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Abstract. G-Programmable System-on-Chips offering the union of a processor
system with a programmable hardware gave rise to applications that choose
hardware acceleration to offload and parallelize computationally demanding
tasks. Due to flexibility and performance they provide at low cost, these devices
are also appealing for several applications in avionics, aerospace and automotive
sectors, where reliability is the main concern. In particular, the interconnection
architecture, and especially the AXI Interconnection for FPGA-accelerated
applications, plays a critical role in these systems. This paper presents a relia-
bility analysis of the AXI Interconnect IP Core implemented on Zynq-7000
AP-SoC against SEUs in the configuration memory of the programmable logic.
The analysis has been conducted performing a fault injection campaign on the
specific section of the configuration memory implementing the IP Core under
test, which has been implemented within a benchmark design. The results are
analyzed and classified, highlighting the criticality of the AXI Interconnect IP
Core as a point of failure, especially for SEU-hardened hardware accelerator
relying on mitigation techniques based on fine-grained and coarse-grained
replication.
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1 Introduction

In the last years, the advantages provided by the integration of a processor system and
other components such as memories and programmable hardware on a single chip have
become appealing for a wide range of applications within several domains. Especially,
the reduction of cost and developing time along with the increasing of integration and
flexibility is very interesting even in fields such as avionics, aerospace and automotive,
where reliability is the main concern [1–3]. In particular, All-Programmable-System-
on-Chips (AP-SoCs) combine on the same chip both a processor system and a Field
Programmable Gate Array (FPGA), commonly referred as programmable logic. This
architecture allows the designer to offload the processor system moving and paral-
lelizing on the programmable logic the computationally demanding tasks as well as
implementing customized hardware applications interacting with the processor and
the other modules of the chips. Moreover, the time to design is shortened by the reuse
of optimized IP blocks provided by vendors and third parties or developed through
High-Level Synthesis (HLS) tools (even almost transparently to the user) [4, 5].
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Typically, the IP blocks are connected to each other and/or with the processor through
an Advanced Microcontroller Bus Architecture (AMBA), mainly using an Advanced
eXtensible Interface (AXI). However, the benefits provided by the on-chip SRAM-
based FPGA come along with the reliability issues characterizing these devices. In
particular, Single Event Upsets (SEUs) are a dominant source of error for these devices.
SEUs can occur in the memory cells of FPGAs when they are exposed to ionizing
radiation typical of the space environment, inducing undesired bitflips in the content of
the memory cell struck by the ionized particle. However, the effect of SEUs are usually
not permanent even if they may produce error states and outputs in the application.
Though, when the corrupted memory cell belongs to the configuration memory of the
FPGA it can undermine the correctness of the implemented design causing semi-
permanent misbehaviors. Indeed, the behavior of the configurable hardware is defined
by a bitstream downloaded in the configuration memory of the device where it pro-
grams the basic programmable elements of the FPGA (i.e. LUTs, Flip-Flops, DSP, PIP,
etc.). Hence if the corrupted memory cell of the configuration layer was configuring a
critical resource of the implemented design, the fault will affect the application until the
configuration memory is rewritten with the correct content. To mitigate the SEUs
induced errors, several techniques have been proposed, such as periodic refresh of the
configuration memory to scrub accumulated faults (scrubbing) and replication of the
resources to detect and correct misbehavior (e.g. Dual Module Redundancy, Triple
Module redundancy).

In this work, we perform a reliability analysis of the AXI Interconnect IP Core by
Xilinx for connecting one or more AXI memory-mapped master devices or cores to one
or more memory-mapped slave devices or cores, usually used in the AP-SoC as
standard mean to interconnect the processor system and the IP cores implemented on
the programmable logic. At first, we proposed a benchmark design, subsequently
implemented on an AP-SoC Zynq7000, based on the hardware acceleration paradigm.
The reliability analysis is carried out through a fault injection campaign addressing the
specific section of the configuration memory related to the AXI Interconnect block
under test. The experimental results have been aggregated and analyzed to classify
produced errors. Finally, the criticality of the AXI Interconnect IP Core as a point of
failure even with the hardening of the hardware-accelerated core has been exposed in
the conclusion.

The paper is organized into six sections. Section 2 is dedicated to related works,
Sect. 3 reports the background of AP-SoC, reliability of programmable devices against
SEUs and the AXI Interconnection IP Core by Xilinx. Section 4 describes the evalu-
ation workflow, the design under test and fault injection platform. In Sect. 5, the
performed fault injection campaign is described, and the obtained results are reported,
classified and analyzed. To conclude, in Sect. 6, we discuss the results and future work.

2 Related Works

Related works focus mainly on the reliability of HLS generated IP Cores and their
interfaces. In [6, 7], the reliability evaluation of AXI Interfaces implemented using
Vivado HLS is reported. The authors evaluate the reliability of different versions of a
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custom IP core characterized by different interfaces and hardened solutions against
multiple bit upsets. However, the adopted mitigation techniques are restricted to the
HLS core, leaving aside the AXI Interconnection IP Core and only one of the proposed
configurations implements a hardened AXI Interface (i.e. triplicated AXI-Stream
Interface). Even though the interface is triplicated, the AXI Interconnect IP Core is still
unhardened and not replicated. Most importantly, it is in common between the
instances of the replicated interface. Indeed, AXI Interconnect IP Core is usually used
also for mapping in memory of registers of initialization, status, and management of the
AXI-DMA IP Core, that manage direct memory access between the memory and
devices and cores implementing AXI4-Stream interfaces. The authors perform injec-
tions considering the AXI-DMA IP Cores and AXI Interconnect IP Core as a single
module, reporting that it is a weak link even after interface replication. In [8], the
authors perform analysis on the previously described configuration, reporting the same
trend for replicated interfaces connected to a single unhardened AXI Interconnect IP
Core.

3 Background

3.1 AP-SoC

The AP-SoC is an electronic device integrating a hard processor system and an FPGA
into the same chip. Figure 1 shows the general scheme of the Zynq-7000 AP-SoC
architecture. However, the block architecture of different AP-SoCs is very similar and
they differ mainly for the I/Os, the characteristics of the processor systems as well as
for the size and technology of the programmable logic. In this paper, we carry out our
experiments and analyses on the Zynq-7000 AP-SoC which consists of a dual-core
ARM Cortex-A9 processors and a 28 nm Series 7 programmable logic [9].

The presence of both processor system and programmable hardware enables the
possibility to easily combine software programmability with custom hardware accel-
eration. An FPGA, and so the integrated programmable logic of the AP-SoC, consists
of two layers named Application Layer and Configuration Layer. The Application
Layer is composed of the resources available to the user to implement the desired
hardware application. The resources are programmable logic elements, such as DSPs,
LUTs, flip-flops, and programmable routing elements, such as Programmable-
Interconnection-Points (PIPs). The logic functions of these resources and their inter-
connection are univocally defined by the content of the configuration memory. Indeed,
the programmable logic is programmed by downloading and storing a bitstream into
the configuration memory. The configuration memory is the main component of the
Configuration Layer. Different sections of the configuration memory configure different
sections and resources of the Application Layer. The bitstream can be generated by the
user using vendor tools starting from the netlist of a target circuit. Additionally, the rise
of HLS tools has made the development of core for hardware acceleration easier,
providing optimization and interface management through high-level directives [10].
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3.2 SEUs in FPGAs Configuration Memory

Single Event Effects (SEEs) are a phenomenon that can occur when the silicon of an
integrated circuit is hit by ionizing radiation and particles. The interaction between the
silicon of the integrated circuits and the particles can cause several effects in the device,
leading to displacement in the lattice of the material, transitory glitches of current, and
change the status of bistable elements. In particular, SEUs are one of the most dominant
SEEs [11, 12]. They are soft-errors caused by the change of the content of a memory
cell when it is struck by a charged particle and so affecting the device functionality for a
short period without undermining the device integrity. However, since FPGAs con-
figuration memory data are not usually rewritten during device execution, an SEU
corrupting a configuration memory cell will affect the application behavior permanently
until the next power cycle or reconfiguration. Figure 2 shows an example of how an
interconnection can be disabled by a bitflip in the configuration memory. In the figure,
a charged particle striking the memory cell generates an open fault in the intercon-
nection line that can be fixed only by rewriting the correct content in the configuration
memory.

In order to mitigate the effects on the application layer induced by the SEUs in the
configuration memory, several techniques have been proposed. In particular, SEU-
hardening design techniques for FPGAs involve either replication at the gate level
(fine-grained) or at the module level (coarse-grained) to detect and eventually correct
the errors [13].
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Fig. 1. General overview of Zynq-7000 AP-SoC.
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3.3 AMBA and AXI Interconnect IP Core

AMBA is a standard developed by ARM for the interconnection of blocks in a system-
on-chip. AMBA supports high-performance and high-frequency communication and
includes the specification for AXI4 interfaces. In particular, AXI4, AXI4-Stream, and
AXI4-Lite have been adopted by Xilinx for IP blocks interfacing and on-chip com-
munication [14]. Additionally, as previously illustrated in Fig. 1, AXI ports for general
purpose and high-performance communication, as well as the AMBA AXI intercon-
nect, are present on Xilinx AP-SoCs.

The AXI Interconnect IP Core is a logic core provided in the Xilinx IP catalog to be
implemented in the programmable logic [15]. It allows connecting AXI masters and
AXI slaves modules transparently to the user accordingly with the interface charac-
teristics of any IP block. The AXI Interconnect IP Core can be configured to support
various communication models (i.e. 1-to-N, N-to-1, N-to-M).

In this paper, we will focus on the 1-to-N interconnect model, typical of hardware-
accelerated systems architecture. In the 1-to-Nmodel, a single master is present and it can
access several memory-mapped slaves to use the AXI interconnection module. Figure 3
shows a schema of the 1-to-N communication model. Generally, in the hardware accel-
erator paradigm, the processor system acts as master, demanding computationally
expensive tasks to the hardware modules (slaves). The slave modules can perform dif-
ferent operations if different tasks need to be accelerated on the hardware or perform the
same operation on different data vector if a highly parallel computation is desired.

Fig. 3. Single master-multiple slaves AXI architecture.

Fig. 2. SEUs affecting the configuration memory section programming a switch matrix.
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Additionally, the architecture can be used to perform the same function on the same data
as mitigation techniques based on the replication, and compare obtained results from the
hardware modules to detect and eventually correct errors.

4 Evaluation Platform and Workflow

For analyzing the reliability of the AXI Interconnect IP Core, we developed a
benchmark design based on the hardware-accelerator paradigm. The hardware-
accelerator module has been replicated emulating a dual with comparison approach
for the detection of the misbehaviors in the programmable logic, with the detection
check implemented on the processor side. The fault injection campaign has been
carried out using a previously developed fault injection platform. The platform can
perform automatized fault injection campaigns on the sections of the configuration
memory related to the specific modules under test. Moreover, it provides insight into
the structure of the configuration memory under test. The platform runs on a host
computer connected to the AP-SoC managing of the generation of faulty configuration
bitstream as well as of the download in the configuration memory. The test routine
executing on the processor system stimulates the hardware accelerators with a ran-
domly generated test vector. The outputs are compared by the processor system with
the expected results and sent the execution report to the host computer. Then, the errors
are classified accordingly with their characteristics and patterns. In the following
subsections, the evaluation platform and the adopted workflow are reported in detail.

4.1 Benchmark Design

The benchmark design consists of a duplicated hardware accelerator connected to the
processor system through the AXI Interconnect IP Core. The hardware accelerator has
been developed using Vivado HLS. It computes a non-linear signature from four 32 bit
fixed-point parameters (22 bits for the integer part and 10 bit for the decimal part). The
custom IP core implements also an AXI4-Lite interface that provides access to six
memory-mapped registers, four for the inputs, one for the output, and a control register.
The architecture of the system under test is illustrated in Fig. 4.
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Fig. 4. The overall scheme of the evaluation platform architecture.
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The processor system is connected to two instances of the hardware accelerator by
the AXI Interconnect IP Core configured as single master-multiple slaves. Both the two
hardware accelerators as well as the AXI Interconnect IP Core are implemented in the
AP-SoC programmable hardware. Additionally, the AP-SoC is connected with a host
computer. The host computer can configure the FPGA using the JTAG interface and
can start the test routine running on the processor system through a serial connection
with the processor. On the same channel, it can receive the report generated by the test
routine.

4.2 Test Routine

The test routine running on the processor system consists of three parts: a preamble, a
body, and an epilogue. In the preamble, the routine initializes the software data
structures for using the hardware accelerator IPs and verify that they are in a correct
state. In the body, the routine stimulates alternately each hardware with 1000 different
inputs. For each input, it collects the result and verify its correctness or detects if the IP
under test hangs. In the epilogue, the routine reports the status of the IP cores to the
fault injection platform and signals the end of the test routine. During all the phases, the
processor system reports the status of the test routine and IP cores executions results to
the host computer which stores them for future analysis.

Fig. 5. Fault injection workflow.
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4.3 Fault Injection Workflow

An enhanced version of the fault injection platform presented in [16] has been used for
the fault injection campaign. PyXEL can interface with Vivado to retrieve the list of the
resources used for implementing a specific hierarchical cell (e.g. the AXI Intercon-
nect IP Core) and provide to the user the coordinates in terms of frames and bits where
they are programmed. Moreover, it allows generating a visual representation of the
content of the configuration memory facilitating the definition of the constraints for the
location of the injections. Using these features, it has been possible to limit the fault
injection coordinates to the configuration memory section implementing the specific
module under test. The platform runs on the host computer and manages the experi-
mental workflow. In detail, it controls the generation of the injection locations and
injected bitstreams, the download of the faulty bitstreams in the configuration memory,
the trigger of the test routine, and the collection of results. All the injections steps are
automated and executed by the platform without user interaction. A representation of
the described workflow is reported in Fig. 5

5 Experimental Analysis and Results

The reliability analysis of AXI Interconnect IP Core has been performed through a fault
injection campaign. The AXI Interconnect IP Core has been implemented in the pro-
grammable logic of a Zynq-7000 AP-SoC within a benchmark design based on the
hardware accelerator paradigm. Zynq-7000 AP-SoC integrates on the same chip a
Dual-core ARM Cortex-A9 and a 28 nm Xilinx Series 7 programmable logic. The
performed fault injection campaign emulates SEUs effect in the configuration memory
through bitflips in the bitstream. The amount of injection has been selected accordingly
with the target confidence and error margin. The coordinates of injection have been
chosen in order to affect only the AXI Interconnect IP core under test. Results are
reported in terms of overall error rate computed as the number of faulty bitstreams that
generated an error in one or more on-hardware computation out of the amount of faulty
bitstream tested. Additionally, incorrect behaviors of the design under test have been
classified in different categories accordingly to their effect on the system.

5.1 Fault Injection Campaign

To perform an analysis of the errors produced by emulating radiation-induced SEUs in
the configuration memory affecting the AXI Interconnect IP Core, a fault injection
campaign has been carried out. We singularly injected 10,000 bitflips in the configu-
ration memory section configuring the AXI Interconnect IP Core under evaluation. The
configuration memory section selected for injection consists of 338,446 bits and spans
over 196 frames belonging to a single clock region. Figure 6 shows the floorplanning
of the implemented benchmark design as shown by the Vivado device view. The
resources implementing the AXI Interconnect IP Core are represented in blue and
highlighted by a yellow square. In this paper, we will focus on the 1-to-N interconnect
model, typical of hardware-accelerated systems architecture. In the 1-to-N model, a
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single master is present and it can access several memory-mapped slaves to use the
AXI interconnection module. Figure 3 shows a schema of the 1-to-N communication
model. Generally, in the hardware accelerator paradigm, the processor system acts as
master, demanding computationally expensive tasks to the hardware modules (slaves).
The slave modules can perform different operations if different tasks need to be
accelerated on the hardware or perform the same operation on different data vector if a
highly parallel computation is desired. Additionally, the architecture can be used to
perform the same function on the same data as mitigation techniques based on the
replication, and compare obtained results from the hardware modules to detect and
eventually correct errors. In the top-left corner is represented the processor system with
the hard interconnections. Similarly, Fig. 7 reports a subsection (from the frame 1800
to the frame 7400) of the configuration memory as shown by the fault injection plat-
form. The part to inject is highlighted by the yellow square.

Please notice that a single frame spans only over a single clock region and frames
belonging to the same clock region are sequential in the configuration bitstream and
accordingly in the configuration memory view produced by PyXEL. Though, the
sequence of clock region in the bitstream is out of order compared to the device view
exposed by Vivado. Therefore, blocks in Fig. 7 result displaced compared to their
position in Fig. 6.

Fig. 6. The Vivado view of the design, and the part selected for the injection (yellow square).
(Color figure online)
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Accordingly with (1), 10,000 injections allow to conservatively estimate with 0.01
of margin error (e) and 95% confidence level the probability that a bitflip in the injected
section of configuration memory can be a source of error for the system under test [17].

n ¼ N
1þ e2 � N� 1

t2 � p� 1� pð Þ
ð1Þ

In particular, n is the minimum number of injections needed to meet the target
margin of error e. N is the population size (i.e. the 338,446 injectable bits) and p is the
estimated probability of a fault to result in an error. We conservatively chose p = 0.5
which maximizes the value of n. The parameter t is the cut-off point corresponding to
the desired confidence level computed with respect to the Normal distribution. We
choose a 95% confidence level for which the value of t is 1.96.

The injection coordinates, in terms of frames and bit, have been independently and
randomly generated subsampling with replacement the section of the configuration
memory under test. The fault injection campaign required about 25 h to complete.

5.2 Analysis of Results

As a result 306 out of the 10,000 faulty bitstream have generated errors in the circuit.
The fault injection campaign showed an overall error rate of 3.06% with a 1% margin
error and a 95% confidence interval. Please notice that only a subset of the resources
related to the configuration memory section under test is used and consequently the
number of bits with value 1 is significantly lower than the number of bits with value 0.
Nonetheless, they are more likely to generate errors in the application when corrupted
[18]. In detail, only 10% of the injected faults were 1 to 0 bitflips but 18% generated
errors. Therefore about 50% of errors were generated by injections from 1 to 0 despite
the asymmetry in the subsampling. Table 1 reports a summary of the injections and
results they generated.

Fig. 7. A Section of the Configuration Memory view of the benchmark generated by PyXEL
and the subsection selected for the injection campaign (yellow square). (Color figure online)
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5.3 Classification of Faulty Results

The results have been classified accordingly with the issue they produced in the system.
As reported in Table 2, more than 88% of errors provoked a failure of both the
hardware accelerators. Please notice that even if for clarity faults are classified
accordingly with the effect they generate on the communication with the hardware
accelerator cores, given the injection process previously reported, all the faults are
caused by a malfunction of the AXI Interconnect IP Core. In detail, in 49.35% of the
detected misbehaviors, both the hardware accelerator cores cannot be initialized cor-
rectly or stopped to work after few successful communications. In 32.68% of the cases,
both the hardware cores can be reached by the processor system but their computations
are faulty. In 4.90% of cases, only one core out of two can be reached by the test
routine but the results it returns are wrong. Only in the 11.76% of the faulty cases, we
have one of the two core behaving correctly, while the other does not respond to the
stimuli. The results are summarized in Table 2.

Additionally, it has been observed that when both the cores produce erroneous
computation, the returned values are the same. Therefore, it is impossible to detect the
fault without comparing them with the golden result even with the replication of the
hardware accelerator.

6 Conclusions and Future Works

In this paper, we evaluated the reliability of AXI Interconnect IP Core against SEUs.
The study has been carried out through a fault injection campaign in the configuration
memory of Zynq-7000 programmable logic. Errors have been classified accordingly

Table 1. Summary of SEUs injections and results

Injected fault Amount Generating errors

0-to-1 9155 (91.55%) 154 (1.6%)
1-to-0 845 (8.45%) 152 (17.9%)
Total 10 000 (100%) 306 (3.06%)

Table 2. Classification of system faults

Class Amount

Both HW cores hang 151 (49.35%)
Both HW cores fail 100 (32.68%)
Single HW core fails 36 (11.76%)
HW core fails + HW core hang 15 (4.90%)
Others 4 (1.31%)
Total 306 (100%)
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with their effect on the system and type. The analysis has shown as AXI Intercon-
nection IP Core can be a source of errors for architecture exploiting hardware accel-
eration. Additionally, it has been shown as errors generated in the interconnection core
can thwart mitigation techniques based on the replication of hardware modules. As
future work, the design of a hardened the AXI Interconnect IP core needs to be
performed to perform a comparative analysis
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