with a Multi-MCU Architecture 193

Crypto-MCUJ

i PayloadTransceiver (—)i PayloadProcessor <—E PayloadTransceiver

InterController
Connection

InterController O
Connection
SPI

SPI

Fig. 3. Structure of the functional units inside the Crypto-MCU software

PayloadProcessor. This class forms the core of the Crypto-MCU software.
Here, all the TLS related functionality is isolated from the rest of the software.
The program execution is based on an FEvent-driven architecture. At startup, a
task is created to handle all incoming events. These events are created in the
PayloadTransceiver objects and are sent to the PayloadProcessor over an asyn-
chronous event-queue. There are two categories of events: state-change events
and payload-processing events. A state-change event either contains the com-
mand to start a new or stop a currently active network connection, or indicates
the establishment or termination of a connection. A payload-processing event
either means encryption or decryption of actual payload with subsequent for-
warding of the processed data.

For the TLS capabilities, the open-source mbed TLS* library is used. It offers
a simple APT and is widely used in the embedded community. The code is slightly
modified in some places to enable the usage of the RNG, the secure element and
the AES hardware accelerators of the MCU. Due to the isolation of TLS and
therefore all cryptographically sensitive data into a single task with a defined
communication interface using the event-queue, the sensitive data can easily be
protected with a Memory Protection Unit (MPU). This, in combination with the
additional usage of the secure element for storing private keys and certificates,
greatly improves the security of the whole system.

PayloadTransceiver. In this class, the state of a single external MCU is man-
aged. Therefore, this class is instantiated twice, both for the NW-MCU and the
APP-MCU (see Fig. 3). Internally, this class works in a very similar way as the
PayloadProcessor class. It also features an Event-driven architecture with an
event-queue that stores events for sequential processing. In this case, there are,
again, two categories of events: Either there is an external message available
from the other MCU or a message from the PayloadProcessor has been received.
These messages can either contain payload to forward to the other MCU or
are used to change the state of the network connection. In case of an external
message, the header is parsed and proper events for the PayloadProcessor are
created and added to its event-queue.

4 https://tls.mbed.org/.

https://tls.mbed.org/

194 T. Frauenschléger et al.

The fact that there are three event-queues in total on the Crypto-MCU may
seem overly complicated at first, but this architecture results in many advan-
tages. The most important one is the independence of each processing unit.
This results in improved timely behavior compared to an otherwise single bigger
event-driven system that provides the same functionality, because each task can
process the events at its own pace without slowing down the others. Furthermore,
the CPU load is reduced by a heavy usage of Direct Memory Access controllers
(DMAs) for the communication interfaces and the hardware accelerators. The
free CPU resources can then be used for processing the remaining event-queues.
Another positive aspect of the different event-queues is the possibility to over-
come temporary bottlenecks in the processing pipeline, for example caused by
a faster reception of incoming data from the NW-MCU compared to the actual
decryption, due to the storing capacity of the queues. Lastly, this separation
simplifies the usage of a MPU to further secure the decrypted payload from
unauthorized access.

InterControllerConnection. The last of the three classes handles the actual
communication with the other MCU, as described in Sect.5.2. This way, the
physical communication interface is independent from the logic implemented
in the PayloadTransceiver class. As shown in Fig. 3, there are two objects of
this class, each one connected to one MCU via SPI and to one of the Payload-
Transceiver objects. Furthermore, this abstraction enables a simple replacement
of the communication interface, which can benefit future developments. Inter-
nally, the transmission and the reception of messages is split. The reception is
handled in a distinct task, while the transmission is done from within the Pay-
loadTransceiver task in a blocking manner. The synchronization between the
two is done using a mutex.

All in all, the modularity of the Crypto-MCU software with the three event-
queues enables responsive and efficient data processing in both directions. More-
over, by splitting the functionality, additional security measures in the form of a
MPU can be applied. Finally, the use of FreeRTOS allows scalability for future
software additions.

5.4 Software of the NW-MCU

Following the concepts of the Crypto-MCU software, the NW-MCU software
also features an event-driven architecture. To ease the development efforts and
to minimize the written code, as much code as possible is shared between the
MCUs. The result of this effort is the structure shown in Fig. 4.

Compared to the software structure of the Crypto-MCU, there are only a few
differences observable in Fig. 4. Mainly, the PayloadProcessor object is gone. As
there is no TLS functionality needed on this controller, we do not need an object
of this class. Additionally, there is only one PayloadTransceiver object, because
we only have to handle one state machine on this controller. The last difference
is the replacement of one InterControllerConnection object with an object of the

Security Improvements with a Multi-MCU Architecture 195

NW-MCUJ

interControlley PayloadTransceiver
Connection y

Network
Connection

SPI Network

Fig. 4. Structure of the functional units inside the NW-MCU software

class NetworkConnection. With the presence of an event-queue on the NW-MCU,
this software has the same advantages as described for the Crypto-MCU software.
Also, the complete fundamental software framework including the FreeRTOS
kernel is shared between the MCUs.

The NetworkConnection class mimics the interface of the InterController-
Connection class in order to work with the existing Payload Transceiver object.
However, the implementation is very different. Inside this class, the actual net-
work connection is handled, using the Lightweight IP® stack (LWIP). This open-
source library provides a complete TCP /IP network stack with support for many
additional features.

Based on the already described functionality of the data processing and the
different messages that are exchanged between the MCUs, a state machine has
been created and implemented on the NW-MCU. It is shown in Fig. 5.

Received 'Connection_Start' message / [Startin 1
NotConnected Start connecting or listening 9

ldle Connecting or listening for
incoming connections

Closed all network activity /

Established a new connection /
Send 'Connection_Closed' message

Send 'Connection_Established' message

Received 'Connection_Stop' message /
Start closing all network activity Connected

l Forwarding payload l

Stopping

Closing all network
activity

Fig. 5. State machine implemented in the NW-MCU software

As you can see in Fig. 5, there are four different states defined: NotConnected,
Connected, Starting and Stopping. The first two states are the persistent ones,
in which an active connection is established or not. In the NotConnected state,
the NW-MCU is idle. This is also the default state after system startup. In the
Connected state, the NW-MCU actively forwards payload both from the Crypto-
MCU to the network endpoint and vice versa. The latter two states are more

5 https:/ /savannah.nongnu.org/projects/lwip/.

https://savannah.nongnu.org/projects/lwip/

196 T. Frauenschlager et al.

of a temporary kind. The Starting state indicates that the NW-MCU is trying
to establish a new connection. Depending on the configuration, this can either
mean that it actively tries to connect to a remote host or that it is acting as a
host listening for an incoming connection on a given port. The Stopping state
is the counterpiece to this, meaning that currently all network activity is being
terminated. This again can imply closing an active connection to a host or to
stop listening for an incoming connection. In the current setup, the NW-MCU
is able to handle only a single connection at a time. However, this limitation can
easily be removed in future developments.

The state transitions are also shown in Fig.5. There are two types of tran-
sitions: Commands from the Crypto-MCU and events from the network stack.
The two message types Connection_Start and Connection_Stop, already shown
in Table 1, trigger transitions to the Starting and Stopping states respectively.
As soon as the network stack indicates a successfully established connection
or that all network activity is terminated, the state changes to Connected or
NotConnected. In either case, a message of the type Connection_FEstablished or
Connection_Closed is sent to the Crypto-MCU announcing the state transition
(see Table1). Not shown in Fig. 5 are the state transitions caused by errors. If
such a situation is encountered, either the Stopping or the NotConnected state
is entered, depending on the current state and the actual error.

With the presented state machine and the code shared with the Crypto-MCU,
a flexible, responsive and robust software handling the network connection is
created. In cooperation with the Crpyto-MCU, both attack vectors described in
Sect. 2.2 are addressed.

5.5 Software of the APP-MCU

The last MCU in the proposed architecture is the APP-MCU. It runs the
actual application, to which a secure network interface, implemented by the
Crypto-MCU and the NW-MCU, is provided. With the presented architecture,
no restriction is given related to the application running on the APP-MCU. It
can be anything from a real-time I/O control to a more complex gateway device.
Independent from the main functionality, the software of the APP-MCU has to
run the already known functional units consisting of a slightly modified Pay-
loadTransceiver object and an InterControllerCommunication object. This is
necessary for the APP-MCU to communicate with the Crypto-MCU. The mod-
ified PayloadTransceiver provides an interface for the actual application to send
and receive data over the secured network connection.

Within the current research project, the application running on the proto-
type’s APP-MCU is not the endpoint of the network data, but rather acts as a
network gateway forwarding the payload to another network host. This way, the
prototype represents a gateway device that provides a secured network channel
using TLS. For the software of the APP-MCU, this means that the structure
is almost identical to the one of the NW-MCU aside from an inverted network
behavior. This enables sharing most of the code between the NW-MCU and the
APP-MCU.

Security Improvements with a Multi-MCU Architecture 197

6 Concept for Validation

The current prototype, with the APP-MCU mirroring the functionality of the
NW-MCU creating a network security gateway, provides a solid setup for vali-
dation of the proposed security architecture. At the time of writing, the imple-
mentation described in Sect. 5 is a work in progress. The software for each of the
three MCUs is in an working state, but not all features are completely done or
well optimized yet. Therefore, comprehensive and sound validation results can-
not be created at the moment. However, some basic performance measurements
are presented to prove the viability of our architecture.

— Currenty, the TLS handshake, including the secure element for authentica-
tion, takes around 1.2 s to complete. However, this process is not yet fully
optimized.

— The delay caused by the processing chain of the NW-MCU and the Crypto-
MCU is around 5ms for network payload to finally reach the APP-MCU.

— DoS attacks are completely handled by the NW-MCU and the Crypto-MCU
without affecting the actual functionality.

Based on these first promising results, the concept for the comprehensive val-
idation of the system is already defined. Using the gateway functionality created
within the current research project, the following tests, with additional com-
parison to other in this paper presented architectures, are planned for a future
work.

— Measurement of the processing delay under different network traffic loads
— Behavior during and after different DoS attacks related to TCP and TLS
— Penetration tests regarding security aspects

— Tests related to functional safety and reliability of the system

7 Conclusion and Outlook

In this paper, a Multi-MCU security architecture has been presented. In addi-
tion to an APP-MCU running the actual application, two MCUs are added to
provide security functionality in the form of TLS (Crypto-MCU) and a DoS pro-
tected network interface (NW-MCU). We showed that related work already has
partial solutions against the identified attack vectors on SCADA and ICS sys-
tems relevant for this paper. However, all presented solution either lack proper
security measures, do not provide the performance necessary in some of these
critical systems or imply the need of a more powerful APP-MCU. Following
this, we propose a new architecture featuring two additional MCUs for provid-
ing a secure network interface. One of them takes care of all network related
functionality, while the second one is solely handling the security functionality.
This physically isolates all cryptographically sensitive data from a remote access,
highly increasing the security while providing protection against DoS attacks.

198 T. Frauenschlager et al.

In conclusion, the current state of the prototype seems promising. The basic
functionality is working as described in this paper, with no problems resulting
from the use of a Multi-MCU architecture. In a future work, the architecture
will be further verified against the dependability objectives like functional safety
and IT-security. Also the performance characteristics will be analyzed.

References

1. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. Technical report International Electrotechnical Commis-
sion, April 2010

2. IEC 62351-3: Power systems management and associated information exchange -
data and communications security; Part 3: Communication network and system
security - Profiles including TCP/IP. Technical report International Electrotech-
nical Commission, October 2014

3. International Organization for Standardization: Identification cards - Integrated
circuit cards - Part 3: Cards with contacts - Electrical interface and transmission
protocols. Standard ISO/IEC, 7816-3 (2006)

4. International Organization for Standardization: Information technology - Secu-
rity techniques - Evaluation criteria for IT security. Standard ISO/IEC 15408-
1/2/3:2009, December 2009

5. Irmak, E., Erkek, I.: An overview of cyber-attack vectors on SCADA systems. In:
2018 6th International Symposium on Digital Forensic and Security, ISDFS, pp.
1-5, March 2018. https://doi.org/10.1109/ISDFS.2018.8355379

6. Liu, X., Qian, C., Hatcher, W.G., Xu, H., Liao, W., Yu, W.: Secure Internet of
Things (IoT)-based smart-world critical infrastructures: survey, case study and
research opportunities. IEEE Access 7, 79523-79544 (2019). https://doi.org/10.
1109/ACCESS.2019.2920763

7. Mukhtar, M.A., Bhatti, M.K., Gogniat, G.: Architectures for security: a compar-
ative analysis of hardware security features in Intel SGX and ARM TrustZone.
In: 2019 2nd International Conference on Communication, Computing and Digital
systems (C-CODE), pp. 299-304, March 2019. https://doi.org/10.1109/C-CODE.
2019.8680982

8. Niedermaier, M., Merli, D., Sigl, G.: A secure Dual-MCU architecture for robust
communication of IIoT devices. In: 2019 8th Mediterranean Conference on Embed-
ded Computing, MECO, pp. 1-5, June 2019. https://doi.org/10.1109/MECO.2019.
8760188

9. Schindler, W., Killmann, W.: A proposal for: Functionality classes for random num-
ber generators. Bundesamt fiir Sicherheit in der Informationstechnik, September
2011

https://doi.org/10.1109/ISDFS.2018.8355379
https://doi.org/10.1109/ACCESS.2019.2920763
https://doi.org/10.1109/ACCESS.2019.2920763
https://doi.org/10.1109/C-CODE.2019.8680982
https://doi.org/10.1109/C-CODE.2019.8680982
https://doi.org/10.1109/MECO.2019.8760188
https://doi.org/10.1109/MECO.2019.8760188

Security Improvements with a Multi-MCU Architecture 199

10. Frauenschlager, T., Dentgen, M., Mottok, J.: Systemarchitektur eines Sicher-

11.

heitsmoduls im Energiesektor. In: 2. Symposium Elektronik und Systemintegra-
tion: Intelligente Systeme und ihre Komponenten: Forschung und industrielle
Anwendung, April 2020. https://www.haw-landshut.de/fileadmin/Hochschule_
Landshut_NEU/Ungeschuetzt /ITZ_Cluster_Forschung/ClusterMST /Symposium-
ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger ESI_
2020.pdf

Urien, P.: Innovative TLS/DTLS security modules for iot applications: concepts
and experiments. In: Mandler, B., Marquez-Barja, J., Mitre Campista, M.E.,
Caganova, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M.,
Somov, A., Vieriu, R.-L. (eds.) IoT360 2015. LNICST, vol. 169, pp. 3—15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47063-4_1

https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://doi.org/10.1007/978-3-319-47063-4_1

	Security Improvements by Separating the Cryptographic Protocol from the Network Stack onto a Multi-MCU Architecture
	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Background
	2.1 Regulatory Context
	2.2 Attack Vectors

	3 Related Work
	4 Basic Concept
	5 Implementation
	5.1 Hardware Setup
	5.2 Communication Between the MCUs
	5.3 Software of the Crypto-MCU
	5.4 Software of the NW-MCU
	5.5 Software of the APP-MCU

	6 Concept for Validation
	7 Conclusion and Outlook
	References

