
Towards a Priority-Based Task
Distribution Strategy for an Artificial

Hormone System

Eric Hutter(B) and Uwe Brinkschulte

Goethe University Frankfurt, Frankfurt am Main, Germany
{hutter,brinks}@es.cs.uni-frankfurt.de

Abstract. This paper presents a priority-based task distribution strat-
egy as an extension to the Artificial Hormone System (AHS). The AHS is
a distributed middleware based on self-organization principles. It allows
to distribute tasks to processing nodes in a self-organizing way while
neither having a single-point-of-failure nor requiring external user input.
Node failures are detected automatically, resulting in relocation of any
affected tasks to operational nodes. This provides self-healing capabili-
ties if sufficient computational resources are available.

Our extension allows tasks to have priorities and enables self-healing
by gracefully degrading the system based on the task priorities if the
computational resources are not sufficient to completely self-heal the sys-
tem. We present our extension and analyze its worst-case time bounds for
self-configuration as well as self-healing. Quickly degrading the system
in overload situations requires a strategy deciding which tasks to stop in
such situations. We present a simple strategy and analyze its worst- and
average-case self-healing duration.

Keywords: Artificial Hormone System · Organic Computing ·
Self-organization · Self-healing · Task distribution

1 Introduction

New ways to handle the increasing complexity observed in embedded sys-
tems while simultaneously coping with component failures have to be found.
One promising approach is to adapt self-organizational principles to computer
systems.

The Artificial Hormone System (AHS) middleware [14] adapts the natural
endocrine system in order to decentrally manage tasks in a distributed system:
By exchanging digital messages, called hormones after their biological model, via
a communication network, tasks can be distributed in the system in a flexible
and self-organizing manner, exhibiting properties such as self-configuration and
self-healing.

This paper deals with an extension to the AHS middleware that supports task
assignment priorities, thus allowing graceful system degradation if the amount of
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node failures is too big to allow the system to fully heal itself. Our contribution
is three-fold:

1. We describe a priority-based task-decision strategy for the AHS.
2. We derive hard time bounds for this strategy’s self-configuration and self-

healing capabilities.
3. We analyze the worst- and average-case time required to degrade a system in

an overload situation.

The paper is structured as follows: We first present related work and the
general AHS in Sects. 2 and 3. Section 4 describes our priority-based extensions
to the AHS. Its worst-case time bounds are derived in Sect. 5. Section 6 proposes
a simple degradation strategy to self-heal the system in overload situations and
analyzes its worst- and average-case healing times. Finally, Sect. 7 concludes this
paper.

2 Related Work

The approach presented in this paper enables a distributed system to recover
from hardware failures by dynamically (re)configuring itself. A classical way to
improve a system’s robustness against such types of failures is the duplication
of functional units: By providing each unit with an identical, redundant unit in
hot stand-by, a limited number of failures can be compensated. This pattern is
frequently used for safety-critical control units in the automotive domain, albeit
recent approaches like the AutoKonf project [10] try to reduce costs by sharing
a single backup between multiple different control units so that a single failure
can be compensated.

In contrast, our approach allows to assign tasks to a distributed system’s
computing nodes in a self-organizing way, allowing more flexibility. Task priori-
ties allow gradual system degradation after so many node failures have occurred
so that the system can no longer fully recover. This flexible mechanism allows
to reduce the number of required backup nodes while still being able to tolerate
a limited number of node failures.

Our approach is inspired by multiple general research trends: IBM’s Auto-
nomic Computing initiative [8] introduced self-x properties such as self-
configuration, selfoptimization or selfhealing. These properties can also be
observed in systems based on Organic Computing principles [11]: Organic Com-
puting can be characterized as a postponement of various decisions to the sys-
tem’s run-time that were traditionally made at design time [9], allowing the
system to dynamically adapt to changed operational conditions [13].

The resulting dynamism distinguishes our concept from approaches like [6]
where a (offline) precomputed adaption scenario is applied in case of node failures
or overload situations. In contrast, our approach completely postpones the cal-
culation of adaption responses to the run-time and thus allows a more dynamic
reaction.
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Nevertheless, our concept is by far not the only approach to assign tasks in
distributed systems.

Contract Net Protocols [12] can be employed to distribute tasks to agents in
a multi-agent system. The approach presented in [17] consists of an improved
Contract Net Protocol for task assignment and employs self-healing capabilities
as well as task priorities. Yet, contrarily to our approach, it is not completely
decentralized and does not guarantee hard real-time bounds.

Contract Net Protocols have also been used for task assignment in Wireless
Sensor Networks (WSNs), e.g. in [4]. Other recent research in this domain utilizes
self-organization principles [16], game theory [5] or particle swarm optimization
[7,15]. Many of these approaches employ some kind of task priority, e.g. deadline-
based priorities or number of dependent tasks in a task graph. Additionally, with
WSN nodes typically having a limited energy budget, energy-efficiency is one of
the main goals of these approaches, rather than guaranteeing real-time behavior
as with our approach. In addition, WSNs do not guarantee that any two nodes
have a direct communication link as required by our approach, thus needing
different methods to distribute the tasks.

To the best of our knowledge, no self-organizing middleware for prioritized
task allocation in distributed systems comparable to our approach exists.

3 The Artificial Hormone System

The Artificial Hormone System (AHS) is a completely decentralized middleware
based on Organic Computing principles that allows the distribution of tasks in
a self-organizing way. If a processing element (PE) fails, the remaining PEs will
compensate this failure by re-configuring themselves.

The AHS works by realizing control loops based on hormones, which are
short digital messages, on all PEs in the system: They exchange eager values for
all tasks, indicating their suitability for each task. In every cycle of the hormone
control loop (called hormone cycle), each PE tries to make a decision upon one
task by comparing its own eager value with all received eager values. If it has
sent the highest eager value for some task T in the current cycle, it is allowed
to start executing T .

Once T has been started, its PE will start sending out a suppressor hormone
for this task. Upon receiving this suppressor, the other PEs will reduce their eager
values for T accordingly, preventing them from taking additional instances of T .

Accelerator hormones act antagonistically to suppressors by increasing a
task’s eager value: Tasks that cooperate in some way or work on similar problems
may be defined as related. When a task T is running on some PEγ , accelerators
for all tasks related to T are spread in the vicinity of PEγ . This furthers the exe-
cution of those tasks on neighboring PEs, forming functional clusters of related
tasks.

Figure 1 shows the basic principle of the hormone control loop. It is com-
pletely decentralized and thus, the AHS has no single point of failure. In addi-
tion, the original AHS (without our priority extension) can guarantee hard time
bounds, allowing its use in real-time systems:
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Fig. 1. Hormone control loop executed on PEγ . For each task Ti, a modified eager
value Emiγ (its static local eager value Eiγ plus all received accelerators Aiγ minus
all received suppressors Siγ) is sent to all PEs. If the sent modified eager value is
positive and greater than all received modified eager values, Ti may be taken. Thus,
suppressors for Ti will be sent to all other PEs (preventing infinite assignments of Ti)
and accelerators for tasks related to Ti will be sent to neighboring PEs, forming clusters
of related tasks on them.

– The system’s initial self-configuration requires at most m hormone cycles,
where m is the number of tasks to distribute.

– In case a PE running mf tasks fails, the AHS will automatically perform a
self-healing by reassigning those tasks among the healthy PEs. This takes at
most mf +a hormone cycles where a is the number of hormone cycles required
to notice the failure (by missing suppressors for the failed tasks).1

The length of each hormone cycle can be chosen arbitrarily, a lower bound is
only imposed by the communication bus’ latency and bandwidth.

For more detailed information on the AHS, please refer to [1–3,14].

4 A Priority-Based Task Decision Strategy

4.1 Motivation

The AHS’ self-healing capabilities are insufficient if the remaining PEs do not
have enough computational resources to execute all tasks. With many systems
consisting of tasks with mixed criticality levels, this may easily lead to situations
where low-criticality tasks are running, but high-criticality tasks previously exe-
cuted on the failed PE cannot be reassigned. In fact, it is undefined which task
subset will be running in such situations.
1 In the AHS’ current implementation, a = 2 hormone cycles holds.
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The AHS models system load by means of load suppressors a task sends to
the PE it is running on, thus limiting the number of tasks the PE can take. If it
is fully loaded, it will send an eager value of 0 for all remaining tasks. Therefore,
situations of system overload can in principle be recognized by examining the
hormones broadcasted in the system.

We thus implemented an AHS extension that allows to give each task a
priority. This priority is used to (a) control the order in which tasks are assigned
during the initial self-configuration and (b) resolve system overload situations
by stopping tasks of low priority, freeing capacities for high-priority tasks.

4.2 Conception

Our approach, the priority-based task decision strategy, is an extension of the
AHS’ so-called aggressive task decision strategy [2]: Each PE may take at most
one task per hormone cycle. If more than one task were taken per cycle and PE,
all tasks could be assigned before accelerators had a chance to become effective,
failing to cluster related tasks. Using the aggressive task decision strategy, each
PE actively searches for a task it may take in each cycle. This allows at least
one PE to take one task per cycle, resulting in the time bound of m hormone
cycles to distribute m tasks mentioned in Sect. 3.

Our priority-based task decision strategy has the same operating principle
with the following differences: Each task has an integer priority that is known to
and equal on all PEs in the system. Each PE searches its task list for a task to
be taken in the order of descending priorities. If the received hormones suggest
that another PE has won some task T (and thus might take it in this cycle),
no task T ′ having a lower priority than T ’s may be taken in the current cycle,
ensuring a correct order of task assignment. Figure 2a sketches this procedure:
The variable lockPrio is used to stop deciding on tasks after a higher-priority
task has been identified that may be taken on another PE in this cycle. The
variable missingTask is used to track a high-priority task that is not running
in the system because of an overload situation. Both variables are set by the
sub-procedure Decide(T ) as shown in Fig. 2b.2

The decide procedure works by comparing the local eager value sent with all
received eager values. There are three possible outcomes of this comparison:

a) No bidders: No PE sent a positive modified eager value for T . If suppressors
were received for T instead, T is taken somewhere and the decision procedure
may continue to the next task. Else, no PE has capacities to take T , so the
system is in an overload situation. In this case, lockPrio is set to prevent
tasks of lower priority from being taken and missingTask is used to track
this situation.

b) Loser: The local PE did not send the highest eager value for T . Thus, it sets
lockPrio to prevent taking any task of lower priority.

2 For the sake of brevity, only a simplified variant of Decide (T ) is depicted with some
parts omitted, e.g. the offer mechanism belonging to the AHS’ self-optimization.
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Fig. 2. Priority-based task decision strategy

c) Winner: The local PE sent the highest eager value for T . Thus, it takes T
(and will send a suppressor for T in the next cycle, preventing the other PEs
from taking an additional instance of this task).

The current hormone cycle ends once a task has been taken or a task with lower
priority than lockPrio has been reached. If, in the latter case, missingTask is
set, some high-priority task is not running because of an overload situation. In
order to resolve this situation, each PE will try to drop tasks of low priority in
order to free up resources and send an eager value >0 for this task.

This is, however, based on the following fundamental assumption:

Assumption. Any task may be (temporarily) stopped at any time in order to
free up resources for tasks of higher priority.

It is up to a task dropping strategy to decide on which specific tasks will be
stopped in an overload situation; more information on this matter as well as
the priority-based task decision’s time bounds will be presented in the following
sections.

5 Worst-Case Analysis

Our priority-based extension can still guarantee real-time behavior for self-
configuration as well as self-healing if the remaining capacities are sufficient
to redistribute all failed tasks:
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Self-Configuration. It can be shown that it takes at most 2m − 1 hormone
cycles to assign m tasks during the system’s initial self-configuration. As our
strategy is based on the aggressive strategy, a similar argument to the one given
in [2] can be employed: Each PE searches actively for a won task, thus at least
one task is taken per cycle in the system. However, after a task T is taken by
some PEα in cycle i, all other PEs will still send out an eager value >0 for
T in cycle i + 1 before PEα’s suppressor for T finally becomes effective. This
introduces one delay cycle in which no task allocation can happen after the last
task of each priority level has been assigned. Thus, if all m tasks have different
priorities, m−1 delay cycles are introduced and self-configuration takes at most
2m − 1 hormone cycles.

Self-Healing. If a PE fails, it won’t send any more hormones. Thus, it is possible
to detect this failure by missing hormones. This takes a constant amount of a
hormone cycles.3 Afterwards, the failed tasks are automatically re-assigned with
the time bound for self-configuration applying. If mf tasks were running on
the failed PE and the remaining PEs’ resources suffice to take all those tasks,
self-healing thus takes at most 2mf − 1 + a hormone cycles.

If, however, the remaining capacities do not suffice to take all failed tasks,
the system is considered to be in an overload situation. Since a premise of our
priority-based task decision is to allow gracefully degrading the system in such
situations, the next section will deal with overload situations.

6 Overload Situations

As mentioned in Sect. 4.2, a task dropping strategy is responsible for deciding on
which specific tasks to stop in overload situations. However, a model is required
to facilitate the analysis of such situations. Thus, let v be the number of PEs
that remain operational. Let PE× denote the failed PE and PE1 . . .PEv denote
the remaining PEs. Additionally, we will make the following assumptions:

– All tasks have different priorities.
– All tasks induce equal load to the PEs and each PE may execute any task.
– At the instant PE× fails, PE× and PE1 . . .PEv are each completely utilized

by executing exactly m tasks.
– No additional PE failure occurs during self-healing.

The resulting model is visualized in Fig. 3.

6.1 Task Dropping Strategy

We now propose the following task dropping strategy to resolve an overload
situation:

3 As mentioned before, a = 2 holds.



76 E. Hutter and U. Brinkschulte

Fig. 3. Overload model used during analysis

Strategy. Upon noticing an overload situation, each PE shall stop all running
tasks that have a priority lower than the priority of the highest-priority task that
is currently not running.

In the context of Fig. 2, this strategy basically stops all tasks having a priority
lower than missingTask ’s priority. After the tasks have been stopped, the system
re-configures itself by assigning as many of the highest-priority non-running tasks
as possible. Since the system is in overload, not all tasks can be assigned, but no
more tasks will be stopped by the next invocation of the task dropping strategy.
As this is arguably a very simple strategy, we called it naive task dropping. In
addition, analyzing its worst-case in the given model is straightforward:

Theorem 1 (Worst-Case Analysis for Overload Situations). Self-healing
in an overload situation takes at most 2mv + a hormone cycles when using the
naive task dropping strategy.

Proof. It takes a constant amount a of hormone cycles to notice the failure of
PE× due to missing suppressors. All v remaining PEs are fully utilized, so the
system is in an overload situation.

Thus, in the next cycle, missingTask is set to the highest-priority task that
was previously running on PE× and no task is taken in the system. The strat-
egy will now stop all tasks with a priority lower than missingTask ’s priority;
if missingTask is the single-highest priority task, a total of mv tasks will be
stopped.

Starting with the following cycle, the mv highest-priority tasks (of all mv+m
non-running tasks) will be assigned, taking 2mv − 1 cycles at most.

As a result, no more than 2mv − 1 + 1 + a = 2mv + a hormone cycles are
required to complete the self-healing and reach a stable system state again. ��

6.2 Average-Case Analysis

In this paper, we additionally want to analyze the time required for self-healing
when using this strategy in the average case. Although an average-case analysis
is not relevant in the context of real-time systems, we decided to nevertheless
analyze it in this regard: The expected self-healing duration might especially be
of interest for scenarios that don’t require hard real-time bounds.
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Preparations. In order to facilitate this analysis, some arrangements have to
be made:

Definition 1. Let n, k ∈ N. Then, the rising factorial nk shall be defined as

nk := n · (n + 1) · · · (n + k − 1)
︸ ︷︷ ︸

k factors

=
n+k−1
∏

i=n

i.

Lemma 1. For k,m ∈ N with k ≥ 1,

k
∑

i=1

im = k · (k + 1)m

1 + m
holds.

Proof. Multiplying with (m!/m!) allows to convert the summands to binomial
coefficients:

k
∑

i=1

im = m! ·
k

∑

i=1

im

m!
= m! ·

k
∑

i=1

(

i + m − 1
m

)

= m! ·
k+m−1

∑

i=m

(

i

m

)

This sum can now be simplified using the identity
∑n

i=r

(
i
r

)

=
(
n+1
r+1

)

:

= m! ·
(

k + m

m + 1

)

= m! · km+1

(m + 1)!
= k · (k + 1)m

1 + m
.

��

Analysis. We can now analyze the naive task dropping strategy’s average case
within our overload situation model, assuming all tasks are distributed randomly
to the available PEs. For this reason, we quantify the number of tasks stopped
on average:

Theorem 2. Let X be a random variable representing the number of tasks
stopped by the naive task dropping strategy and E [X] its expected value. Then,
E [X] = (m2v)/(1 + m) holds.

Proof. We will first calculate the probability distribution of X by assuming that
all (v + 1) · m tasks are distributed in sequence of descending priorities to mv
positions on PE1 . . .PEv and mv positions on PE×.

Obviously, 0 ≤ X ≤ mv holds: In case the m lowest-priority tasks are running
on PE×, no tasks have to be stopped. If the highest-priority task is running on
PE×, all tasks on PE1 . . .PEv are stopped.

Generalizing this argument yields

– X = mv ⇐⇒ The highest-priority task is set to one of PE×’s m positions.
– X = mv − 1 ⇐⇒ The second-highest-priority task is the first task to be set

to one of PE×’s m positions.
...
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– X = 0 ⇐⇒ The (m · (v + 1) − 1)-highest-priority task (which is the m-
lowest-priority task) is the first task to be set to one of PE×’s m positions.

Thus, the probability distribution of X is given by

P (X = mv) =
m

m · (v + 1)

P (X = mv − 1) =
mv

m · (v + 1)
· m

m · (v + 1) − 1

P (X = mv − 2) =
mv

m · (v + 1)
· mv − 1
m · (v + 1) − 1

· m

m · (v + 1) − 2
...

P (X = 0) =
mv

m · (v + 1)
· mv − 1
m · (v + 1) − 1

· · · 1
m + 1

︸ ︷︷ ︸

mv highest-priority tasks on PE1 . . .PEv

· m

m

This is equivalent to

P (X = j) =

mv
∏

i=j+1

i

mv+m
∏

i=m+j+1

i

· m

m + j
= m ·

mv
∏

i=j+1

i

mv+m
∏

i=m+j

i

(1)

for all 0 ≤ j ≤ mv. Figure 4 plots the probability distribution as given by this
equation for arbitrarily chosen values of m and v.

0 5 10 15 20 25
0

0.05

0.1

0.15

Fig. 4. Probability distribution of number of tasks stopped by naive task dropping
strategy for m = 4 and v = 6
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Equation 1 now allows us to calculate E [X]:

E [X] =
∑mv

j=0 j · P (X = j) =
∑mv

j=1 j · m ·
mv∏

i=j+1
i

mv+m∏

i=m+j

i

= m · ∑mv
j=1 j · (mv)!/j!

(mv+m)!/(m+j−1)! = m · ∑mv
j=1

(m+j−1)!/(j−1)!
(mv+m)!/(mv)!

= m
mv+m∏

i=mv+1
i

· ∑mv
j=1

(
∏m+j−1

i=j i
)

= m
(mv+1)m · ∑mv

j=1 j
m

This expression can be simplified using Lemma 1:

= m
(mv+1)m · mv·(mv+1)m

1+m = m2v
1+m .

��

Discussion. When examining the number of tasks dropped by the naive task
dropping strategy, it becomes obvious that its worst case is not substantially
worse than the average case, especially for large values of m:

lim
m→∞

worst case
average case

= lim
m→∞

mv
m2v
1+m

= lim
m→∞

(

1 +
1
m

)

= 1.

As a result, no significant outliers from the average case are to be expected when
utilizing this task dropping strategy.

In addition, initial self-configuration for mv tasks requires 2mv − 1 hormone
cycles, while self-healing in an overload situation takes at most 2mv+a hormone
cycles: Both bounds are linear in the number of tasks with different (and small)
additive constants.

7 Conclusion

This paper described a priority-based extension to the AHS middleware. We
analyzed its worst-case time bounds for self-configuration and self-healing. Addi-
tionally, a strategy was proposed allowing to degrade the system in case of an
overload situation. Its worst and average cases were analyzed. The results show
that this strategy does not perform substantially worse in its worst case than it
does on average.

Future work will deal with thorough evaluations of our concept as well as
further research on degrading the system in overload situations, especially with
developing more elaborate task dropping strategies, possibly guaranteeing even
better time bounds for self-healing in overload situations.

Additionally, our current analyses assume a reliable communication network.
Although empirical experiments suggest that the AHS can handle a limited
degree of communication failures quite well, we plan to shift our research focus
to guaranteeing time bounds and the system’s overall consistency even in the
presence of such failures.
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