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Dynamic Programming Approach

to the Generalized Minimum Manhattan Network Problem∗

Yuya Masumura† Taihei Oki‡ Yutaro Yamaguchi§

Abstract

We study the generalized minimum Manhattan network (GMMN) problem: given a set P of
pairs of points in the Euclidean plane R

2, we are required to find a minimum-length geometric
network which consists of axis-aligned segments and contains a shortest path in the L1 metric
(a so-called Manhattan path) for each pair in P . This problem commonly generalizes several
NP-hard network design problems that admit constant-factor approximation algorithms, such as
the rectilinear Steiner arborescence (RSA) problem, and it is open whether so does the GMMN
problem.

As a bottom-up exploration, Schnizler (2015) focused on the intersection graphs of the rect-
angles defined by the pairs in P , and gave a polynomial-time dynamic programming algorithm
for the GMMN problem whose input is restricted so that both the treewidth and the maximum
degree of its intersection graph are bounded by constants. In this paper, as the first attempt to
remove the degree bound, we provide a polynomial-time algorithm for the star case, and extend
it to the general tree case based on an improved dynamic programming approach.
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1 Introduction

In this paper, we study a geometric network design problem in the Euclidean plane R
2. For a pair

of points s and t in the plane, a path between s and t is called a Manhattan path (or an M-path for
short) if it consists of axis-aligned segments whose total length is equal to the Manhattan distance
of s and t (in other words, it is a shortest s–t path in the L1 metric). The minimum Manhattan
network (MMN) problem is to find a minimum-length geometric network that contains an M-path
for every pair of points in a given terminal set. In the generalized minimum Manhattan network
(GMMN) problem, given a set P of pairs of terminals, we are required to find a minimum-length
network that contains an M-path for every pair in P . Throughout this paper, let n = |P | denote
the number of terminal pairs.

The GMMN problem was introduced by Chepoi, Nouioua, and Vaxès [5], and is known to be
NP-hard as so is the MMN problem [6]. The MMN problem and another NP-hard special case
named the rectilinear Steiner arborescence (RSA) probelm admit polynomial-time constant-factor
approximation algorithms, and in [5] they posed a question whether so does the GMMN problem
or not, which is still open.

Das, Fleszar, Kobourov, Spoerhase, Veeramoni, andWolff [8] gave anO(logd+1 n)-approximation
algorithm for the d-dimensional GMMN problem based on a divide-and-conquer approach. They
also improved the approximation ratio for d = 2 to O(log n). Funke and Seybold [9] (see also
[19]) introduced the scale-diversity measure D for (2-dimensional) GMMN instances, and gave an
O(D)-approximation algorithm. Because D = O(log n) is guaranteed, this also implies O(log n)-
approximation as with Das et al. [8], which is the current best approximation ratio for the GMMN
problem in general.

As another approach to the GMMN problem, Schnizler [18] explored tractable cases by focusing
on the intersection graphs of GMMN instances. The intersection graph represents for which terminal
pairs M-paths can intersect. He showed that, when both the treewidth and the maximum degree
of intersection graphs are bounded by constants, the GMMN problem can be solved in polynomial
time by dynamic programming (see Table 1). His algorithm heavily depends on the degree bound,
and it is natural to ask whether we can remove it, e.g., whether the GMMN problem is difficult
even if the intersection graph is restricted to a tree without any degree bound.

In this paper, we give an answer to this question. Specifically, as the first tractable case without
any degree bound in the intersection graphs, we provide a polynomial-time algorithm for the star
case by reducing it to the longest path problem in directed acyclic graphs.

Theorem 1.1. There exists an O(n2)-time algorithm for the GMMN problem when the intersection
graph is restricted to a star.

Then, we extend it to the general tree case based on a dynamic programming (DP) approach
inspired by and improving Schnizler’s algorithm [18].

Theorem 1.2. There exists an O(n5)-time algorithm for the GMMN problem when the intersection
graph is restricted to a tree.

The above algorithm involves two types of DPs, which are nested. We furthermore improve its
running time by reducing the computational cost of inner DPs, and obtain the following result.

Theorem 1.3. There exists an O(n3)-time algorithm for the GMMN problem when the intersection
graph is restricted to a tree.
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Table 1: Exactly solvable cases classified by the class of intersection graphs, whose treewidth and
maximum degree are denoted by tw and ∆, respectively.

Class Time Complexity

tw = O(1), ∆ = O(1) O(n4∆(∆+1)(tw+1)+2) [18]

Trees (tw = 1, ∆ = O(1)) O(n4∆2+1) [18]

Cycles (tw = ∆ = 2) O(n25) [18]

tw = O(1), ∆ = O(1) O(n2∆(tw+1)+1) (Theorem A.1)

Stars (tw = 1, ∆ = n− 1) O(n2) (Theorem 1.1)

Trees (tw = 1) O(n3) (Theorem 1.3)

Cycles (tw = ∆ = 2) O(n4) (Corollary 1.4)

Furthermore, we show that the cycle case can be solved by solving the tree case O(n) times.
This fact is shown as Proposition 6.2 in a generalized form from cycles to triangle-free pseudotrees,
where a triangle is a cycle consisting of three vertices and a pseudotree is a connected graph that
contains at most one cycle.1 Combining this with Theorem 1.3, we obtain the following result.

Corollary 1.4. There exists an O(n4)-time algorithm for the GMMN problem when the intersection
graph is restricted to a cycle (or a triangle-free pseudotree).

We also improve the time complexity for the general case as in Table 1. The dependency on the
maximum degree is substantially improved, but it is still exponential. In addition, the approach
is apart from the above main results and is also a straightforward improvement from Schnizler’s
result for the tree case. For these reasons, we just sketch this result in the appendix.

Related work

The MMN problem was first introduced by Gudmundsson, Levcopoulos, and Narashimhan [10].
They gave 4- and 8-approximation algorithms running in O(n3) and O(n log n) time, respectively.
The current best approximation ratio is 2, which was obtained independently by Chepoi et al. [5]
using an LP-ronding technique, by Nouioua [15] using a primal-dual scheme, and by Guo, Sun, and
Zhu [11] using a greedy method.

The RSA problem is another important special case of the GMMN problem. In this problem,
given a set of terminals in R

2, we are required to find a minimum-length network that contains an
M-path between the origin and every terminal. The RSA problem was first studied by Nastansky,
Selkow, and Stewart [14] in 1974. The complexity of the RSA problem had been open for a long
time, and Shi and Su [20] showed that the decision version is strongly NP-complete after three
decades. Rao, Sadayappan, Hwang, and Shor [16] proposed a 2-approximation algorithm that runs
in O(n log n) time. Lu and Ruan [12] and Zachariasen [21] independently obtained PTASes, which
are both based on Arora’s technique [3] of building a PTAS for the metric Steiner tree problem.

1Precisely, a triangle itself is not a triangle-free pseudotree, but its size is trivially bounded by a constant. In
contrast, the size of a pseudotree containing a triangle is unbounded, and it remains open whether such a case is
tractable or not. See Section 2.3 for why the triangle-freeness is crucial in our approach.
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Organization

The rest of this paper is organized as follows. In Section 2, we describe necessary definitions and
notations. In Section 3, we present an algorithm for the star case and prove Theorem 1.1. In Section
4, based on a DP approach, we extend our algorithm to the tree case and prove Theorem 1.2. Then,
in Section 5, we improve the algorithm shown in Section 4 by reducing the computational cost of
solving subproblems in our DP and prove Theorem 1.3. Finally, in Section 6, we show that any
cycle (or triangle-free pseudotree) instance can be reduced to O(n) tree instances, which implies
Corollary 1.4. We also discuss an improvement on the general case and another observation in the
appendix.

2 Preliminaries

2.1 Problem Formulation

For a point p ∈ R
2, we denote by px and py its x- and y-coordinates, respectively, i.e., p = (px, py).

Let p, q ∈ R
2 be two points. We write p ≤ q if both px ≤ qx and py ≤ qy hold. We define two points

p ∧ q = (min {px, qx} , min {py, qy}) ,

p ∨ q = (max {px, qx} , max {py, qy}) .

We denote by pq the segment whose endpoints are p and q, and by ‖pq‖ its length, i.e., pq =
{αp+(1−α)q | α ∈ [0, 1]} and ‖pq‖ =

√

(px − qx)2 + (py − qy)2. We also define dx(p, q) = |px−qx|
and dy(p, q) = |py − qy|, and denote by d(p, q) the Manhattan distance between p and q, i.e.,
d(p, q) = dx(p, q) + dy(p, q). Note that ‖pq‖ = d(p, q) if and only if px = qx or py = qy, and then
the segment pq is said to be vertical or horizontal, respectively, and axis-aligned in either case.

A (geometric) network N in R
2 is a finite simple graph with a vertex set V (N) ⊆ R

2 and an
edge set E(N) ⊆

(

V (N)
2

)

= {{p, q} | p, q ∈ V (N), p 6= q}, where we often identify each edge {p, q}
with the corresponding segment pq. The length of N is defined as ‖N‖ =

∑

{p,q}∈E(N) ‖pq‖. For

two points s, t ∈ R
2, a path π between s and t (or an s–t path) is a network of the following form:

V (π) = {s = p0, p1, p2, . . . , pk = t},

E(π) =
{

{pi−1, pi} | i ∈ [k]
}

,

where [k] = {1, 2, . . . , k} for a nonnegative integer k. An s–t path π is called a Manhattan path (or
an M-path) for a pair (s, t) if every edge {pi−1, pi} ∈ E(π) is axis-aligned and ‖π‖ = d(s, t) holds.

We are now ready to state our problem formally.

Problem (Generalized Minimum Manhattan Network (GMMN)).

Input: A set P of n pairs of points in R
2.

Goal: Find a minimum-length network N in R
2 that consists of axis-aligned edges and contains a

Manhattan path for every pair (s, t) ∈ P .

Throughout this paper, when we write a pair (p, q) ∈ R
2×R

2, we assume px ≤ qx (by swapping
if necessary). A pair (p, q) is said to be regular if py ≤ qy, and flipped if py ≥ qy. In addition, if
px = qx or py = qy, then there exists a unique M-path for (p, q) and we call such a pair degenerate.
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Figure 1: An optimal solution (solid) to a GMMN instance {(s1, t1), (s2, t2), (s3, t3)} lies on the
Hanan grid (dashed), where (s1, t1) and (s2, t2) are regular pairs and (s3, t3) is a flipped pair.

2.2 Restricting a Feasible Region to the Hanan Grid

For a GMMN instance P , we denote by H(P ) the Hanan grid, which is a grid network in R
2

consisting of vertical and horizontal lines through each point appearing in P . More formally, it is
defined as follows (see Figure 1):

V (H(P )) =





⋃

(s,t)∈P

{sx, tx}



×





⋃

(s,t)∈P

{sy, ty}



 ⊆ R
2,

E(H(P )) =
{

{p, q} ∈
(

V (H(P ))
2

)

| ‖pq‖ = d(p, q), pq ∩ V (H(P )) = {p, q}
}

.

Note that H(P ) is an at most 2n× 2n grid network. It is not difficult to see that, for any GMMN
instance P , at least one optimal solution is contained in the Hanan grid H(P ) as its subgraph
(cf. [9]).

For each pair v = (p, q) ∈ V (H(P )) × V (H(P )), we denote by ΠP (v) or ΠP (p, q) the set of all
M-paths for v that are subgraphs of the Hanan grid H(P ). By the problem definition, we associate
each n-tuple of M-paths, consisting of an M-path πv ∈ ΠP (v) for each v ∈ P , with a feasible
solution N =

⋃

v∈P πv on H(P ), where the union of networks is defined by the set unions of the
vertex sets and of the edge sets. Moreover, each minimal feasible (as well as optimal) solution
on H(P ) must be represented in this way. Based on this correspondence, we abuse the notation
as N = (πv)v∈P ∈

∏

v∈P ΠP (v), and define Feas(P ) and Opt(P ) as the sets of feasible solutions
covering all minimal ones and of all optimal solutions, respectively, on H(P ), i.e.,

Feas(P ) =
∏

v∈P

ΠP (v),

Opt(P ) = argmin{‖N‖ | N ∈ Feas(P )}.

Thus, we have restricted a feasible region of a GMMN instance P to the Hanan grid H(P ).
In other words, the GMMN problem reduces to finding a network N = (πv)v∈P ∈ Opt(P ) as an
n-tuple of M-paths in Feas(P ).
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2.3 Specialization Based on Intersection Graphs

The bounding box of a pair v = (p, q) ∈ R
2 × R

2 indicates the rectangle region

{z ∈ R
2 | p ∧ q ≤ z ≤ p ∨ q},

and we denote it by B(v) or B(p, q). Note that B(p, q) is the region where an M-path for (p, q)
can exist. For a GMMN instance P and a pair v ∈ P , we denote by H(P, v) the subgraph of the
Hanan grid H(P ) induced by V (H(P )) ∩B(v). We define the intersection graph IG[P ] of P by

V (IG[P ]) = P,

E(IG[P ]) =
{

{u, v} ∈
(

P
2

)

| E(H(P, u)) ∩ E(H(P, v)) 6= ∅
}

.

The intersection graph IG[P ] intuitively represents how a GMMN instance P is complicated
in the sense that, for each u, v ∈ P , an edge {u, v} ∈ E(IG[P ]) exists if and only if two M-paths
πu ∈ ΠP (u) and πv ∈ ΠP (v) can share some segments, which saves the total length of a network in
Feas(P ).2 In particular, if IG[P ] contains no triangle, then no segment can be shared by M-paths
for three different pairs in P , and hence N ∈ Feas(P ) is optimal (i.e., ‖N‖ is minimized) if and
only if the total length of segments shared by two M-paths in N is maximized.

We denote by GMMN[· · · ] the GMMN problem with restriction on the intersection graph of
the input; e.g., IG[P ] is restricted to a tree in GMMN[Tree]. Each restricted problem is formally
stated in the relevant section.

3 An O(n2)-Time Algorithm for GMMN[Star]

In this section, as a step to GMMN[Tree], we present an O(n2)-time algorithm for GMMN[Star],
which is formally state as follows.

Problem (GMMN[Star]).

Input: A set P ⊆ R
2 × R

2 of n pairs whose intersection graph IG[P ] is a star, whose center is
denoted by r = (s, t) ∈ P .

Goal: Find an optimal network N = (πv)v∈P ∈ Opt(P ).

A crucial observation for GMMN[Star] is that an M-path πl ∈ ΠP (l) for each leaf pair l ∈ P − r
can share some segments only with an M-path πr ∈ ΠP (r) for the center pair r. Hence, minimizing
the length of N = (πv)v∈P ∈ Feas(P ) is equivalent to maximizing the total length of segments
shared by two M-paths πr and πl for l ∈ P − r.

In Section 3.1, we observe that, for each leaf pair l ∈ P − r, once we fix where an M-path
πr ∈ ΠP (r) for r enters and leaves the bounding box B(l), the maximum length of segments that
can be shared by πr and πl ∈ ΠP (l) is easily determined. Thus, GMMN[Star] reduces to finding an
optimal M-path πr ∈ ΠP (r) for the center pair r = (s, t), and in Section 3.2, we formulate this task
as the computation of a longest s–t path in an auxiliary directed acyclic graph (DAG), which is
constructed from the subgrid H(P, r). As a result, we obtain an exact algorithm that runs in linear
time in the size of auxiliary graphs, which are simplified so that it is always O(n2) in Section 3.3.

2We remark that our definition of the intersection graph is slightly different from Schnizler’s one [18], which regards
two pairs as adjacent even when their bounding boxes share exactly one point. We employ our definition because
M-paths for such pairs cannot share any nontrivial segment. This difference itself expands tractable situations, and
sometimes requires more careful arguments due to shared points of nonadjacent pairs (in particular, the corners of
their bounding boxes).
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(a) (b)

Figure 2: (a) If l = (sl, tl) is a regular pair, for any πv ∈ ΠP (p, q), some πl ∈ ΠP (l) completely
includes πv. (b) If l = (sl, tl) is a flipped pair, while any πl ∈ ΠP (l) cannot contain both horizontal
and vertical segments of any πv ∈ ΠP (p, q), one can choose πv ∈ ΠP (p, q) so that the whole of
either horizontal or vertical segments of πv can be included in some πl ∈ ΠP (l).

3.1 Observation on Sharable Segments

Without loss of generality, we assume that the center pair r = (s, t) is regular, i.e., s ≤ t. Fix
an M-path πr ∈ ΠP (r) and a leaf pair l = (sl, tl) ∈ P − r. Obviously, if πr is disjoint from the
bounding box B(l), then any M-path πl ∈ ΠP (l) cannot share any segment with πr. Suppose that
πr intersects B(l), and let πr[l] denote the intersection πr ∩ H(P, l). Let v = (p, q) be the pair
of two vertices on πr such that πr[l] is a p–q path, and we call v the in-out pair of πr for l. As
πr ∈ ΠP (r), we have πr[l] ∈ ΠP (v), and v is also regular (recall the assumption px ≤ qx). Moreover,
for any M-path πv ∈ ΠP (v), the network π′

r obtained from πr by replacing its subpath πr[l] with
πv is also an M-path for r in ΠP (r). Since B(v) ⊆ B(l) does not intersect B(l′) for any other leaf
pair l′ ∈ P \ {r, l}, once v = (p, q) is fixed, we can freely choose an M-path πv ∈ ΠP (v) instead
of πr[l] for maximizing the length of segments shared with some πl ∈ ΠP (l). For each possible
in-out pair v = (p, q) of M-paths in ΠP (r) (the sets of those vertices p and q are formally defined
in Section 3.2 as Vx(r, l) and Vq(r, l), respectively), we denote by γ(l, p, q) the maximum length of
segments shared by two M-paths for l and v = (p, q), i.e.,

γ(l, p, q) = max {‖πl ∩ πv‖ | πl ∈ ΠP (l), πv ∈ ΠP (p, q)} . (3.1)

Then, the following lemma is easily observed (see Figure 2).

Lemma 3.1. For every leaf pair l ∈ P − r, the following properties hold.

(1) If l is a regular pair, γ(l, p, q) = d(p, q)
(

= dx(p, q) + dy(p, q)
)

.

(2) If l is a flipped pair, γ(l, p, q) = max {dx(p, q), dy(p, q)}.

3.2 Reduction to the Longest Path Problem in DAGs

In this section, we reduce GMMN[Star] to the longest path problem in DAGs. Let P be a
GMMN[Star] instance and r = (s, t) ∈ P (s ≤ t) be the center of IG[P ], and we construct an
auxiliary DAG G from the subgrid H(P, r) as follows (see Figure 3).

6



(a) (b)

(c)

(d)

Figure 3: (a) An M-path for r in the subgrid H(P, r). (b) The corresponding directed s–t path in
the auxiliary DAG G, where the dashed arcs are of length 0. (c) The boundary vertex sets for leaf
pairs. (d) The corresponding parts in G, where the length of each interior arc (p, q) is γ(l, p, q) for
p ∈ Vx(r, l) and q ∈ Vq(r, l).

First, for each edge e = {p, q} ∈ E(H(P, r)) with p ≤ q (and p 6= q), we replace e with an arc
(p, q) of length 0. For each leaf pair l ∈ P − r, let s′l and t′l denote the lower-left and upper-right
corners of B(r)∩B(l), respectively, so that (s′l, t

′
l) is a regular pair with B(s′l, t

′
l) = B(r)∩B(l). If

(s′l, t
′
l) is degenerate, then we change the length of each arc (p, q) with p, q ∈ V (H(P, r)∩B(l)) from

0 to ‖pq‖, which clearly reflects the (maximum) sharable length in B(l). Otherwise, the bounding
box B(s′l, t

′
l) ⊆ B(l) has a nonempty interior, and we define four subsets of V (H(P, r) ∩ B(l)) as

follows:

Vx(r, l) = {p ∈ V (H(P, r) ∩B(l)) | px = (s′l)x or py = (s′l)y},

Vq(r, l) = {q ∈ V (H(P, r) ∩B(l)) | qx = (t′l)x or qy = (t′l)y},

V•
•(r, l) = Vx(r, l) ∩ Vq(r, l),

V�(r, l) = V (H(P, r) ∩B(l)) \ (Vx(r, l) ∪ Vq(r, l))

= {z ∈ V (H(P, r) ∩B(l)) | (s′l)x < zx < (t′l)x and (s′l)y < zy < (t′l)y}.

7



As r is regular, any M-path πr ∈ ΠP (r) intersecting B(l) enters it at some p ∈ Vx(r, l) and
leaves it at some q ∈ Vq(r, l), and the maximum sharable length γ(l, p, q) in B(l) is determined by
Lemma 3.1. We remove all the interior vertices in V�(r, l) (with all the incident arcs) and all the
boundary arcs (p, q) with p, q ∈ Vx(r, l) ∪ Vq(r, l). Instead, for each pair (p, q) of p ∈ Vx(r, l) and
q ∈ Vq(r, l) with p ≤ q and p 6= q, we add an interior arc (p, q) of length γ(l, p, q). Let Eint(l) denote
the set of such interior arcs for each nondegenerate pair l ∈ P − r.

Finally, we care about the corner vertices in V•
•(r, l), which can be used for cheating if l is

flipped as follows. Suppose that p ∈ V•
•(r, l) is the upper-left corner of B(l), and consider the

situation when the in-out pair (p′, q′) of πr ∈ ΠP (r) for l satisfies p′x = px < q′x and p′y < py = q′y.
Then, (p′, q′) is not degenerate, and by Lemma 3.1, the maximum sharable length in B(l) is
γ(l, p′, q′) = max {dx(p

′, q′), dy(p
′, q′)} as it is represented by an interior arc (p′, q′), but one can

take another directed p′–q′ path that consists of two arcs (p′, p) and (p, q′) in the current graph,
whose length is dy(p

′, p) + dx(p, q
′) = dy(p

′, q′) + dx(p
′, q′) > γ(l, p′, q′). To avoid such cheating, for

each p ∈ V•
•(r, l), we divide it into two distinct copies phor and pvert (which are often identified with

its original p unless we need to distinguish them), and replace the endpoint p of each incident arc
e with phor if e is horizontal and with pvert if vertical (see Figure 3 (d)). In addition, when p is not
shared by any other leaf pair,3 we add an arc (phor, pvert) of length 0 if p is the upper-left corner of
B(s′l, t

′
l) and an arc (pvert, phor) of length 0 if the lower-right, which represents the situation when

πr ∈ ΠP (r) intersects B(l) only at p.
Let G be the constructed directed graph, and denote by ℓ(e) the length of each arc e ∈ E(G).

The following two lemmas complete our reduction (see Figure 3 again).

Lemma 3.2. The directed graph G is acyclic.

Proof. Almost all arcs are of form (p, q) with p ≤ q and p 6= q. The only exception is of form
(pvert, phor) or (phor, pvert) for some p ∈ V•

•(r, l) with some l ∈ P − r, and at most one direction
exists for each p by definition. Thus, G contains no directed cycle.

Lemma 3.3. Any longest s–t path π∗
G in G with respect to ℓ satisfies

∑

e∈E(π∗
G
)

ℓ(e) = max
πr∈ΠP (r)

(

∑

l∈P−r

max
πl∈ΠP (l)

‖πl ∩ πr‖

)

.

Proof. Fix a directed s–t path πG in G. By the definition of G and Lemma 3.2, for each nonde-
generate pair l ∈ P − r, the path πG uses at most one interior arc in Eint(l), and any other arc has
a trivially corresponding edge in H(P, r) (including edges in a degenerate pair). For each l with
E(πG)∩Eint(l) 6= ∅, let el = (p, q) be the unique arc in E(πG)∩Eint(l). By the definitions of ℓ and
γ, we have

ℓ(el) = γ(l, p, q) = max {‖πl ∩ πel‖ | πl ∈ ΠP (l), πel ∈ ΠP (p, q)} , (3.2)

and hence one can construct an M-path πr ∈ ΠP (r) by replacing each el with some M-path πel ∈
ΠP (p, q) attaining (3.2) such that

∑

e∈E(πG)

ℓ(e) =
∑

l∈P−r

max
πl∈ΠP (l)

‖πl ∩ πr‖. (3.3)

3Note that p can be shared as corners of two different leaf pairs due to our definition of the intersection graph,
and then leaving one bounding box means entering the other straightforwardly.
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(a)

(b)

Figure 4: (a) Simplification for a regular pair. (b) Simplification for a flipped pair, where the
gray and white vertices distinguish sharing horizontal and vertical segments in H(P, r) ∩ B(l),
respectively, and the dashed arcs are of length 0.

To the contrary, for any M-path πr ∈ ΠP (r), by the definitions of γ and ℓ, one can construct a
directed s–t path πG in G of length at least the right-hand side of (3.3), and we are done.

3.3 Computational Time Analysis with Simplified DAGs

A longest path in a DAG G is computed in O(|V (G)| + |E(G)|) time by dynamic programming.
Although the subgrid H(P, r) has O(n2) vertices and edges, the auxiliary DAG G constructed in
Section 3.2 may have much more arcs due to Eint(l), whose size is Θ(|Vx(r, l)| · |Vq(r, l)|) and can
be Ω(n2). This, however, can be always reduced to linear by modifying the boundary vertices and
the incident arcs appropriately in order to avoid creating diagonal arcs in B(l). In this section, we
simplify G to G′ with O(n2) vertices and edges, which completes the proof of Theorem 1.1.

Fix a nondegenerate leaf pair l ∈ P−r, and we modify the relevant part as follows (see Figure 4).
We first remove (precisely, avoid creating) the arcs (p, q) ∈ Eint(l) for p ∈ Vx(r, l) and q ∈ Vq(r, l)
with either px < qx and py < qy (diagonal) or p ∈ V•

•(r, l).
If l is a regular pair, then we keep the boundary vertices as they are. Instead of the removed arcs,

we add an boundary arc (q1, q2) of length ‖q1q2‖ for each q1, q2 ∈ Vq(r, l) with {q1, q2} ∈ E(H(P, r))
and q1 ≤ q2. Then, for any removed arc e = (p, q) ∈ Eint(l), there exists a p–q path in G′, whose
length is always equal to ℓ(e) = γ(l, p, q) = d(p, q) (cf. Lemma 3.1).

If l is a flipped pair, then we need to care which directional (horizontal or vertical) segments
are shared in B(l). For this purpose, we add two copies qhor and qvert of each boundary vertex
q ∈ Vq(r, l)\V•

•(r, l) with two arcs (qhor, q) and (qvert, q) of length 0 (recall that, for each p ∈ V•
•(r, l),

we have already added phor and pvert, and removed p itself in G). We also replace each remaining
axis-aligned arc (p, q) ∈ Eint(l) with two arcs (p, qhor) of length dx(p, q) and (p, qvert) of length
dy(p, q).

4 Instead of the removed diagonal arcs, we add two boundary arcs (qhor1 , qhor2 ) of length

4We may have p ∈ Vx \ V•
•
and q ∈ V•

•
, and then the original arc in G is already (p, qhor) or (p, qvert) of length

d(p, q) = ‖pq‖. Such an arc is replaced with two arcs (p, qhor) of length dx(p, q) and (p, qvert) of length dy(p, q).
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dx(q1, q2) and (qvert1 , qvert2 ) of length dy(q1, q2) for each q1, q2 ∈ Vq(r, l) with {q1, q2} ∈ E(H(P, r))
and q1 ≤ q2. Then, for any removed arc e = (p, q) ∈ Eint(l), there exist two p–q path in G′,
whose lengths are equal to dx(p, q) and dy(p, q). As ℓ(e) = γ(l, p, q) = max {dx(p, q), dy(p, q)}
(cf. Lemma 3.1), the longest paths are preserved by this simplification.

As with Lemma 3.2, we can easily confirm that G′ is acyclic. Thus, we have obtained a simplified
auxiliary DAG G′, and the following lemma completes the proof of Theorem 1.1.

Lemma 3.4. |V (G′)| = O(n2) and |E(G′)| = O(n2).

Proof. For the vertex set, by definition, we see |V (G′)| ≤ 3|V (G)| ≤ 6|V (H(P, r))| = O(n2). For the
arc set, since all the arcs outside of

⋃

l∈P−r B(l) directly come from the subgrid H(P, r), it suffices
to show that the number of axis-aligned interior arcs and additional boundary arcs is bounded by
O(n2) in total. By definition, if H(P, r) ∩ H(P, l) is an a × b grid, then the number of such arcs
is at most 3(a + b) in the regular case and at most 6(a + b) in the flipped case. Thus, the total
number is at most

∑

l∈P−r

6|Vq(l)| ≤ 6|V (H(P, r))| = O(n2),

and we are done.

4 An O(n5)-Time Algorithm for GMMN[Tree]

In this section, we present an O(n5)-time algorithm for GMMN[Tree], which is the main target in
this paper and stated as follows.

Problem (GMMN[Tree]).

Input: A set P ⊆ R
2 × R

2 of n pairs whose intersection graph IG[P ] is a tree.

Goal: Find an optimal network N = (πv)v∈P ∈ Opt(P ).

For a GMMN[Tree] instance P , we choose an arbitrary pair r ∈ P as the root of the tree IG[P ];
in particular, when IG[P ] is a star, we regard the center as the root. The basic idea of our algorithm
is dynamic programming on the tree IG[P ] from the leaves toward r. Each subproblem reduces to
the longest path problem in DAGs like the star case, which is summarized as follows.

Fix a pair v = (sv, tv) ∈ P . If v 6= r, then there exists a unique parent u = Par(v) in the
tree IG[P ] rooted at r, and there are O(n2) possible in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We
virtually define pv = qv = ǫ for the case when we do not care the shared length in B(u), e.g.,
v = r or πu is disjoint from B(v). Let Pv denote the vertex set of the subtree of IG[P ] rooted
at v (including v itself). For every possible in-out pair (pv, qv), as a subproblem, we compute the
maximum total length dp(v, pv , qv) of sharable segments in B(Pv) =

⋃

w∈Pv
B(w), i.e.,

dp(v, ǫ, ǫ) = max

{

∑

w∈Pv−v

‖πw ∩ πPar(w)‖

∣

∣

∣

∣

∣

(πw)w∈P ∈ Feas(P )

}

,

dp(v, pv , qv) = max

{

∑

w∈Pv

‖πw ∩ πPar(w)‖

∣

∣

∣

∣

∣

(πw)w∈P ∈ Feas(P ), πu[v] ∈ ΠP (pv, qv)

}

.
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By definition, the goal is to compute dp(r, ǫ, ǫ). If v is a leaf in IG[P ], then Pv = {v}. In
this case, dp(v, pv , qv) is the maximum length of segments shared by two M-paths πv ∈ ΠP (v) and
πu ∈ ΠP (u) with πu[v] ∈ ΠP (pv, qv), which is easily determined (cf. Lemma 3.1). Otherwise, using
the computed values dp(w, pw, qw) for all children w of v and all possible in-out pairs (pw, qw), we
reduce the task to the computation of a longest sv–tv path in an auxiliary DAG, as with finding
an optimal M-path for the center pair in the star case.

4.1 Constructing Auxiliary DAGs for Subproblems

Let v = (sv, tv) ∈ P , which is assumed to be regular without loss of generality. If v = r, then let
pv = qv = ǫ; otherwise, let u = Par(v) be its parent, and fix a possible in-out pair u′ = (pv, qv)
of πu ∈ ΠP (u) for v (including the case pv = qv = ǫ). Let Cv ⊆ Pv be the set of all children
of v. By replacing r and P − r in Section 3.2 with v and Cv + u′ (or Cv if pv = qv = ǫ),
respectively, we construct the same auxiliary directed graph, denoted by G[v, pv , qv]. We then
change the length of each interior arc (pw, qw) ∈ Eint(w) for each child w ∈ Cv from γ(w, pw, qw)
to dp(w, pw, qw) − dp(w, ǫ, ǫ), so that it represents the difference of the total sharable length in
B(Pw) =

⋃

w∈Pw
B(w′) between the cases when an M-path for v intersects B(w) (enters at pw and

leaves at qw) and when an M-path for v is ignored. As with Lemma 3.2, the graph G[v, pv , qv]
is acyclic. The following lemma completes the reduction of computing dp(v, pv, qv) to finding a
longest sv–tv path in G[v, pv , qv].

Lemma 4.1. Let π∗
G be a longest sv–tv path in G[v, pv , qv] with respect to ℓ. We then have

dp(v, pv , qv) =
∑

e∈E(π∗
G
)

ℓ(e) +
∑

w∈Cv

dp(w, ǫ, ǫ).

Proof. If v is a leaf in IG[P ], then Cv = ∅, and hence it immediately follows from Lemma 3.3.
Suppose that v is not a leaf in IG[P ], and let πG be a directed sv–tv path in G[v, pv , qv]. We

show that there exists a feasible solution (πw)w∈P ∈ Feas(P ) with πu[v] ∈ ΠP (pv, qv) and

∑

w∈Pv

‖πw ∩ πPar(w)‖ =
∑

e∈E(πG)

ℓ(e) +
∑

w∈Cv

dp(w, ǫ, ǫ). (4.1)

By definition, for each w ∈ Cv + u′, the path πG uses at most one arc in Eint(w). For each
w ∈ Cv with E(πG) ∩ Eint(w) 6= ∅, let ew = (pw, qw) be the unique arc in E(πG) ∩ Eint(w), and
then ℓ(ew) = dp(w, pw, qw) − dp(w, ǫ, ǫ). Hence, by defining pw = qw = ǫ for each w ∈ Cv with
E(πG) ∩ Eint(w) = ∅, the right-hand side of (4.1) is rewritten as

∑

w∈Cv

dp(w, pw, qw) + γ(u′),

where γ(u′) = γ(u′, pu′ , qu′) if there exists (pu′ , qu′) ∈ E(πG) ∩ Eint(u
′) and γ(u′) = 0 otherwise.

By the definition of dp, for each w ∈ Cv, there exists an M-path π̃v,w ∈ ΠP (pw, qw) appearing
as πv[w] = πv ∩H(P,w) in some feasible solution N = (πw)w∈P ∈ Feas(P ) such that

∑

w′∈Pw

‖πw′ ∩ πPar(w′)‖ = dp(w, pw, qw).
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If γ(u′) = 0, then N (with replacing πu so that ‖πv ∩ πu‖ = 0 if necessary) is a desired network.
Otherwise, there exists a unique arc (pu′ , qu′) ∈ E(πG) ∩ Eint(u

′). By choosing π̃v,u′ ∈ ΠP (pu′ , qu′)
appropriately (cf. Lemma 3.1), one can replace πv as well as πu so that ‖πv ∩ πu‖ = γ(u′, pu′ , qu′)
and πu[v] ∈ ΠP (pv, qv), and we are done.

To the contrary, we show that, for any feasible solution N = (πw)w∈P ∈ Feas(P ) with πu[v] ∈
ΠP (pv, qv), there exists a directed sv–tv path πG in G[v, pv , qv] of length at least

∑

w∈Pv

‖πw ∩ πPar(w)‖ −
∑

w∈Cv

dp(w, ǫ, ǫ) =
∑

w∈Cv





∑

w′∈Pw

‖πw′ ∩ πPar(w′)‖ − dp(w, ǫ, ǫ)



 + ‖πv ∩ πu‖.

(4.2)

The proof is done by induction from the leaves to the root in IG[P ]. For each w ∈ Cv +u′, suppose
that πv[w] ∈ ΠP (pw, qw), where we virtually define pw = qw = ǫ if πv is disjoint from B(w). Then,
by taking πG so that (pw, qw) ∈ E(πG) for each w ∈ Cv + u′ unless pw = qw = ǫ, we obtain the
following relation from the induction hypothesis (when v is not a leaf) and the definitions of ℓ and
dp:

∑

e∈E(πG)

ℓ(e) =
∑

w∈Cv

(dp(w, pw, qw)− dp(w, ǫ, ǫ)) + γ(u′) ≥ (R.H.S. of (4.2)),

where γ(u′) = 0 if pu′ = qu′ = ǫ and γ(u′) = γ(u′, pu′ , qu′) otherwise. Thus we are done.

4.2 Computational Time Analysis

This section completes the proof of Theorem 1.2. For a pair v ∈ P , suppose that H(P, v) is an
av× bv grid graph. For each possible in-out pair (pv, qv), to compute dp(v, pv , qv), we find a longest
path in the DAG G[v, pv , qv] constructed in Section 4.1, which has O(avbv) = O(n2) vertices and
O(δv(av+bv)

2) = O(δvn
2) edges, where δv is the degree of v in IG[P ]. Hence, for solving the longest

path problem once for each v ∈ P , it takes
∑

v∈P O(δvn
2) = O(n3) time in total (recall that IG[P ]

is a tree). For each v ∈ P − r, there are respectively at most av + bv = O(n) candidates for pv and
for qv, and hence O(n2) possible in-out pairs. Thus, the total computational time is bounded by
O(n5), and we are done.

5 An O(n3)-Time Algorithm for GMMN[Tree]

In this section, we improve the DP algorithm for GMMN[Tree] given in Section 4 so that it can be
implemented in O(n3) time.

5.1 Overview

Let P be a GMMN[Tree] instance with |P | ≥ 3, and we choose a root r ∈ P of the tree IG[P ] such
that r is not a leaf (i.e., r has at least two neighbors). In Section 4, for each v ∈ P − r and each
possible in-out pair (pv, qv) of πu ∈ ΠP (u) for v, we compute dp(v, pv, qv) one-by-one by finding a
longest sv–tv path in the auxiliary DAG G[v, pv , qv]. In this section, using an extra DP, we improve
this part so that we compute dp(v, pv, qv) for many possible in-out pairs (pv, qv) at once.
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As with Section 4, we assume that v is regular, and let u = (su, tu) be the parent of v. We also
assume that neither u nor v is degenerate (otherwise, we can easily fill up the table dp(v, ·, ·) in
O(n2) time by definition). Since u must have a neighbor other than v by the choice of the root r,
we have B(u) 6⊆ B(v). Hence, for any M-path πu ∈ ΠP (u), its in-out pair (pv, qv) satisfies one of
the following conditions:

(a) either pv = su ∈ B(v) or qv = tu ∈ B(v), and then it is completely fixed;

(b) pv 6= su, qv 6= tu, and they are on two adjacent boundaries of B(v);

(c) pv 6= su, qv 6= tu, and they are on two opposite boundaries of B(v).

For each case among (a)–(c), we design an extra DP to compute dp(v, pv , qv) for all such in-out
pairs (pv, qv) in O(n2) time. Then, no matter how B(u) intersects B(v), one can classify all the
possible in-out pairs into a constant number of such cases, and fill up the table dp(v, ·, ·) in O(n2)
time in total by applying the designed DPs separately.5 This implies that the overall computational
time is bounded by O(n3).

No matter which of the three cases (a)–(c) we consider, we first compute the value dp(v, ǫ, ǫ) by
computing a longest sv–tv path in the auxiliary DAG G[v, ǫ, ǫ]. In addition, by doing it in two ways
from sv and from tv, we obtain a longest sv–z path and a longest z–tv path for every (reachable)
z ∈ V (G[v, ǫ, ǫ]) as byproducts. We denote the lengths of the sv–z path and the z–tv path by
λ(sv, z) and λ(z, tv), respectively. Note that this computation for all v ∈ P requires O(n3) time in
total (cf. Section 4.2). We also compute the value κv =

∑

w∈Cv
dp(w, ǫ, ǫ), which is the baseline of

the total sharable length in the subtree rooted at v (cf. Lemma 4.1), where recall that Cv denotes
the set of all children of v.

We then show that computing the values dp(v, pv , qv) for all possible in-out pairs (pv, qv) in
each case takes O(n2) time in total. Suppose that H(P, v) ∩H(P, u) is an a× b grid graph, where
a and b are associated with the y- and x-coordinates, respectively. Depending on the cases (a)–(c)
and whether the parent u is regular or flipped (hence, we consider six cases), we define auxiliary
DP values (e.g., denoted by ω(v, i, j) for i ∈ [a] and j ∈ [b]), and demonstrate how to compute and
use them.

5.2 When the Parent is Regular

In this section, we consider the case that the parent u is a regular pair.

5.2.1 Case (a): One Endpoint is Fixed in the Subgrid

By symmetry, we consider the situation when pv = su ∈ B(v) and (qv)x = (tv)x for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (tv)x < (tu)x and (tu)y ≤ (tv)y, and let pi,j
be the (i, j) vertex on the a× b grid H(P, v) ∩H(P, u) for each i ∈ [a] and j ∈ [b], where we define
p1,1 = su (see Figure 5). In this case, we need to compute dp(v, p1,1, pi,b) for each i ∈ [a].

For each i ∈ [a] and j ∈ [b], we define ω(v, i, j) as the length of a longest sv–pi,j path in
G[v, p1,1, pi,j], where we slightly extend the definition of the auxiliary DAG G[v, pv , qv] in Section 4.1

5If pv or qv (or both) can move on two boundaries of B(v), then we separately handle all possible cases, e.g., when
(qv)x = (tv)x (i.e., qv moves on the right boundary of B(v)) and when (qv)y = (tv)y (i.e., qv moves on the upper
boundary of B(v)).
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Figure 5: The case (a) when the parent u is regular.

so that (pv, qv) is not necessarily an in-out pair of πu ∈ ΠP (u) for v but that of its subpath. Then,
by Lemma 4.1, we have

dp(v, p1,1, pi,b) = max

{

max
j∈[b]

(ω(v, i, j) + λ(pi,j, tv)) + κv, dp(v, ǫ, ǫ)

}

for each i ∈ [a], because any sv–tv path in G[v, p1,1, pi,b] either leaves B(p1,1, pi,b) at some pi,j
(j ∈ [b]) or is disjoint from B(p1,1, pi,b). Thus, after filling up the table ω(v, ·, ·), we can compute
the values dp(v, p1,1, pi,b) for all i ∈ [a] in O(a× b) = O(n2) time in total. In what follows, we see
how to compute ω(v, i, j).

For the base case when i = j = 1, from the definitions of G[v, ·, ·] and λ(sv, ·), we see

ω(v, 1, 1) = λ(sv, p1,1). (5.1)

Next, when i > 1 and j = 1, we can compute it by a recursive formula

ω(v, i, 1) = max {ω(v, i − 1, 1) + ‖pi−1,1pi,1‖, λ(sv, pi,1)} , (5.2)

which is confirmed as follows. Fix a longest sv–pi,j path in G[v, p1,1, pi,1] attaining ω(v, i, 1), and
let π ∈ ΠP (sv, pi,j) be a corresponding M-path. If π intersects pi−1,1, then the sv–pi−1,1 prefix
corresponds to a longest sv–pi−1,1 path in G[v, p1,1, pi−1,1] of length ω(v, i − 1, 1) and the last
segment pi−1,1pi,1 contributes to the length in G[v, p1,1, pi,1] in addition. Otherwise, π is disjoint
from pi−1,1, and it then corresponds to a longest sv–pi,1 path in G[v, ǫ, ǫ] of length λ(sv, pi,1). The
case when i = 1 and j > 1 is similarly computed by

ω(v, 1, j) = max {ω(v, 1, j − 1) + ‖p1,j−1p1,j‖, λ(sv, p1,j)} . (5.3)

Finally, when i > 1 and j > 1, we can compute it by a recursive formula

ω(v, i, j) = max {ω(v, i− 1, j) + ‖pi−1,jpi,j‖, ω(v, i, j − 1) + ‖pi,j−1pi,j‖} , (5.4)

because for any sv–pi,j path in G[v, p1,1, pi,j], a corresponding M-path in ΠP (sv, pi,j) intersects
either pi−1,j or pi,j−1, and the last segment pi−1,jpi,j or pi,j−1pi,j, respectively, contributes to the
length in G[v, p1,1, pi,j ].

Since we only look up a constant number of values in (5.1)–(5.4), each value ω(v, i, j) can be
computed in constant time. As the table ω(v, ·, ·) is of size a× b = O(n2), the total computational
time is O(n2). Thus we are done.
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Figure 6: The case (b) when the parent u is regular.

5.2.2 Case (b): In-Out Pairs Move on Adjacent Boundaries

By symmetry, we consider the situation when (pv)y = (sv)y and (qv)x = (tv)x for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (sv)x ≤ (su)x ≤ (tv)x < (tu)x and
(su)y < (sv)y ≤ (tu)y ≤ (tv)y, and let pi,j be the (i, j) vertex on the a × b grid H(P, v) ∩ H(P, u)
for each i ∈ [a] and j ∈ [b], where we define p1,1 as the lower-right corner (see Figure 6). In this
case, we need to compute dp(v, p1,j , pi,1) for each pair of i ∈ [a] and j ∈ [b].

For each i ∈ [a] and j ∈ [b], we define ω(v, i, j) as the maximum length of an sv–tv path in
G[v, p1,j , pi,1] that intersects B(p1,j, pi,1). Then, by Lemma 4.1, we have

dp(v, p1,j , pi,1) = max {ω(v, i, j) + κv, dp(v, ǫ, ǫ)} .

Thus, after filling up the table ω(v, ·, ·), we can compute the values dp(v, p1,j , pi,1) for all i ∈ [a]
and j ∈ [b] in O(a× b) = O(n2) time in total.

In what follows, we see how to compute ω(v, i, j). We first observe that, for any sv–tv path
in G[v, p1,j , pi,1] attaining ω(v, i, j), a corresponding M-path πv ∈ ΠP (v) can be taken so that it
intersects pi,j by choosing an M-path πu ∈ ΠP (u) appropriately (cf. Lemma 3.1).

For the base case when i = j = 1, from the definitions of G[v, ·, ·], λ(sv, ·), and λ(·, tv), we see

ω(v, 1, 1) = λ(sv, p1,1) + λ(p1,1, tv). (5.5)

Next, when i > 1 and j = 1, we can compute it by a recursive formula

ω(v, i, 1) = max {ω(v, i − 1, 1) + ‖pi−1,1pi,1‖, λ(sv, pi,1) + λ(pi,1, tv)} , (5.6)

which is confirmed as follows. Fix an sv–tv path in G[v, p1,1, pi,1] attaining ω(v, i, 1), and let
πv ∈ ΠP (v) be a corresponding M-path. If πv intersects pi−1,1, then it corresponds to an sv–tv path
in G[v, p1,1, pi−1,1] attaining ω(v, i − 1, 1) and the segment pi−1,1pi,1 contributes to the length in
G[v, p1,1, pi,1] in addition. Otherwise, πv is disjoint from pi−1,1, and hence πv intersects B(p1,1, pi,1)
only at pi,1. Then, the sv–pi,1 prefix of πv corresponds to a longest sv–pi,1 path in G[v, ǫ, ǫ] of
length λ(sv, pi,1), and the pi,1–tv suffix a longest pi,1–tv path in G[v, ǫ, ǫ] of length λ(pi,1, tv). The
case when i = 1 and j > 1 is similarly computed by

ω(v, 1, j) = max {ω(v, 1, j − 1) + ‖p1,jp1,j−1‖, λ(sv, p1,j) + λ(p1,j , tv)} . (5.7)
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Figure 7: The case (c) when the parent u is regular.

Finally, when i > 1 and j > 1, we can compute it by a recursive formula

ω(v, i, j) = max {ω(v, i− 1, j) + ‖pi−1,jpi,j‖, ω(v, i, j − 1) + ‖pi,jpi,j−1‖, λ(sv, pi,j) + λ(pi,j, tv)} ,
(5.8)

because, for any M-path πv ∈ ΠP (v) intersecting pi,j, it either intersects at least one of pi−1,j and
pi,j−1 or intersects B(p1,j, pi,1) only at pi,j, and each case can be analyzed as with the previous
paragraph.

Since we only look up a constant number of values in (5.5)–(5.8), each value ω(v, i, j) can be
computed in constant time. As the table ω(v, ·, ·) is of size a× b = O(n2), the total computational
time is O(n2). Thus we are done.

5.2.3 Case (c): In-Out Pairs Move on Opposite Boundaries

By symmetry, we consider the situation when (pv)y = (sv)y and (qv)y = (tv)y for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (sv)x ≤ (su)x < (tu)x ≤ (tv)x and
(su)y < (sv)y < (tv)y < (tu)y, and let pi,j be the (i, j) vertex on the a × b grid H(P, v) ∩ H(P, u)
for each i ∈ [a] and j ∈ [b], where we define p1,1 as the lower-right corner (see Figure 7). In this
case, we need to compute dp(v, p1,j , pa,k) for each j, k ∈ [b] with j ≥ k, which we directly compute
as follows.

First, when j = k = 1, we have

dp(v, p1,1, pa,1) = max
1≤h≤i≤a

(λ(sv, ph,1) + λ(pi,1, tv) + ‖ph,1pi,1‖) , (5.9)

because any M-path πv ∈ ΠP (v) intersects the segment p1,1pa,1 at some point, and it is partitioned
into three parts: the sv–ph,1 prefix, the segment ph,1pi,1, and the pi,1–tv suffix for some h, i ∈ [a]
with h ≤ i. The computation of dp(v, p1,1, pa,1) requires O(a2) = O(n2) time.

Next, for any 1 ≤ k ≤ j ≤ b, we have

dp(v, p1,j , pa,k) = dp(v, p1,1, pa,1) + ‖p1,jp1,k‖, (5.10)

which is confirmed as follows. Fix a network (πw)w∈P ∈ Feas(P ) attaining dp(v, p1,j , pa,k). Then,
without changing the total shared length, we can modify the M-paths πv ∈ ΠP (v) and πu ∈ ΠP (u)
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Figure 8: The case (a) when the parent u is flipped.

with πu[v] ∈ ΠP (p1,j , pa,k) so that it also attains dp(v, p1,j , pa,j) = dp(v, p1,1, pa,1) and πv shares all
of its horizontal segments in B(p1,j, pa,k) with πu in addition, whose total length is dx(p1,j , p1,k) =
‖p1,jp1,k‖ (cf. Lemma 3.1 and Figure 2).

We can compute dp(v, p1,j , pa,k) in constant time by (5.10) for each j, k ∈ [b] with j ≥ k. As
the table dp(v, ·, ·) is of size O(b2) = O(n2), the total computational time is O(n2). Thus we are
done.

5.3 When the Parent is Flipped

In this section, we consider the case that the parent u is a flipped pair.

5.3.1 Case (a): One Endpoint is Fixed in the Subgrid

By symmetry, we consider the situation when pv = su ∈ B(v) and (qv)x = (tv)x for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (tv)x < (tu)x and (sv)y ≤ (tu)y, and let pi,j
be the (i, j) vertex on the a× b grid H(P, v) ∩H(P, u) for each i ∈ [a] and j ∈ [b], where we define
p1,1 as the upper-right corner so that p1,b = su (see Figure 8). In this case, we need to compute
dp(v, p1,b, pi,1) for each i ∈ [a].

For each i ∈ [a] and j ∈ [b], we define ω(v, i, j) as the length of a longest pi,j–tv path in
G[v, pi,j , p1,1]. Then, as with the regular case, by Lemma 4.1, we have

dp(v, p1,b, pi,1)

= max

{

max
j∈[b]

(λ(sv, pi,j) + ω(v, i, j)) + κv, max
h∈[i]

(λ(sv, ph,b) + ω(v, h, b)) + κv, dp(v, ǫ, ǫ)

}

for each i ∈ [a], because any sv–tv path in G[v, pi,j , p1,1] either enters B(p1,b, pi,1) at some pi,j (j ∈
[b]), enters B(p1,b, pi,1) at some ph,b (h ∈ [i]), or is disjoint from B(p1,b, pi,1). Thus, after filling up
the table ω(v, ·, ·), we can compute the values dp(v, p1,b, pi,1) for all i ∈ [a] in O(a×(a+b)) = O(n2)
time in total. In what follows, we see how to compute ω(v, i, j).

First, when j = 1, from the definitions of G[v, ·, ·] and λ(·, tv), we see

ω(v, i, 1) = λ(p1,1, tv) + ‖pi,1p1,1‖. (5.11)
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Similarly, when i = 1 and j > 1, we have

ω(v, 1, j) = max
k∈[j]

(λ(p1,k, tv) + ‖p1,jp1,k‖) , (5.12)

because any M-path in ΠP (p1,j, tv) leaves B(p1,j, p1,1) at some point p1,k (k ∈ [j]) and then it
shares the first segment p1,jp1,k with pu ∈ ΠP (u) (with pu[v] ∈ ΠP (su, p1,1)). Computing ω(v, 1, j)
requires O(j) time by (5.12), and hence it takes O(b2) = O(n2) time in total for all j ∈ [b].

Finally, when i > 1 and j > 1, we can compute it by a recursive formula

ω(v, i, j) = max {λ(p1,j , tv) + ‖pi,jp1,j‖, ω(v, i− 1, j), ω(v, i, j − 1)} , (5.13)

which is confirmed as follows. Fix a longest pi,j–tv path in G[v, pi,j , p1,1] attaining ω(v, i, j), and let
π ∈ ΠP (pi,j, tv) be a corresponding M-path. If π leaves B(pi,j, p1,1) at p1,j , then the p1,j–tv suffix
corresponds to a longest p1,j–tv path in G[v, ǫ, ǫ] of length λ(p1,j , tv) and the first segment pi,jp1,j
contributes to the length in G[v, pi,j , p1,1] in addition. Otherwise, π leaves B(pi,j, p1,1) at some p1,k
(k ∈ [j − 1]). Recall that, since u is flipped, π can share either horizontal or vertical segments
with πu ∈ ΠP (u) (cf. Lemma 3.1). If π shares horizontal segments with πu, then we can assume
that the pi,j–p1,k prefix of π consists of two segments pi,jp1,j and p1,jp1,k by modifying πu (with
πu[v] ∈ ΠP (p1,b, pi,1)) so that it traverses p1,jp1,k; we then have ω(v, i, j) = ω(v, 1, j) = ω(v, i−1, j).
Otherwise, π shares vertical segments with πu, and we can assume that the pi,j–p1,k prefix of π
consists of two segments pi,jpi,k and pi,kp1,k by modifying πu so that it traverses pi,kp1,k; we then
have ω(v, i, j) = ω(v, i, k) = ω(v, i, j − 1).

Since we only look up a constant number of values in (5.13) as well as (5.11), each value ω(v, i, j)
for i > 1 can be computed in constant time. As the table ω(v, ·, ·) is of size a× b = O(n2), the total
computational time is bounded by O(n2). Thus we are done.

5.3.2 Case (b): In-Out Pairs Move on Adjacent Boundaries

By symmetry, we consider the situation when (pv)y = (tv)y and (qv)x = (tv)x for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (sv)x ≤ (su)x ≤ (tv)x < (tu)x and
(sv)y ≤ (tu)y ≤ (tv)y < (su)y, and let pi,j be the (i, j) vertex on the a× b grid H(P, v)∩H(P, u) for
each i ∈ [a] and j ∈ [b], where we define p1,1 = tv (see Figure 9). In this case, we need to compute
dp(v, p1,j , pi,1) for each pair of i ∈ [a] and j ∈ [b].

For each i ∈ [a] and j ∈ [b], we define ω(v, i, j) as the length of a longest sv–tv path in
G[v, p1,j , pi,1]. Then, by Lemma 4.1, we have

dp(v, p1,j , pi,1) = ω(v, i, j) + κv.

Thus, after filling up the table ω(v, ·, ·), we can compute the values dp(v, p1,j , pi,1) for all i ∈ [a]
and j ∈ [b] in O(a× b) = O(n2) time in total. In what follows, we see how to compute ω(v, i, j).

For the base case when i = j = 1, from the definitions of G[v, ·, ·] and λ(sv, ·), we see

ω(v, 1, 1) = λ(sv, p1,1). (5.14)

Next, when i > 1 and j = 1, we can compute it by a recursive formula

ω(v, i, 1) = max {λ(sv, pi,1) + ‖pi,1p1,1‖, ω(v, i− 1, 1)} , (5.15)
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Figure 9: The case (b) when the parent u is flipped.

which is confirmed as follows. Fix a longest sv–tv path in G[v, pi,1, p1,1] attaining ω(v, i, 1), and
let πv ∈ ΠP (v) be a corresponding M-path. If πv intersects pi,1, then it corresponds to a longest
sv–pi,1 path in G[v, ǫ, ǫ] of length λ(sv, pi,1) and the last segment pi,1p1,1 contributes to the length
in G[v, p1,1, pi,1] in addition. Otherwise, πv is disjoint from pi,1, and then it corresponds to a longest
sv–tv path in G[v, pi−1,1, p1,1] of length ω(v, i − 1, 1). The case when i = 1 and j > 1 is similarly
computed by

ω(v, 1, j) = max {λ(sv, p1,j) + ‖p1,jp1,1‖, ω(v, 1, j − 1)} . (5.16)

Finally, when i > 1 and j > 1, we can compute it by a recursive formula

ω(v, i, j) = max {λ(sv, pi,j) + γ(v, pi,j , p1,1), ω(v, i − 1, j), ω(v, i, j − 1)} , (5.17)

where γ(v, pi,j , p1,1) = max {dx(pi,j, p1,1), dy(pi,j, p1,1)} is similarly defined (cf. (3.1) and Lemma 3.1).
This is because, for any M-path πv ∈ ΠP (v), it intersects pi,j, enters B(pi−1,j, p1,1) at some ph,j
(h ∈ [i − 1]), or enters B(pi,j−1, p1,1) at some pi,k (k ∈ [j − 1]), and each case is analyzed as with
the previous paragraph.

Since we only look up a constant number of values in (5.14)–(5.17), each value ω(v, i, j) can be
computed in constant time. As the table ω(v, ·, ·) is of size a× b = O(n2), the total computational
time is O(n2). Thus we are done.

5.3.3 Case (c): In-Out Pairs Move on Opposite Boundaries

By symmetry, we consider the situation when (pv)y = (tv)y and (qv)y = (sv)y for all possible
in-out pairs (pv, qv) of πu ∈ ΠP (u) for v. We then have (sv)x ≤ (su)x < (tu)x ≤ (tv)x and
(tu)y < (sv)y < (tv)y < (su)y, and let pi,j be the (i, j) vertex on the a× b grid H(P, v)∩H(P, u) for
each i ∈ [a] and j ∈ [b], where we define p1,1 as the upper-right corner (see Figure 10). In this case,
we need to compute dp(v, p1,j , pa,k) for each j, k ∈ [b] with j ≥ k. Recall that, since u is flipped,
any M-paths πv ∈ ΠP (v) and πu ∈ ΠP (u) can share either horizontal or vertical segments.

First, when j = k, as with the regular case (cf. (5.9)), we have

dp(v, p1,j , pa,j) = dp(v, p1,1, pa,1) = max
1≤h≤i≤a

(λ(sv, ph,1) + λ(pi,1, tv) + ‖ph,1pi,1‖) (5.18)
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Figure 10: The case (c) when the parent u is flipped.

because in this case πu[v] consists of a single vertical segment p1,jpa,j .
When j > k, we consider two cases of sharing horizontal and vertical segments separately, and

then take the maximum. In the vertical sharing case, the desired value is exactly dp(v, p1,1, pa,1),
because any horizontal segment in B(p1,j, pa,k) has no meaning. In the horizontal sharing case, the
desired value is dp(v, ǫ, ǫ) + ‖p1,kp1,j‖, because for any longest sv–tv path in G[v, ǫ, ǫ], we can take
a corresponding M-path πv ∈ ΠP (v) so that it goes through B(p1,j, pa,k) horizontally and then it
can share the horizontal segment in addition with πu ∈ ΠP (u) (with πu[v] ∈ ΠP (p1,j , pa,k)). Thus,
we have

dp(v, p1,j , pa,k) = max {dp(v, p1,1, pa,1), dp(v, ǫ, ǫ) + ‖p1,kp1,j‖} . (5.19)

The computation of dp(v, p1,1, pa,1) requires O(a2) = O(n2) time by (5.18). After computing
it, by (5.18) and (5.19), we can compute dp(v, p1,j , pa,k) in constant time for each j, k ∈ [b] with
j ≥ k. As the table dp(v, ·, ·) is of size O(b2) = O(n2), the total computational time is O(n2). Thus
we are done.

6 Reduction of GMMN[Cycle] to GMMN[Tree]

In this section, we show that GMMN[Cycle] can be reduced to O(n) GMMN[Tree] instances. More
generally, we describe a reduction for triangle-free pseudotree instances. The target problem is
formally stated as follows, where we emphasize again that the triangle-freeness is crucial in our
approach (cf. Section 2.3).

Problem (GMMN[Pseudotree]).

Input: A set P ⊆ R
2 ×R

2 of n pairs whose intersection graph IG[P ] is a triangle-free pseudotree.

Goal: Find an optimal network N = (πv)v∈P ∈ Opt(P ).

Let P be a GMMN[Pseudotree] instance. If IG[P ] is a tree, we do nothing for reduction.
Suppose that IG[P ] has a (unique) cycle of length at least four. Let C ⊆ P be the subset of pairs
consisting of the cycle. If C has a degenerate pair, we can cut the cycle by appropriately splitting
the degenerate pair into two degenerate pairs which are not adjacent in the intersection graph.
Therefore, we can assume that any pair in C is not degenerate.
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We choose an arbitrary pair v = (sv, tv) ∈ C. Without loss of generality, we assume that v is
regular and sv is the lower-left corner of B(v). Suppose that H(P, v) is an a× b grid graph, where
a and b are associated with the y- and x-coordinates, respectively. Note that a, b ≥ 2 since v is
nondegenerate. Let pi,j denote the (i, j) vertex for i ∈ [a] and j ∈ [b], where p1,1 = sv. For each
i ∈ [a] and j ∈ [b], we define

Ehor(pi,j) =































{(pi,j−1, pi,j, pi,j+1), (pi−1,j , pi,j, pi,j+1)} (1 < i, 1 < j < b),

{(pi,j−1, pi,j, pi,j+1)} (i = 1, 1 < j < b),

{(pi−1,j , pi,j, pi,j+1)} (1 < i, j = 1),

{(pi,j , pi,j, pi,j+1)} (i = j = 1),

∅ (otherwise, i.e., j = b),

Evert(pi,j) =































{(pi−1,j , pi,j, pi+1,j), (pi,j−1, pi,j, pi+1,j)} (1 < i < a, 1 < j),

{(pi−1,j , pi,j, pi+1,j)} (1 < i < a, j = 1),

{(pi,j−1, pi,j, pi+1,j)} (i = 1, 1 < j),

{(pi,j , pi,j, pi+1,j)} (i = j = 1),

∅ (otherwise, i.e., i = a).

Namely, each element of Ehor(pi,j) is a triple representing a way for an M-path πv ∈ ΠP (v) to go
through an edge {pi,j , pi,j+1} of H(P, v). Similarly, each element of Evert(pi,j) indicates a manner
for πv to go through {pi,j , pi+1,j}.

Let u1 and u2 be the neighbors of v in C. Then B(u1) and B(u2) can be separated by an axis-
aligned line, without their boundaries (recall that they can share corner vertices). By symmetry,
we assume that the line is vertical and B(u1) is the left side. Take α ∈ [a] and β ∈ [b] such that
(pα,β)x is the x-coordinate of the right boundary of B(u1) ∩ B(v) and (pα,β)y is the minimum of
the y-coordinates of the upper boundaries of B(u1) ∩B(v) and B(u2) ∩B(v). If α = a and β = b,
i.e., pα,β = tv, the lower-right corner of B(u1) and the upper-left corner of B(u2) are tv. In this
case, we flip both the x- and y-axes so that pα,β = sv. Hence, we can assume that pα,β 6= tv.

Define

Xhor = {pi,β | i ∈ [α]},

Xvert = {pα,j | j ∈ [β]}.

Then any M-path πv is consistent with exactly one way in Ehor(q) for some q ∈ Xhor or in Evert(q)
for some q ∈ Xvert. We try every possibility and then adopt an optimal one.

Assume that πv is consistent with (q−, q, q+) ∈ Ehor(q) for some q ∈ Xhor or with (q−, q, q+) ∈
Evert(q) for some q ∈ Xvert, i.e., πv goes through {q−, q} and {q, q+}. Then the minimum length of
a network under this assumption is the same as Ñ ∈ Opt(P̃ ), where P̃ = (P − v) ∪ {v1, v2, v3, v4}
with v1 = (sv, q

−), v2 = (q−, q), v3 = (q, q+), and v4 = (q+, tv) (see Figure 11). It is shown that
IG[P̃ ] has no cycles as follows.

Claim 6.1. IG[P̃ ] is a forest.

Proof. Let Γv be the set of neighbors of v in IG[P ], excluding v itself. Then IG[Γv] is edgeless as
P is triangle-free. Put Γ̃ = Γv ∪ Ṽ with Ṽ = {v1, v2, v3, v4}. Then, for every vk ∈ Ṽ , neighbors of
vk in IG[P̃ ] are included in Γv by B(vk) ⊆ B(v). In addition, for k ∈ {2, 3}, the graph H(P̃ , vk)
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(a) (b)

Figure 11: Construction of P̃ = (P − v)∪ {v1, v2, v3, v4}, where q ∈ Xhor ∪Xvert is on dotted lines.

consists of a single edge in E(H(P, v)) or is a single vertex in V (H(P, v)). Therefore, there exists
at most one pair w ∈ Γv such that B(w) intersects B(vk). This means that the degree of v2 and v3
in IG[Γ̃] is at most one, and hence they are not in any cycle in IG[P̃ ].

Since the pairs in Γv are not adjacent to each other in IG[P ] and we have q− ≤ q+ and q− 6= q+

by definition, at most one pair in Γv can be adjacent to both v1 and v4 in IG[Γ̃]. Thus IG[Γ̃] is a
forest. Then, if IG[P̃ ] has a cycle, at least one of the following holds:

(C1) {u1, v1}, {v1, u2} ∈ E(IG[Γ̃]),

(C2) {u1, v4}, {v4, u2} ∈ E(IG[Γ̃]), or

(C3) there exists w ∈ Γv \ {u1, u2} such that {u1, v1}, {v1, w}, {w, v4}, {v4, u2} ∈ E(IG[Γ̃]).

In what follows, we see that none of these is the case.
Let i, h1, h2, g1, g2 ∈ [a] and j, γ ∈ [b] such that q = pi,j, the upper- and lower-right corners of

B(u1)∩B(v) are ph1,β and pg1,β, respectively, and the upper- and lower-left corners of B(u2)∩B(v)
are ph2,γ and pg2,γ , respectively. Note that α = min {h1, h2} and β ≤ γ.

We first consider the exceptional case when q = sv (= p1,1). Since H(P, v1) consists of the
single vertex sv, neither (C1) nor (C3) holds. If q+ = p1,2, then p1,1 ∈ Xhor and β = 1, which
implies B(u1) ∩ B(v4) = ∅. Otherwise (i.e., q+ = p2,1), we have p1,1 ∈ Xvert. This implies
min {h1, h2} = α = 1, and hence B(u1) ∩ B(v4) = ∅ or B(u2) ∩ B(v4) = ∅. Thus (C2) does not
hold, and we are done.

We next deal with the case when q ∈ Xhor−sv and (q−, q, q+) ∈ Ehor. By the definition of Xhor,
it holds j = β. Consider (C1). If β < γ, we have B(u2) ∩B(v1) = ∅, which negates (C1). Suppose
that β = γ. Then it must holds h1 ≤ g2 or h2 ≤ g1 since otherwise B(u1) intersect B(u2). In the
former case, we have α = h1 ≤ g2 and thus B(v1) does not intersect B(u2). In the latter case, say
α = h2 ≤ g1 (see Figure 12), it holds B(v1) ∩ B(u2) = ∅ if q− = pi,β−1 and B(v1) ∩ B(u1) = ∅
if q− = pi−1,β. Therefore, (C1) does not hold for any case. We also have B(u1) ∩ B(v4) = ∅ by
qx ≤ q+x and qx 6= q+x , which means that (C2) does not hold either.
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(a) (b)

Figure 12: An uneasy situation when B(u1) and B(u2) share their corners at q (i.e., β = γ = i and
g1 = h2). (a) πv ∈ ΠP (v) goes through q. (b) πv ∈ ΠP (v) turns at q.

Suppose that there exists w ∈ Γv \ {u1, u2} satisfying the condition in (C3). If i < g1, then
B(v1) does not intersect B(u1), which contradicts {u1, v1} ∈ E(IG[Γ̃]). If i > g1, then B(w) must
intersect B(u1), which also contradicts the assumption that P is triangle-free. Otherwise, i = g1
(see Figure 13). If q− = pi,β−1, then B(w) intersects B(u1), a contradiction again. If q− = pi−1,β,
the bounding box B(v1) does not intersect B(u1). Hence (C3) is not true for any case.

Finally, we consider the situation when q ∈ Xvert− sv and (q−, q, q+) ∈ Evert. We have i = α by
the definition of Xvert. If j < β, then (C1) does not hold because B(v1) does not intersect B(u2).
Suppose that j = β, which means that q = pα,β ∈ Xhor ∩Xvert. Since the present v1 is the same as
that in the case of (q−, q, pα,β+1) ∈ Ehor if β < b, we have already proved that (C1) does not hold
in the above horizontal case (cf. Figure 12). It can be checked that the same proof is valid even if
β = b. Thus (C1) does not hold in any case. In addition, since qy ≤ q+y and qy 6= q+y , we also have
B(v4) ∩B(uk) = ∅ if α = hk for k = 1, 2. Hence (C2) is not the case either.

Suppose that there exists w ∈ Γv \ {u1, u2} that satisfies (C3). As we have mentioned above,
B(v4) does not intersect B(u2) if α = h2, which contradicts {v4, u2} ∈ E(IG[Γ̃]). Suppose that
α = h1. Let δ ∈ [b] such that pα,δ is the upper-left corner of B(u1) ∩ B(v). If j < δ, then B(v1)
does not intersect B(u1), which contradicts {u1, v1} ∈ E(IG[Γ̃]). If j > δ, then B(w) intersects
B(u1); this contradicts the assumption that P is triangle-free. Consider the remaining situation
when j = δ. If q− = pα−1,j , then B(w) intersects B(u1), a contradiction again. If q− = pα,j−1, then
B(v1) does not intersect B(u1). Therefore, (C3) does not hold in any case, and we are done.

From Claim 6.1, we have successfully reduced the GMMN[Pseudotree] instance P to O(n)
instances of GMMN[Tree] each of which has n+ 2 pairs.

Proposition 6.2. If GMMN[Tree] can be solved in T (n) time, then GMMN[Pseudotree] can be
solved in O(n · T (n+ 2)) time.

By combining Proposition 6.2 with Theorem 1.3, we obtain Corollary 1.4.
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(a) (b)

Figure 13: An uneasy situation when B(u1) and B(w) for some w ∈ Γv \{u1, u2} share their corners
at q. (a) πv ∈ ΠP (v) goes through q. (b) πv ∈ ΠP (v) turns at q.
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A Faster Dynamic Programming on Tree Decompositions

In this section, we prove the following theorem (cf. Table 1).

Theorem A.1. There exists an O(f(tw,∆) ·n2∆(tw+1)+1)-time algorithm for the GMMN problem,
where tw and ∆ denote the treewidth and the maximum degree of the intersection graph IG[P ] for
the input P , respectively, and f is a computable function.

A.1 Treewidth and Nice Tree Decompositions

We first review the concepts of tree decompositions and treewidth of graphs, and then define “nice”
tree decompositions, which are useful to design a DP algorithm (cf. [7, Section 7.3]).

Definition A.2. A tree decomposition of an undirected graph G is a pair T = (T, (Xt)t∈V (T )) of
a tree T and a tuple of subsets of V (G) indexed by V (T ) such that the following three conditions
hold:

(T1)
⋃

t∈V (T ) Xt = V (G).

(T2) For every {u, v} ∈ E(G), there exists t ∈ V (T ) such that Xt contains both u and v.

(T3) For every u ∈ V (G), the set Tu = {t ∈ V (T ) | u ∈ Xt} is connected in T .

We call each t ∈ V (T ) a node and each Xt a bag.
The width of a tree decomposition is the maximum size of its bag minus one. The treewidth

of a graph G, which is denoted by tw(G) (or simply by tw), is the minimum width of a tree
decomposition of G.

We choose an arbitrary node of a tree decomposition as a root, and define a nice tree decom-
position as follows.

Definition A.3. A rooted tree decomposition T = (T, (Xt)t∈V (T )) is said to be nice if the following
conditions are satisfied:

• Xr = ∅ for the root node r,

• Xl = ∅ for every leaf node l ∈ V (T ), and

• every non-leaf node of T is one of the following three types:

– Introduce node: a node t having exactly one child t′ such that Xt = Xt′ ∪ {v} for
some vertex v /∈ Xt′ ; we say that v is introduced at t.

– Forget node: a node t having exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ; we say that w is forgotten at t.

– Join node: a node t having two children t1 and t2 such that Xt = Xt1 = Xt2 .

By the condition (T3), every vertex of V (G) is forgotten only once, but may be introduced
several times. Given any tree decomposition, one can efficiently transform it as nice without
increasing the width.

Lemma A.4 (cf. [7, Lemma 7.4]). Any graph G admits a nice tree decomposition of width at
most tw(G). Moreover, given a tree decomposition T = (T, (Xt)t∈V (T )) of G of width k, one
can compute a nice tree decomposition of G of width at most k that has O(k · |V (G)|) nodes in
O(k2 ·max {|V (T )|, |V (G)|}) time.
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A.2 Algorithm Outline

We first sketch the idea of Schnizler’s algorithm for GMMN[Tree], and then extend it to our DP
algorithm on nice tree decompositions.

Let P be a GMMN[Tree] instance. Suppose that we fix an arbitrary M-path π∗
v ∈ ΠP (v) for

some v ∈ P and consider only feasible networks N = (πw)w∈P ∈ Feas(P ) with πv = π∗
v . Then, the

instance P is intuitively divided into two independent parts Pv − v and P \ Pv , where recall that
Pv denotes the vertex set of the subtree of IG[P ] rooted at v. In particular, if ‖N‖ is minimized
(subject to πv = π∗

v), then the restriction N [Pv] = (πw)w∈Pv also attains the minimum length
subject to πv = π∗

v (which is true for the other side (P \ Pv) ∪ {v}).
In addition, once we fix the in-out pairs (s′u, t

′
u) of πu ∈ ΠP (u) for all neighbors u ∈ Γv, we can

restrict the candidates for such M -paths π∗
v ∈ ΠP (v) on the corresponding coarse grid H(P ′, v),

where P ′ = {(s′u, t
′
u) | u ∈ Γv}∪{v}. The number of candidates for P ′ is at most ((4n)2)δv ≤ (16n)2∆

and the number of candidates for π∗
v ∈ ΠP ′(v) for each possible P ′ is at most

(

4δv+4
2δv+2

)

≤ 24∆+4,
where recall that δv denotes the degree of v in IG[P ] and ∆ is the maximum degree of IG[P ]. Based
on these observations, one can design a DP algorithm from the leaves to the root on IG[P ] that
computes minimum-length partial networks N [Pv] = (πw)w∈Pv subject to πv = π∗

v for O((cn)2∆)
possible M-paths π∗

v for each v ∈ P , where c is some constant.
Let us turn to our DP algorithm. Let P be a GMMN instance and T = (T, (Xt)t∈V (T )) be a nice

tree decomposition of the intersection graph IG[P ] of width tw. As with the DP for GMMN[Tree]
sketched above, we construct partial solutions from the leaves to the root of T . From Lemma A.4,
we can assume that T has O(tw · n) nodes.

For t ∈ V (T ), let Pt be the union of all the bags appearing in the subtree of T rooted at
t, including Xt. Then, the following lemma analogously holds, which implies that among all the
feasible solutions N = (πw)w∈P ∈ Feas(P ) satisfying N [Xt] = (π∗

w)w∈Xt for some fixed (π∗
w)w∈Xt ,

all the minimum-length solutions have exactly the same length in Pt.

Lemma A.5. Let N1 ∈ Feas(P ) and N2 ∈ Feas(P ) be two feasible solutions for P such that
N1[Xt] = N2[Xt]. If ‖N1[Pt]‖ < ‖N2[Pt]‖, then N2 is suboptimal, i.e., N2 6∈ Opt(P ).

Proof. Let N ′
2 be the network obtained from N2 by replacing N2[Pt] with N1[Pt]. As T is a tree

decomposition of the intersection graph IG[P ], if we remove all the vertices in Xt from IG[P ],
then Pt \Xt is disconnected from its complement in the remaining graph (cf. the condition (T3) in
Definition A.2). Moreover, N1 and N2 have the same M-paths for Xt, and hence the network N ′

2

is still an feasible solution for P . In addition, ‖N1[Pt]‖ < ‖N2[Pt]‖ implies that ‖N ′
2‖ < ‖N2‖, and

we are done.

Based on this lemma, we define subproblems for possible solutions in Xt as follows: given a
GMMN instance P and an M-path π∗

v ∈ ΠP (v) for each v ∈ Xt, we are required to find a network
N̂ = (π̂w)w∈P ∈ Feas(P ) such that N̂ minimizes ‖N̂ [Pt]‖ subject to π̂v = π∗

v for all v ∈ Xt.
Formally, we define

twdp(t, (π∗
v)v∈Xt) = min

{

‖N [Pt]‖
∣

∣ N = (πw)w∈P ∈ Feas(P ), πv = π∗
v (∀v ∈ Xt)

}

.

If t is a leaf, i.e., when Xt = ∅, then we write (π∗
v)v∈Xt = ǫ. As with the tree case, it suffices to

consider O((cn)2∆) candidates for π∗
v ∈ ΠP (v), and hence there exist O((cn)2∆(tw+1)) candidates

for (π∗
v)v∈Xt as |Xt| ≤ tw + 1. We describe recursive formulae for filling up the DP table in the

next section.
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A.3 Recursive Formula

We separately discuss the four types of nodes in a nice tree decomposition (cf. Definition A.3).

Leaf node. If t is a leaf node, then twdp(t, ǫ) = 0 since Xt = ∅ and Pt = ∅.

Introduce node. If t is an introduce node with the child t′ such that Xt = Xt′ ∪ {w} for some
w ∈ Xt′ , then

twdp(t, (π∗
v)v∈Xt) = twdp(t′, (π∗

v)v∈Xt′
) + d(sw, tw)− ‖π∗

w ∩N∗‖ , (A.1)

where we define N∗ =
⋃

v∈Xt′
π∗
v and the correctness of (A.1) is shown as follows. If w has a

neighbor u in Pt \Xt′ , then the edge {u,w} ∈ E(IG[P ]) cannot belong to any bag (because u has
already been forgotten in the subtree rooted at t′), which contradicts that T is a tree decomposition
of IG[P ] (cf. the condition (T2) in Definition A.2). Hence, it suffices to care the total length of
segments shared by π∗

w and N∗, which leads to the formula (A.1).

Forget node. If t is a forget node with the child t′ such that Xt = Xt′ \ {u} for some u ∈ Xt′ ,
then

twdp(t, (π∗
v)v∈Xt) = min

{

twdp(t′, (πv)v∈Xt′
) | πv = π∗

v (∀v ∈ Xt′ \ {u})
}

, (A.2)

whose correctness is shown as follows. By definition, we have Pt = Pt′ and any network N =
(πw)w∈P ∈ Feas(P ) with πv = π∗

v (∀v ∈ Xt′) satisfies πv = π∗
v (∀v ∈ Xt ⊆ Xt′), and hence

twdp(t, (π∗
v)v∈Xt) ≤ twdp(t′, (π∗

v)v∈Xt′
). On the other hand, if we take a network N = (πw)w∈P ∈

Feas(P ) attaining twdp(t′, (π∗
v)v∈Xt′

), then we have twdp(t′, (π∗
v)v∈Xt′

) = twdp(t, (πv)v∈Xt) and
πv = π∗

v for all v ∈ Xt′ . Thus, we see that the formula (A.2) holds.

Join node. If t is a join node with two children t1 and t2 such that Xt = Xt1 = Xt2 , then

twdp(t, (π∗
v)v∈Xt) = twdp(t1, (π

∗
v)v∈Xt) + twdp(t2, (π

∗
v)v∈Xt)− ‖N∗‖, (A.3)

where we define N∗ =
⋃

v∈Xt
π∗
v and the correctness of (A.3) is shown as follows. Let N1 =

(π
(1)
w )w∈P ∈ Feas(P ) and N2 = (π

(2)
w )w∈P ∈ Feas(P ) be networks attaining twdp(t1, (π

∗
v)v∈Xt) and

twdp(t2, (π
∗
v)v∈Xt), respectively. Since two pairs u ∈ Pt1 \Xt and w ∈ Pt2 \Xt cannot be adjacent

(otherwise, the edge {u,w} ∈ E(IG[P ]) cannot belong to any bag, a contradiction), the restrictions
N1[Pt1 \Xt] and N2[Pt2 \Xt] do not share any nontrivial segment. In addition, as Pt = Pt1 ∪ Pt2

and π
(1)
v = π

(2)
v = π∗

v for all v ∈ Xt = Xt1 = Xt2 , we obtain

twdp(t, (π∗
v)v∈Xt) = ‖N1‖+ ‖N2‖ − ‖N∗‖ = twdp(t1, (π

∗
v)v∈Xt) + twdp(t2, (π

∗
v)v∈Xt)− ‖N∗‖.

A.4 Computational Time Analysis

In this section, we show that the whole algorithm runs in O(f(tw,∆) · n2∆(tw+1)+1) time, which
completes the proof of Theorem A.1. Recall that |V (T )| = O(tw · n) and the size of the DP table
twdp(t, ·) is bounded by O((cn)2∆(tw+1)) for each node t ∈ V (T ) (cf. Section A.2).
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Table 2: Current best approximation ratios classified by the class of intersection graphs, whose
treewidth and maximum degree are denoted by tw and ∆, respectively.

Class Approximation Ratio Strategy

General
(6 + ǫ) logn Divide-and-conquer [8]

O(D) (D = Θ(logn)) Divide-and-conquer [9]

Complete Graphs
(tw = ∆ = n− 1)

2 + ǫ
Using PTASes for RSA [12,21]

(cf. [8, Lemma 3])

4
Using a 2-approximation algorithm
for RSA [16] (cf. [8, Lemma 3])

General
∆ Coloring (Corollary B.2)

tw + 1 Coloring (Corollary B.3)
Planar Graphs 4 Coloring (Corollary B.4)

For each forget node t, we just reduce the table twdp(t′, ·) of size O((cn)2∆(tw+1)) for the child
t′ by taking the minimum according to (A.2), which requires O((cn)2∆(tw+1)) time in total.

Recall that, when we consider candidates for π∗
v ∈ ΠP (v), we restrict them on a coarse grid

H(P ′, v) with |P ′| ≤ δv + 1 ≤ ∆+ 1 (cf. Section A.2). Hence, for each introduce or join node t, by
(A.1) or (A.3), respectively, one can compute twdp(t, (π∗

v)v∈Xt) in time depending only on ∆ and
tw.

Thus, one can fill up each table twdp(t, ·) in O(f(tw,∆) · n2∆(tw+1)) time, where c2∆(tw+1)

is also included in f(tw,∆). This concludes that the overall computational time is bounded by
O(f(tw,∆) · n2∆(tw+1)+1).

We remark that, in the running time of our algorithm, the exponent of n still contains both the
treewidth tw and the maximum degree ∆ of the intersection graph. It remains open whether the
GMMN problem is fixed parameter tractable (FPT) with respect to such parameters or not.

B Approximation Ratio Based on Chromatic Number

In this section, we give a simple observation based on graph coloring.

Proposition B.1. Let P be a GMMN instance and N∗ ∈ Opt(P ) be an optimal solution for P . If
the intersection graph IG[P ] of P is k-colorable, for every N ∈ Feas(P ), the total length of N is at
most k times of the total length of N∗.

Proof. Let P be a GMMN instance such that IG[P ] is k-colorable, i.e., there exists a k-partition
{P1, P2, . . . , Pk} of P such that every Pi is an independent set in IG[P ]. Then, for each i ∈ [k],
the total length of an optimal solution N∗

i = (πw)w∈Pi
∈ Opt(Pi) for the GMMN subinstance Pi is

equal to the sum of the Manhattan distances, i.e.,

‖N∗
i ‖ =

∑

w=(s,t)∈Pi

d(s, t).

For every i ∈ [k], the optimal solution N∗ also contains an M-path for every pair in Pi since Pi ⊆ P ,
and hence ‖N∗

i ‖ ≤ ‖N∗‖. Since any feasible solution N ∈ Feas(P ) is written as
⋃

i∈[k]N
∗
i for some
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N∗
i ∈ Opt(Pi) (i ∈ [k]) by definition, we have

‖N‖ =

∥

∥

∥

∥

∥

∥

⋃

i∈[k]

N∗
i

∥

∥

∥

∥

∥

∥

≤
∑

i∈[k]

‖Ni‖ ≤ k · ‖N∗‖,

and we are done.

From Lemma B.1, we immediately obtain the following corollaries. For complete graphs and
odd cycles, obviously, one needs ∆ + 1 colors, where ∆ is the maximum degree. However, all
other connected graphs are ∆-colorable [4]. Since the GMMN problem whose intersection graph
is a complete graph and a cycle admits an O(1)-approximation algorithm and a polynomial-time
(exact) algorithm, respectively, we focus on approximation ratio for other cases.

Corollary B.2. Let P be a GMMN instance whose intersection graph has maximum degree at most
∆, and is neither a complete graph nor an odd cycle. Let N∗ ∈ Opt(P ) be an optimal solution for
P . Then for any feasible solution N ∈ Feas(P ), we have ‖N‖ ≤ ∆ · ‖N∗‖.

It is easy to check that a graph of treewidth at most tw is (tw + 1)-colorable.

Corollary B.3. Let P be a GMMN instance whose intersection graph is of treewidth at most tw.
Let N∗ ∈ Opt(P ) be an optimal solution for P . Then for any feasible solution N ∈ Feas(P ), we
have ‖N‖ ≤ (tw + 1) · ‖N∗‖.

Every planar graph is known to be 4-colorable [1, 2, 17].

Corollary B.4. Let P be a GMMN instance whose intersection graph is planar. Let N∗ ∈ Opt(P )
be an optimal solution for P . Then for any feasible solution N ∈ Feas(P ), we have ‖N‖ ≤ 4 · ‖N∗‖.
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