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Abstract. We propose a novel strategy of formalized synthesis of Soft-
ware Based Self-Test (SBST) for testing microprocessors with RISC ar-
chitecture to cover a large class of high-level functional faults. This is
comparable to that used in memory testing which also covers a large
class of structural faults such as stuck-at-faults(SAF), conditional SAF,
multiple SAF and bridging faults. The approach is fully high-level, the
model of the microprocessor is derived from the instruction set and archi-
tecture description, and no knowledge about gate-level implementation is
needed. To keep the approach scalable, the microprocessor is partitioned
into modules under test (MUT), and each MUT is in turn partitioned
into data and control parts. For the data parts, pseudo-exhaustive tests
are applied, while for the control parts, a novel generic functional con-
trol fault model was developed. A novel method for measuring high-level
fault coverage for the control parts of MUTs is proposed. The measure
can be interpreted as the quality of covering the high-level functional
faults, which are difficult to enumerate. We apply High-Level Decision
Diagrams for formalization and optimization of high-level test generation
for control parts of modules and for trading off different test character-
istics, such as test length, test generation time and fault coverage. The
test is well-structured and can be easily unrolled online during test ex-
ecution. Experimental results demonstrate high SAF coverage, achieved
for a part of a RISC processor with known implementation, whereas the
test was generated without knowledge of implementation details.

Keywords: microprocessor testing, high-level functional fault model,
test generation, high-level fault coverage

1 Introduction

The growing density of integration in the semiconductor industry make today’s
chips more sensitive to faults while the mechanisms of the latter become more
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complex. New types of defects need to be considered in test generation to achieve
high test quality. Similar to memory testing, broader classes of faults dependent
on the neighboring logic, should be used as test targets in case of general logic
circuits. To make the tests less independent on particular implementation de-
tails, functional fault models and functional test approaches provide a good
perspective to make the test development more efficient and to achieve higher
test quality.

Software-Based Self-Test (SBST) [1–16] is an emerging paradigm in the test
field. The major problem with SBST is usually the not sufficient test quality,
measured by the single Stuck-at-Fault (SAF) coverage, let alone considering
broader fault classes.

The quality of SBST is mainly affected by test data used in test programs.
One of the ways to obtain test data is executing an Automated Test Pattern Gen-
erator (ATPG) [17, 18]. In [17] it was shown that the processor can be divided
into Modules under Test (MUT) to ease the task of ATPG. The difficulties arise
from the need of guiding ATPGs by functional constraints to produce function-
ally feasible test patterns. The method [18] requires enforcing constraints during
ATPG test generation. The run-time for generating test using the complete set
of SBST constraints is, however, high. An alternative is to use random test
patterns for MUTs [3]. However, these approaches need the knowledge about
implementation.

SBST can be structural and functional. Structural approaches [4–6] use in-
formation from lower level of design, whereas functional approaches use mainly
information of instruction set architecture (ISA). Hybrid SBST was proposed
for combining deterministic structural SBST with verification-based test [4, 5,
19, 20]. In addition to Hybrid SBST [7, 21], there are methods that achieve com-
parable results and improved scalability when generating SBST using only RTL
[4–6]. The structural approach cannot be used when structural information about
the processor is not available. In [7], for high-level generation of SBST, the im-
plementation details are not required, however, the low-level fault cover is not
sufficiently high.

One of the first ISA based methods, using pseudo-random test sequences
was proposed in [22]. Another solution, FRITS (Functional Random Instruction
Testing at Speed) [23], was based on test generation using random instruction
sequences with pseudo-random data. Alternative cache-resident method for pro-
duction testing [24, 25] using random generation mechanism proves that high
cost functional testers can be replaced by low-cost SBST without significant loss
in fault coverage. Another approach, based on evolutionary technique was pro-
posed in [26]. Test is being composed of the most effective code snippets with
good Stuck-at-fault (SAF) coverage, which were distinguished by constant re-
evaluation. The method needs structural information. Later research has been
concentrated on developing dedicated test approaches for specific processor parts
like pipeline, branch prediction mechanism [11, 21], caches [22, 23].

The drawbacks of the known methods vary in the need of knowledge about
implementation details, fault coverage is measured traditionally only with re-
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spect to SAF, without considering broader fault classes, and no attempts have
been made to evaluate the test coverage regarding multiple faults.

In this paper, to cope with the complexity of gate or RT level represen-
tations of microprocessors (MP), we consider the SBST generation with focus
on modeling functional faults fully at the behavioral-level using only high-level
information. We propose a deterministic high-level test generation method for
SBST of processor cores, based on a novel implementation-independent high-
level functional fault model. To compare the results with state-of-the-art, the
quality of tests is measured by single SAF cover, however, at the same time,
we target broader class of faults than single SAF, considering structural logic
level faults such as conditional SAF [27, 28], bridging and multiple faults, as well
as the functional fault classes used traditionally in memory testing. For formal
high-level functional fault modeling and test generation we use the idea of rep-
resenting the instruction set and architecture of the microprocessor in form of
High-Level Decision-Diagrams (HLDD) [29, 30]. The HLDDs can be used as well
for trading off different test characteristics such as test length, test generation
time and fault coverage.

We generate tests separately for MUTs and in each MUT separately for its
control and data parts[31]. The main contribution in the paper is related to test
generation for the control parts, whereas for testing the data parts independently
of the implementation details, we use the known pseudo-exhaustive test approach
[32], not considered here in details.

The rest of the paper is organized as follows. In Section 2, we propose a
novel concept of considering the control parts of the modules under test as
generic abstract multiplexers, and in Section 3 we elaborate a concept of the
novel high-level test generation for the control parts of processor modules. In
Section 4, we develop a new general high-level functional fault model for control
parts of modules. Section 5 describes a general scheme of test execution flow
for the control parts of MUT. In Section 6, we compare the test flow with tra-
ditional memory March test, and introduce relationships between the proposed
fault model with known functional and structural fault classes. In Section 7,
we introduce High-Level Decision Diagrams for formalization of test generation
and test optimization. Sections 8 is devoted to demonstrating of experimental
results, and Section 9 completes the paper with conclusions.

2 High-Level Representation of Microprocessors

The main concept of the proposed method is based on partitioning the processor
under test into functional entities – MUT, representing them as disjoint control
and data parts. In this paper, we focus on the executing module and the pipeline
forwarding unit as such entities, however showing that the approach is more
general, and can be used always, when the MUT can be functionally represented
as a set of well-defined functions.

In Fig.1, a part of the pipelined structure of the miniMIPS microproces-
sor [33] is depicted. In yellow colour, the executing unit is highlighted, whereas
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the rest on the figure shows the main components of the pipeline architecture
– pipeline registers, hazard detection circuitry, and the forwarding unit shown
in grey colour. We consider the selected modules as consisting of disjoint con-
trol (decoder with MUX-s) and data parts, presented as hypothetical structures
without knowing their implementation details.

Fig. 1. A part of a RISC type microprocessor with executing unit in the pipeline and
data forwarding environment

The executing module in Fig.1 (shown in yellow) consists of the data part
concentrated into the ALU/MULT block, whereas the control functions are lo-
cated in the decoder/multiplexer block MUX. The data part of the pipeline cir-
cuitry consists of the pipeline registers separating the different pipeline stages:
instruction fetch (IF), instruction decoding (ID), executing module (EX), mem-
ory access (MEM), and write back stage (WB). The control part of the pipeline
forwarding unit (shown in gray) consists of two multiplexer modules, MUXA

and MUXB, which are fed by 4 comparators C1-C4 for calculation the values of
control signals of multiplexers. The comparators C5 and C6 are used for hazard
detection in case of “load-use” situations in pipeline circuits [34].

Note, the high-level functionality of the ALU/MULT module (the set of ex-
ecutable functions) is derived from the instruction set of the microprocessor,
whereas the high-level functionality of the forwarding unit is derived from the
description of the architecture of the microprocessor – a set of executable func-
tions, which will be selected by the multiplexers MUXA and MUXB. In this
paper, we concentrate on the ALU/MULT module.

We classify two types of high-level functional faults for the modules: control
faults (for control part), and data faults (for data part). We do not consider
data faults explicitly, rather we apply for data manipulation functions bit-wise
pseudo-exhausting tests, which guarantee high fault coverage of a broad class of
faults, whereas knowledge of implementation details is not needed.
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For the high-level control faults, we introduce a novel functional fault model,
as a general model, which covers a broad set of possible low-level structural
faults, and also a set of traditional high-level functional fault models used in
memory testing.

Fig. 2. Generic DNF based control structure of the executing unit

For developing the high-level functional control fault model, we introduce a
generic representation of the control part in a form of high-level multiplexer.
Consider the executing unit, shown in yellow in Fig.1, and in detailed view in
Fig.2, where implementation details are abstract.

Assume, the data part in Fig.2 executes n different functions yi = fi (Di)
controlled by a set F = {Fi} of instructions (functions), where D is the set of
given data operands to be manipulated with fi ∈ F . The length of data word is
m, and the number of control signals p must satisfy the constraint

log2 n ≤ p ≤ n (1)

and hence, depends on how the instructions are coded. However, the number
of 1 − bit control signals p and the mapping of control vector signals to n in-
structions, where n = |F |, is considered as unknown. Let us keep for a while the
coding of the control signals and the value of p in the model of MUTopen.

The control part consists of the multiplexer MUX, p control lines control-
ling the MUX, and an unknown circuit for mapping the instruction operation
codes into the functional signals p. The high-level n AND blocks in MUX have
each p control and a single m-bit data input, whereas the OR block in MUX
has n data inputs from the outputs of AND blocks. Each AND block consists
of m AND gates with p control inputs, and a single 1-bit data input. Hence,
the described control module, represented in a form of a high-level multiplexer,
consists of m different 1-bit logic level AND-OR multiplexers, used for decoding
the instructions, and for extracting the results of executed instructions.

As it can be seen from Fig.2, the border between the control part and the
data part is determined by the AND gates, where the 1-bit control signals and
1-bit data signals are joining. The number of the AND gates on this border is
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equal to

n×m× p (2)

By introducing the described hypothetical MUX-based executing module,
we have functionally separated the data and control parts by the border of
n×m×p gates, and transformed the function of the control block from “active”
controlling of the manipulations in the data part to “passive” selection of the
results of data manipulations in the data part. In other words, we have neglected
all possible optimizations, which may have been carried out during the design
of the execution unit.

Let us introduce now the following abstraction, in accordance to Fig.2, as
a set of m equivalent disjunctive normal forms (EDNF) representing an im-
plementation independent design of the MUT at the expense of possible over-
dimensioning the real logic design. The disjoint presentation of the control and
data parts allows to create an implementation-independent high-level functional
control fault model.

The justification of the proposed abstraction results from the fact that a
test TEDNF developed for detecting all non-redundant faults in the EDNF, will
detect also all faults in the real optimized circuit of the executing unit [35]. On
the other hand, if the implementation details of the real circuit equivalent to
EDNF were known, then the test TRC of the real circuit, in general case, may
have shorter length than TEDNF .

The second abstraction will concern the control signal decoding, which, in
general, is highly depending on the details of implementation. To allow the test
generation for the control part be implementation independent, and as simple
as possible, we introduce the one-to-one coding between the control signals and
instruction, so that to each functions fi ∈ F the control signal ci will correspond,
and C = {ci}, where |F | = |C|, will represent the full set of control signals. In
this case, each control signal ci ∈ C selects the related function fi ∈ F . In other
words, by this way, we have introduced a hypothetical and simple coding scheme
of int ructions, where p = n, which represents, according to (1) the higher bound
of the value p. On the other hand, it provides the minimal length n×m for the
border between the control and data parts of the MUT, determined by (2).

This second abstraction allows to overcome the problem of illegal instruction
codes and to make easier the identification of redundant faults in any of the
further real implementations of the control part.

The justification of the proposed abstractions will be given in the next sec-
tion, where we introduce the new control fault model.

3 Basic Concepts of Generating High-Level Tests

Consider a simplified MUT in Fig.3a, derived using the two described above
abstractions, and consisting of the data and control parts. Fig.3a presents a
k − th bit slice of the m-bit control module, where m is the width of the data
word carrying the value of fi. The data manipulation block (e.g. ALU) executes
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n different functions fi, selected by the control codes c denoted by symbolic
integers ci, i = 0, 1, . . . n.

Each bit-slice of the control part consists of MUX with n control lines (control
inputs to each AND). The 1− bit data lines from the data manipulation module
(ALU) are the data inputs to each AND. The OR gate has n data inputs.

Consider testing of the MUX in Fig.3. Let us concentrate on testing the
control code for the k−th bit slice, which selects from ALU the result of the high-
level defined operation fi,k, producing the expected output value yk = fi,k, (D).
Consider the high-level symbolic (pseudo) control signals ci,k, which may be
applied (ci,k = 1) or not applied (ci,k = 0) as Boolean variables. From ci,k = 1,
it follows cj,k = 0 for all j 6= i due to the mutual exclusion of each other.

Fig. 3. A module consisting of data and control parts and its HLDD

The graph in Fig.3b represents a High-Level Decision Diagram (HLDD)
which describes the mapping “if C = i then y = fi ”, meaning that if ci = 1
then y = fi. About the role of using the HLDD model for representing the MUT
we discuss in Sections VII.

Definition 1. Introduce a test T ∗
i as a structure T ∗

i = (Ii, Di) where Ii is an
instruction, which performs the function fi ∈ F in the MUT represented by a
set of functions F , and Di is a set of data operands used by the instruction Ii.
The data Di may consist of one or more patterns d ∈ Di. If Di will consist of t
patterns, the instruction Ii will be repeated in the test T ∗

i for each pattern d ∈ Di.

Definition 2. Let us introduce a notation T ∗
i,k = {ci,k, fi,k}, where ci,k ∈ {0, 1}

and fi,k ∈ {0, 1}, for a single bit test, in accordance to Fig.3.

Consider a test T ∗
i,k = {ci,k = 1, fi,k = 1}, which targets the detection of

stuck-at-0 faults ci,k ≡ 0 and fi,k ≡ 0, in other words, the test is proving that
the function fi ∈ F is controllable by ci,k = 1, in the k − th bit. However,
this test is targeting the detection of single faults only, and the test may fail
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in proving the controllability of fi,k, if there exists any multiple fault of type
{ci,k ≡ 0, cj,k ≡ 1}, j 6= i, because of mutual masking of these two faults. This
masking situation is illustrated in Fig.3a.

Lemma 1. There will be no masking of the fault ci,k ≡ 0 by any other fault
cj,k ≡ 1, j 6= i, if the test T ∗

i,k = {ci,k = 1, fi,k = 1} will be applied under the
constraints fj,k = 0, for all j 6= i.

Proof. The expected value of yk for the test T ∗
i,k in case of no faults will be

yk = 1. In case of a single fault ci,k ≡ 0, the value of fi,k = 1 will not propagate
to the output yk, due to ci,k ≡ 0 and all cj,k = 0, j 6= i, causing in such a way
response yk = 0, which means that the fault ci,k ≡ 0 is detected. The response
yk = 1 would be the proof, that the function fi,k is controllable. However, this
proof will be valid only for the case of assuming the single fault ci,k ≡ 0. In
case of any double fault {ci,k ≡ 0, cj,k ≡ 1}, j 6= i, instead of fi,k = 1, which
is blocked by ci,k ≡ 0, the value of another function fj,k = 1 is propagated by
cj,k ≡ 1 to the output yk. Hence, as the response to the test, we will get the
same value yk = 1 as expected, which means that the fault ci,k ≡ 0 is masked
by cj,k ≡ 1, and we still will not know if the function fi,k is controllable by the
signal ci,k or not.

Let us introduce a notation for multiple faults of type {ci,k ≡ 0, cj,k ≡ 1},
where j 6= i, and {cj,k ≡ 1} represents any subset of faults cj,k ≡ 1 for different
combinations of j 6= i.

Lemma 2. To detect any multiple fault of type {ci,k ≡ 0, {cj,k ≡ 1}} in the
MUT represented by a set of functions F , a test T ∗

i must be generated, so that
the constraint fj,k = 0 were satisfied for each fj ∈ F , j 6= i, by at least one
pattern d ∈ Di in T ∗

i .

Proof. Since from ci,k = 1 the value cj,k = 0 follows for all j 6= i due to the
mutual exclusion of control signals, we have satisfied automatically the condi-
tions of sensitizing the faults cj,k ≡ 1 on the lines j ∈ i. On the other hand,
the constraint fj,k = 1 for all j 6= i will serve as the condition of propagating
the faults cj,k ≡ 1, j 6= i, to the output yk, to make all control faults cj,k ≡ 1
detectable. .

There may be two border cases in generating the test T ∗
i . First, a single data

operand d ∈ Di may be generated, which allows detection of all possible multiple
faults of type {ci,k ≡ 0, {cj,k ≡ 1}} in the same time by the same data d ∈ Di.
In this case, the pattern d has to satisfy the constraints fj,k = 0 simultaneously
for all j 6= i, which may be a seldom case. Second, as a general case, a set of
data Di must be generated, so that each constraint fj,k = 0, j 6= i, was satisfied
at least by one pattern d in the set of data Di.

From Lemma 1 the following corollary directly results.

Corollary 1. The test T ∗
i generated in accordance with conditions of Theorem

1 for all bits k, detects the control faults ci,k ≡ 0, and the data faults fi,k ≡ 0,
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which both belong to the fault class of SAF. The functional high-level meaning
of the test T ∗

i is that it proves that the function fi, is controllable by the control
signals ci,k in all bits k without masking due to possible additional faults cj,k ≡ 1
on other control lines j 6= i.

The added value of test T ∗
i,k = {ci,k = 1, fi,k = 0} that, a lot of data part

faults, causing the change of the value of fi,k , 1→ 0, will also be detected.
From Lemma 2 the following corollary directly results.

Corollary 2. A test T ∗
i,k = {ci,k = 1, fi,k = 0}, which targets the detection of

the data fault fi,k ≡ 1, will detect simultaneously also all control faults cj,k = 1,
j 6= i, if the constraints fj,k = 1 for all j 6= i, will be satisfied at least by one
pattern d ∈ Di in T ∗

i .

The added value of the test T ∗
i,k = {ci,k = 1, fi,k = 0}, which has the goal of

detecting the SAF cj,k ≡ 1 on other control lines j 6= i, detects also a lot of data
part SAF, which cause the change of the value of fi,k , 0→ 1.

Table 1. SAF faults detection of 1-bit control signals

Test
Detected faults Proof

ci,k fi,k cj,k fj,k

1
1

0
0

ci, k ≡ 0
(with no fault masking)

Corollary 1

0 1
cj,k ≡ 1

(of any multiplicity)
Corollary 2

From the previous discussion, it follows, that it would be very easy to test
the control part of MUT if it would be implemented according to the proposed
abstract model, represented by EDNF and using direct mapping ci → fi . By the
proposed two methods, the both types of SAF faults can be detected: ci,k ≡ 0,
using Corollary 1, and ci,k ≡ 1, using Corollary 2. This result is illustrated also
in Table 1.

In the following, in Sections IV – VI, we show that Corollary 2 can be ex-
tended for a very broad class of faults and used as the basis for developing
an implementation-independent test generation method for the control part of
MUT.

4 A New High-Level Functional Control Fault Model

From Lemmas 1-2 and Corollaries 1-2, a strategy of testing follows. When ap-
plying the test T ∗

i,k = {ci,k = 1, fi,k = 1}, it is recommended to generate data
operands for applying the values fj,k = 0 for as many j 6= i as possible, to avoid
mutual masking of ci,k ≡ 0 by multiple faults cj,k ≡ 1. On the other hand,
when applying the test T ∗

i,k = {ci,k = 1, fi,k = 0}, it is recommended to apply
the values fj,k = 1 for all j 6= i to increase the efficiency of testing the faults
cj,k ≡ 1.
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In functional testing, if two arguments or functions in the MUT model will
due to physical defects interfere, then the resultant value of the interference can
be calculated either by AND or OR function, depending on the technology.

Assume for the further discussion that we have OR-technology.

Definition 3. Introduce a high-level functional control fault fi,k → (fi,k, fj,k),
which means that instead of the function fi, in the k − th bit of the data word,
both functions fi,k and fj,k will be selected and executed simultaneously. In case
of the OR –technology, the result of activation of the function fi in the presence
of the fault fi,k → (fi,k, fj,k) in the k − th bit will be yk = fi,k ∨ fj,k.

Lemma 3. To detect the fault fi,k → (fi,k, fj,k) in a MUT, represented as map-
ping (ci ∈ C) → (fi ∈ F ), a test pattern T ∗

i (ci = 1, d) must be applied with
constraint fi,k (d) < fj,k (d), where d ∈ Di.

Proof. The proof results directly from Definition 3, because only if fi,k (d) = 0,
and fj,k (d) = 1, the expected result fi,k (d) = 0 and the faulty result fi,k (d) ∨
fj,k (d) = 1 will be distinguishable.

Definition 4. Introduce modifications of the high-level functional fault intro-
duced in Definition 3, such as

1. fi,k → fj,k, where instead of a function fi,k another function fj,k , j 6= i,
will be selected and executed, and

2. fi,k → {fj,k}, where instead of a function fi,k , a group of functions fj,k will
be selected and executed.

From Lemma 3 and Definitions 3 and 4, the following corollaries result:

Corollary 3. To detect the fault fi,k → (fj,k), a test pattern T ∗
i (ci = 1, d) must

be applied with constraint fi,k (d) < fj,k (d), where d ∈ Di.

Corollary 4. To detect the fault fi,k → {fj,k}, a set of test patterns T ∗
i (ci = 1, d),

d ∈ Di must be applied, so that for each fj,k → {fj,k}, a data pattern d ∈ Di

exists, where fi,k (d) < fj,k (d).

Definition 5. Let us call the set of all high-level functional control faults CF =
{fi,k → (fi,k, fj,k)}, for all pairs of fi,k, fj,k ∈ F , as functional control fault
model of the MUT, represented as mapping (ci ∈ C)→ (fi ∈ F ). The size of the

fault model is |CF | = (n− 1)
2 ×m. Let us call the subset CF (fi,k) ⊂ CF as

functional control fault model of the function fi ∈ F .

Theorem 1. To detect all functional faults introduced in Definitions 3 and 4,
for each function fi ∈ F , a set of data operands must be generated, which satisfy
the constraints:

∀k ∈ (1,m)∃d ∈ Di

(
fi/k(d) < fj/k(d)

)
(3)

The proof of theorem results from Lemma 3 and Corollaries 4 and 5.
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Definition 6. Introduce a high-level control fault table R =
∥∥ri,j/k∥∥as a 3-

dimensional array for a given set of data patterns D, where the entries ri,j/k
represent k-bit vectors and ri,j/k = 1, if there exists a pattern d ∈ Di, which
satisfies the constraint fi,k (d) < fj,k (d), otherwise ri,j/k = 0. The size of the

fault model R is equal to the size |CF | = (n− 1)
2 ×m.

The high-level control fault coverage is measured by the ratio of 1-s in the
array to the size of R.

Calculation of the high-level fault coverage can be carried out by high-level
fault simulation with the goal of checking if the constraints (3) are satisfied or
not.

5 Test Structure and Test Execution

Denote by Di the test data generated for detection the fault model CF (fi).
Based on the data Di, and according to Lemma 1, the following test structure
results, as shown in Algorithm.1.

Algorithm 1: Test Execution Structure

1 for all fi ∈ F do
2 for all d ∈ Di do
3 apply test for fi (d)

According to Algorithm 1, all tests for exercising the functions fi ∈ F , are
executed one by one, each of the tests in a loop using one by one the data d ∈ Di

which satisfy the constraints (3). A test is a subroutine which initializes the data
d ∈ Di, executes an instruction (or a sequence of instructions) responsible for
realizing the function fi (d), and performs the observation of the test result
y = fi (d).

From the algorithm in Algorithm 1, the following structure of test execu-
tion can be derived: the full test T consists of a sequence of test modules
Ti, i = 1, 2, . . . n, where each i-th module consists of test patterns Ti,t, where
each pattern Ti,t ∈ Ti,t satisfies, a subset of constraints (3).

For each test pattern Ti,t ∈ Ti, including the data operand d ∈ Di, and for
each data bit k of the functions fi ∈ F , the set F = {fi} can be partitioned for
each k into two parts F 0

k and F 1
k , so that

F 0
k = {fi,k|fi,k (d) = 0} , andF 1

k = {fi,k|fi,k (d) = 1}

.
Such a test pattern covers all the constraints fi,k (d) < fj,k (d), according to

(3), where fi,k ∈ F 0
k and fj,k ∈ F 1

k .
Such a test execution according to Algorithm 1 is depicted in Fig.4. The

unrolled test sequence consists of n test modules Ti, each of them consisting of
a sequence of test patterns Ti,t for testing a function fi ∈ F . The behaviour of
the MUT is highlighted for the k − th bit of the test pattern Ti,t, showing the
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Fig. 4. Unrolled test execution evolving in time

subset of constraints satisfied by the pattern. As an example of error detection
is shown, where the expected value of fi,k is changed from 0 to 1 due to a fault
in the control part of MUT.

6 Extension of the Fault Class Beyond SAF

The ideas of the proposed fault model in Section IV, and the test concept in
Section V are adopted from the known methods of memory testing, particularly
from March test [36]. The motivation was driven by the purpose to extend the
fault class, to be covered by test, to that of used in case of memories.

Let us consider an example of the March test depicted in Fig.5, and compare
it with the test flow developed for a logic MUT shown in Fig.4. The analogy
between the memory test and logic test is in similar handling of addressing the
cells in the memory and controlling the functions of fi ∈ F in logic MUTs. In
case of memories, testing of cells (data part) and the addressing logic (control
part) can be easily joined in the same test, whereas in the proposed approach,
testing of data part and control part proceeds separately.

In case of memory, the initialization of constraints (writing 1s (W1 ↑) into
cells) can be done once for all cells in a single cycle. Then, having these con-
straints stored, the following test cycle (r/w0 ↓) and observation cycle (r1) can
be carried out.

In the proposed method, the constraints cannot be stored, rather they have
to be produced “on-line” at each test pattern. In Fig.4, a test pattern Ti,t ∈ Ti
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including test data d ∈ Di, is illustrated, showing the values it produces on-line
for the k− th bit of all functions fi ∈ F , simultaneously. All functions for the bit
k are partitioned by the data d ∈ Di into two groups F 0

k and F 1
k , as explained

in Section V. We see, that this particular test pattern with data d covers only a
subset of constraints for fi,k (d) < fj,k (d), where fi,k ∈ F 0

k and fj,k ∈ F 1
k .

Fig. 5. Illustration of the March test for memories

In case of memory, in each step of the test cycle (r/w0 ↓), when reading
the Cell i, all constraints [Cell i] < [Cell j] are covered by a single run through
all the cells. Here, [Cell i] means the value stored in the Cell i. In case of the
proposed method of testing a logic MUT, the test for fi ∈ F , has to be repeated
with other data d till all the constraints (3) have been satisfied for all pairs of
functions {fi,k, fj,k}.

The comparison of the proposed data constraints based test method with
March test for memories reveals the possibility of applying the proposed ap-
proach, not only for the combinational MUTs like ALU, but also for sequential
MUTs. If in sequential MUTs, a part of data d ∈ D belongs to the registers or
memory, the test must include proper initialization sequence.

Consider a MUT, represented by a set of mappings:

(ci ∈ C)→ (fi ∈ F ),

where C is a set of mutually exclusive control signals (instructions) produced by
the control part of MUT, and F is the set of operations (data manipulations)
taking place in the data part of MUT.

By test data generation, used in the March test for memories and in the
proposed test method for logic MUTs, the coverage of the following functional
fault classes by the proposed method results [36]:

CL-1: With a certain instruction (ci ∈ C), no activity fi in F will happen.
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CL-2: There is no instruction (ci), which can activate a function fi ∈ F . A
certain function is never accessed.

CL-3: With a certain instruction (ci), multiple functions {fi, fj , . . .} ∈ F are
activated simultaneously.

CL-4: A certain function fi ∈ F can be activated with multiple instructions
{fi, fj , . . .} ∈ F .

The fault classes CL-1 – CL-4 are illustrated in Fig.7 [36]:

Fig. 6. Functional control fault classes CL 1 – CL 4

It is easy to realize that these high-level functional fault classes cover also
SAF (CL-5) and bridging (CL-6) fault classes, i.e. these faults can be collapsed,
and do not need to take into account any more, except when the fault coverage
of these faults for given implementations is under interest.

As shown in [37], address decoders built out of CMOS gates can exhibit
CMOS stuck-open faults [CL-7]. The effect of such faults is that the combina-
tional instruction decoder will behave as a sequential circuit for certain control
signals. The consequence of such a fault is that another instruction will be de-
coded and executed. However, this fault can be also collapsed, because it will be
covered by the faults of CL-4.

Any multiple low-level structural fault CL-8 (SAF or shorts), in the particular
implementation, will cause a change of an instruction ci → cj , which in turn can
be considered as the fault from class CL-4, and hence, be collapsed.

Regarding other general fault classes, such as conditional SAF (CL-9) [28],
called also as functional faults [38], pattern faults [39], fault tuples [40] or cell-
internal defects (CL-10) [41], will manifest themselves as a change of instruction
code ci → cj , and are covered by the fault class CL 4.

We have shown, that the structural fault classes CL-5 – CL-10 are collapsed
by the implementation-independent high-level functional fault classes CL-1 –
CL-4, which are used in memory testing and are covered by the March test [36].
On the other hand, in Section V, we have shown, that the test for microprocessor
MUT, which satisfies the constraints (3), and is executed in accordance with the
test flow in Algorithm.1, will cover the same fault classes CL-1 – CL-4 used in
memory testing. Finally, from Theorem 1, it follows, that the fault classes CL-1
– CL-4 can be represented by a single fault class CF = {fi,k → (fi,k, fj,k)}, as
stated in Theorem 1.

The relationships between iterative fault collapsing are shown in Fig.7: first,
collapsing of structural faults (CL-5 – Cl-9) by functional faults used in memory
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Fig. 7. Fault collapsing relationships

testing (CL1 – CL-4) [36], and thereafter, collapsing of the faults (CL1 – CL4)
by the general high-level control fault CF, developed in the paper.

In this paper, we do not consider testing of the faults in data part, however,
we propose to use here testing of all instructions separately by using pseudo-
exhaustive test (PET) data operands [32]. It is well-known that PET provides
also a good fault coverage for a broad fault class.

7 High-Level Decision Diagrams and Functional Test

The problem with the proposed functional fault model is a low scalability, be-
cause when the size n of the set of functions F is growing, the number of high-level
faults |CF | = (n− 1)

2 ×mis growing very fast. This is actually the same prob-
lem as with memory testing: the broader class of faults is desired the longer test
is needed.

From that a question follows, which is how to cope with the complexity
explosion by looking for tradeoffs between some test characteristics like fault
coverage, test length, test generation time etc. One possibilities is to partition
the sets of F into smaller subsets, and consider high-level test generation for
subsets of F separately.

High-level Decision Diagrams (HLDDs) [29, 30] can be used as a uniform
approach for extracting and solving the constraints (3) in test generation for the
modules of microprocessors.

Consider in Fig.8, a HLDD for a subset of 20 instruction of the MiniMIPS
microprocessor [33] which represents a subset of function of the ALU. The single
non-terminal decision node of the HLDD is labelled by the control variable c
(denoted by the operation code of the instructions) having n control values
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Fig. 8. HLDD with a single decision node for representing 20 MiniMIPS instructions

labelling the output edges of the node c. The terminal nodes are labelled by
data manipulation functions fi to be used for creating the data constraints (3).

The HLDD in Fig.8 can be regarded as a MUX of the control part of the
MUT, whereas terminal nodes describe the functions of the data part. Denote
the HLDD as G = 1, meaning that the graph has 1 decision node. The size of the
fault model for this subset of functions, n = 20 is |CF | = (n− 1)

2×m = 11552,
assuming the data word length is m = 32.
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Fig. 9. HLDD for a subset of instructions of MiniMIPS

Depending on different partitioning of the set of control functions, HLDDs
may have more than one non-terminal nodes. If the HLDD has more than one
internal nodes, then for each non-terminal node m, the test is generated sepa-
rately, where the subset of functions F (m) ⊂ F related to the node m under test
is set up from the HLDD, so that to each output edge of the node m, a terminal
node mT in HLDD (having a path from m to mT ) with related function fj is
mapped and included into F(m).

To reduce the complexity of the model of the MUT, we can partition itera-
tively the set of functions by adding internal nodes into the HLDD.

Consider now another version of the HLDD in Fig.9, which represents the
same subset of 20 instructions of the MiniMIPS, but has now 10 decision nodes.
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Each decision node represents a partitioning, and the number of edges of the
decision node corresponds to the size of the related subset of functions F .

We can imagine three versions of HLDDs for this subset of 20 functions
(separated by red dotted lines):

1. G = 1 as a HLDD with a single internal node and 20 terminal nodes with
N = 12160 functional faults (Fig.8) ,

2. G = 4 as 4 subgraphs with decision nodes OP1, OP21, OP22 and OP23,
and with 3, 10, 4 and 6 terminal nodes, respectively, resulting in N =
(6 + 100 + 12 + 30)× 32 = 3904 functional faults,

3. G = 10 i.e. the current HLDD in Fig.7 with 8 decision nodes, resulting in
N = (6 + (6 + 12 + 2) + (12 + 12 + 2) + (12 + 2)) × 32 = 2112 functional
faults (Fig.9).

We have generated tests for these three versions of HLDD models with the
following results

Using these results, we see opportunities for optimization of the test, trading
off different parameters like test length (number of test patterns), achieved SAF
fault coverage and test pattern generation time. We see that the result of the
minimization of the complexity of the fault model due to the partitioning of the
set of functions under test, the number of functional faults taken into account
reduces dramatically from 12160 to 2112 (7 times), which has of course impact
of the quality of testing the extended class of functional faults. In the same time,
the SAF coverage does not change significantly, it decreases only from 99.03%
to 99.61%, despite of the reduction of the test length from 143 to 79 (nearly 2
times). As the complexity of the fault module decreases, then the test generation
time as well decrease.

Table 2. Example of scalabilities for three versions of HLDDs

HLDD No of Patterns
Number of

High-Level faults
N

SAF FC(%) Time(s)

G = 1 143 12160 99.03 0.33

G = 4 100 3904 98.77 0.27

G = 10 79 2112 99.61 0.23

8 Experimental Results

We have carried out test generation experiment with two goals, first, to investi-
gate the possible tradeoffs between the complexity of the high-level fault model,
and the characteristics of generated tests such as test length, SAF coverage, and
test generation time, and second, to compare the SAF coverage of gate-level,
achieved by the proposed method with state-of-the-art methods. However, it
should be mentioned, that in the latter case, the proposed method has addi-
tional advantage regarding the coverage of the extended functional fault class,
that has not been taken into account in the state-of-the-art methods.
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We carried out experiments on Intel Core i7 processor at 3.4GHz and 8GB of
RAM. The target was to investigate the efficiency of the new high-level imple-
mentation independent SBST generation method for microprocessors by measur-
ing both the high-level functional fault coverage, and the gate-level fault coverage
(FC). As research objectives of the experiments, the executing and forwarding
units of MiniMIPS [33] were chosen.

For investigating the possibilities of tradeoffs between the complexity of the
high-level functional control fault model and the characteristics of generated tests
the executing unit was used. It consists of adder and 2 multiplication modules
MULT0 and MULT1. We targeted 28 instructions out of MiniMIPS 51, as the
basis for the set of functions F = {fi} to be tested. The results are depicted in
Table 4 and in Table 5. In Table 4 we show the SAF simulation results for only
the control test, whereas in Table 5, we show the results of SAF simulation of
the integrated control and data part tests. The latter experiment was needed to
demonstrate the additional impact of the data part test to the control test, for
the special case of SAF coverage.

Table 3. Test generation for different fault model complexities (only control part test
is SAF simulated)

HLDD
Nodes

Test
Patterns

Functional
Faults N

SAF FC%
Time (s)

ALU EX unit

1 161 23328 99.07 98.06 131.0

3 146 12160 99.04 98.03 82.8

6 103 6400 98.79 97.78 45.8

12 83 4032 98.67 97.65 32.9

Table 4. Test generation for different fault model complexities (both control and data
part tests are SAF simulated)

HLDD
Nodes

Test
Patterns

Functional
Faults N

SAF FC%
Time (s)

ALU EX unit

1 161 23328 99.32 98.33 131.0

3 146 12160 99.30 98.31 82.8

6 103 6400 99.11 98.13 45.8

12 83 4032 99.01 98.03 32.9

In Tables 3 and 4 we see, that the SAF coverage is very little depending on
the size of the set of high-level functional faults used. We see also increase of the
SAF coverage, if we simulate the full test including both control and data part
tests. This is natural, because the control test is not targeting at all the data
part. On the other hand, we see that the control test indirectly covers a huge
amount of SAF faults in the data part (as added value of using the proposed
high-level functional control fault model).

The reasons of not covering of all SAF in the gate-level simulated circuits
may be twofold: (1) the faults are not detectable, or (2) the set of functions, used
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as the target for test generation, may not cover the full circuit, which was se-
lected for SAF simulation (the circuit may be responsible for other functions, not
included into the set of functions, which was used for high-level test generation).

The second part of experiments consisted in comparing the results with state-
of-the art methods, using for comparison only the gate-level SAF coverage, which
however was not the target of the proposed method, which had the target to
generate an implementation-independent test.

In Table 5, we compare our high-level approach with a commercial ATPG,
where we showed that the latter had to use huge time when struggling with
test generation for a sequential part of the circuit (8h), whereas the high-level
approach for solving the combinational data constraints used less than a minute.

In Table 6, the fault coverage fault coverage and simulation times are given
for the forwarding unit (FU), first, when applying only the ALU test, and then
the dedicated test for only FU, and thereafter, combining both tests. The tests
for FU were generated without knowing gate-level implementation detail, we
relied only on general information of the MiniMIPS pipeline architecture, which
includes the number of stages and forwarding paths.

In Table 7, we compare our results for 3 different MiniMIPS modules with
3 other test generators. Our approach is similar to [7] in the sense that the
gate-level implementation details are not required, but it shows almost 5% im-
provement in FC compared to [7]. Although the method in [19] shows 1% im-
provement over the proposed method, it is based on requiring of structural infor-
mation. Method in [18] requires enforcing set of constraints during ATPG test
generation, requiring also gate-level information. Differently from state-of-the-
art methods, where single SAF cover is the target, the proposed method targets
extended class of faults including conditional and multiple SAF.

Table 5. Execute Unit Test

Method Experiments #Faults FC(%)
Stored

Patterns
Executed
Patterns

ATPG
Time

Proposed
high-
level
method

High-level ATPG 756 100

166 4818 47sGate-level
Simulation

Adder 2516 99.92
MULT0 95188 99.52
MULT1 91810 99.16

Commercial
gate-level

ATPG

Adder 2516 99.96
957 957 8h 27minMULT0 95188 97.40

MULT1 91810 97.71

Table 6. Fault coverage of forwarding unit by different tests

Module/Unit ALU Test(%) Forwarding Test(%) Combined(%) Improvement(%)

Forwarding Unit 89.71 97.84 98.03 8.32

Time(s) 808 48 460
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Table 7. Comparison with other methods

Module/
unit

#faults

Gate-level
implementation

details are exploited

Gate-level
implementation

independent
ATIG[19] SBST[18] SBST[7] Proposed

ALU 203576 98.67% n.a 97.85% 99.06%

PPS EX 211136 97.62% 96.20% 84.12% 98.37%

Forwarding Module 3738 99.00% 99.68% 93.64% 98.03%

9 Conclusions

In this paper, we propose a novel implementation independent SBST generation
method for the modules of RISC type microprocessors, which produces high
gate-level single fault coverage, comparable with the methods which use the
knowledge of implementation details. However the main target of the paper is to
propose a method which covers an extended class of structural faults including
high-level functional faults used in memory testing.

The main idea of the method is to generate tests separately for modules
under test (MUT) and in each MUT separately for its control and data parts.
The main contribution in the paper is related to test generation for the control
parts, whereas for testing the data parts independently of the implementation
details, we use the well-known pseudo-exhaustive test approach, not considered
here in detail.

A generic high-level functional fault model was developed, represented as a
set of constraints to be satisfied by data operands, for the control parts of MUT.
The fault model covers a broad set of low-level structural faults, and differently
from state-of-the-art, a set of traditional functional fault models used in memory
testing. We showed the possibility of focusing a large number of structural and
functional fault classes into a single measurable high-level functional fault model.

Based on this representative fault model, a novel measure of high-level control
fault coverage is proposed, and a method of evaluating the test quality using this
measure, which can indirectly assess the capability of the test to cover a large
class of faults beyond SAF.

The data constraints based fault model, and the introduced analogy of test-
ing with March test flow for memories revealed the possibility of applying the
proposed approach, not only for the combinational MUTs, but also for sequen-
tial ones. We introduced High-Level Decision Diagrams, as a means to be used
for formalization of high-level test generation and optimization of test programs
by trading off different test characteristics, such as the fault model complexity
versus test length, test generation time and well measurable SAF coverage.

For comparison of our results with state-of-the-art we used the measure of
SAF coverage. Experimental results demonstrate higher SAF coverage compared
to other existing implementation-independent test generation methods for mi-
croprocessors. The added value of the proposed approach, compared with state-
of-the-art, is the proof of covering extended fault class beyond SAF.
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