
TARTAR: A Timed Automata Repair Tool

Martin Kölbl1(B), Stefan Leue1(B),
and Thomas Wies2(B)

1 University of Konstanz, Konstanz, Germany
Martin.Koelbl@uni-konstanz.de, Stefan.Leue@uni-konstanz.de

2 New York University, New York, USA
wies@cs.nyu.edu

Abstract. We present TarTar, an automatic repair analysis tool that,
given a timed diagnostic trace (TDT) obtained during the model check-
ing of a timed automaton model, suggests possible syntactic repairs of the
analyzed model. The suggested repairs include modified values for clock
bounds in location invariants and transition guards, adding or removing
clock resets, etc. The proposed repairs guarantee that the given TDT
is no longer feasible in the repaired model, while preserving the overall
functional behavior of the system. We give insights into the design and
architecture of TarTar, and show that it can successfully repair 69%
of the seeded errors in system models taken from a diverse suite of case
studies.

1 Introduction

A reactive system with requirements pertaining to its timing behavior is often
modeled as a network of timed automata (NTA) [BY03]. Whether a timing
requirement holds in an NTA can be analyzed by timed model checkers such
as Uppaal [BLL+95] or opaal [DHJ+11]. In case of a requirement violation, a
model checker returns a timed counterexample, also called a timed diagnostic
trace (TDT). Until now, developers must manually identify and correct such
violations by analyzing the generated TDTs. It is therefore desirable to support
this process by an automated tool set that not only determines whether timing
requirements are met, but also proposes syntactic repairs of the NTA in case
they are not.

In [KLW19] we presented an automated repair analysis that analyzes a TDT
obtained from the violation of a timed safety property and returns syntactic
repair suggestions that avoid the concrete executions of the TDT violating the
property. The analysis performs an additional admissibility check ensuring that
the repaired model is functionally equivalent with the original NTA, which means
that no action traces are added or omitted by the repair.

To illustrate the repair analysis consider the NTA in Figs. 1(a) and (b). It
describes a client that sends a request req to a database db and expects to receive
a response ser within 4 time units after sending the request. The client contains a

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 529–540, 2020.
https://doi.org/10.1007/978-3-030-53288-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_25


530 M. Kölbl et al.

(a) Timed Automata client (b) Timed Automata db (c) TDT tdt

Fig. 1. Network of timed automata - running example

clock x that measures the time delay between the request creation and the receiv-
ing of a response in location serReceiving. The NTA allows to execute a TDT
that violates the property, illustrated as a sequence diagram with time intervals
in Fig. 1(c). A time interval in the sequence diagram denotes the minimal and
maximal time delay for the message transmission and processing times in db,
respectively. The repair computation analyzes the TDT and produces several
syntactic repairs to the NTA that avoid the property violation. In [KLW19], the
computed repairs aim at the modification of clock bounds in location invariants
and transition guards. An example of such a repair is to reduce the bound in the
time constraint w ≤ 2 from 2 to 1. The modified bound constrains the maximal
transmit time of the req message so that the resulting NTA receives all responses
within the expected time. This repair eliminates the problematic executions of
the TDT in the original NTA without changing the functional behavior of the
system, which is confirmed by an admissibility test defined in [KLW19]. How-
ever, in general, it may not be possible to repair the model using only clock
bound alterations.

Contributions. We present TarTar [tar20], which extends the initial prototype
implementation of the clock bound repair analysis presented in [KLW19] to a
more comprehensive NTA repair tool. Specifically, the extended tool implements
new analyses that can suggest a whole range of repairs in addition to clock
bound variation, such as modifying comparison operators in constraints, clock
references, clock resets, and location urgency. Examples of new repairs computed
for the model in Fig. 1 are:

– Exchanging the comparison operator in the constraint w ≥ 1 to w < 1 ensures
that the time to send a request is below 1 time unit.

– An exchange of clock z in z ≤ 2 with clock y restricts the time of processing
and receiving the response to at most 2 time units.

– To reset the clock y on the previous transition instead ensures that the time
for sending and processing the request is below 1 time unit.



TarTar: A Timed Automata Repair Tool 531

– Making the location serReceiving urgent reduces the time to receive a response
to 0.

We call a repair admissible if the repaired system is functionally equivalent to
the unrepaired system. The repair analysis implemented in TarTar returns the
complete set of admissible repairs.

The repair analysis combines concepts and algorithms from model checking,
constraint solving, and automata theory. A real-time model checker is used to
generate TDTs for a given NTA that violate a given timed safety property. Tar-
Tar translates the TDT into a linear real arithmetic constraint system. An SMT
solver is used to compute a repair for the generated constraint system by solv-
ing a MaxSMT problem. An automata-based language equivalence test checks
whether the repair is admissible in the NTA model. The collaboration between
these subcomponents yields a complex tool architecture. We provide insights into
the design and implementation of this architecture and the underlying infras-
tructure of supporting tools. We evaluate the new repair analyses by applying
TarTar to a number of NTA models. We systematically inject different mod-
ifications in these correct models and compute repairs for the obtained faulty
models, which results in at least one admissible repair for 69% of the TDTs.

Related Work. Other tools exist that compute repairs. The tool BugAs-
sist [JM11] analyzes C-code by solving a MaxSMT problem. The tool
ReAssert [DDG+11] checks a set of possible modification to repair broken unit
tests. Angelix [MYR16], S3 [LCL+17] and SemFix [NQRC13] compute repairs
by symbolic execution and constraint solving. SketchFix [HZWK18] is based on
lazy candidate generation. All tools are not repairing broken time constraints.
We are not aware of related work on tools for the repair of timed automata
models. A more comprehensive overview of related work on automated repair is
given in [LPR19]. A discussion of work related to the foundations of our repair
analysis can be found in [KLW19].

2 New Types of Repair Analyses

The repair analysis presented in [KLW19] and implemented in the prototype
version of TarTar encodes a TDT as a constraint system in linear real arith-
metic. It computes syntactic correct modifications of the underlying NTA by
introducing bound variation variables v . For example, possible bound modifica-
tions for a clock bound x ≤ 2 are expressed by a modified clock bound x ≤ 2+v .
The repairs are computed by solving a partial SMT problem on the TDT con-
straint system, involving soft-assert constraints on the bound variation variables.
No repair is computed whenever the soft assertion v = 0 holds, otherwise the
computed value of v characterizes the repair. In the following we sketch the new
types of repairs implemented in TarTar. For a more comprehensive description,
which space limitations do not allow us to provide here, we refer to [KLW20].



532 M. Kölbl et al.

Operator Variation Repair Analysis. This analysis is motivated by the assump-
tion that a wrong comparison operator in a location invariant or transition guard
may cause a property violation. We assume for the repair encoding that the oper-
ators ∼ are indexed according to their order in the sequence 〈 <,≤,=,≥, > 〉.
The possible repairs are encoded by a fresh variation variable vov

i where the
value of vov

i is the index of the corresponding comparison operator. If x < 4 is
computed as a repair, then vov

i = 1. Using this repair analysis, TarTar finds
two admissible repairs for the example in Figs. 1(a) and (b) that replace the
comparison operator in the clock constraint w >= 1 by < or <=, respectively.

Clock Reference Repair Analysis. This analysis aims to repair property violations
resulting from errors that stem from the unintended use of a wrong clock variable.
We enumerate all the positions of clock variables in clock bound constraints
using index i and all clock variables using index k. We then introduce for every
position i, a fresh variation variable vcv

i whose value k indicates the clock ck to
be used at that position in the repaired model. For example, if y ≤ 2 is a repaired
constraint, where the position of y in the constraint has index 3 and clock y has
index 1, then vcv

3 = 1. Applying this repair analysis to the examples in Figs. 1(a)
and (b), TarTar finds 13 admissible clock reference modification repairs, each
involving two modifications. Nine repairs exchange y in the constraints y ≤ 1
and y ≥ 1 by a selection from the set of clocks z, x and w. Four repairs exchange
y in the constraint y ≤ 1 by w or x, and w in the constraint w ≥ 1 by y or z.

Reset Clock Repair Analysis. This analysis aims to repair a property violation
by adding or removing clock resets. We introduce a variation variable v rv

i,j for
each clock ci and the transition leaving location λj in the TDT. The reset status
in the extended constraint system is inverted when v rv

i,j �= 0: if ci was not reset
before, it will now be reset, and vice versa. Applying the reset repair analysis to
the examples in Figs. 1(a) and (b), TarTar finds four admissible repairs. One
repair removes the reset of clock y, another removes the reset of clock z and
two repairs add a reset of clock x either on the transitions towards the state
reqProcessing or the transition towards the state serReceiving.

Urgent Location Repair Analysis. This analysis aims to repair cases where a
faulty usage of urgent locations, which are always left with zero delay after
entering, causes a property violation. Urgency of a location is modeled in the
TDT constraint system by setting the location delay δj to 0. We define a fresh
variation variable vuv

i for a location λj . For vuv
i �= 0, the urgency for a location λj

is inverted. Applying the urgency location repair analysis to the examples in
Figs. 1(a) and (b), TarTar finds two inadmissible repairs. The first one makes
the state reqAwaiting urgent, and another repair makes the state serReceiving
urgent.

3 Usage of TarTar

We have implemented all repair analyses described in [KLW19] and in this paper
in a tool named TarTar. It provides a graphical user interface, a command-



TarTar: A Timed Automata Repair Tool 533

line interface and a web-interface which enables the execution of this resource
intensive software on compute servers. A user selects one of these interfaces via
arguments provided when invoking the Java library implementing TarTar. For
real-time model checking, TarTar relies on Uppaal.

– The argument –web launches the web server and corresponding interface.
– Any other arguments launches the command-line mode. When using the argu-

ment –help, the command-line console prints some help information.
– When no arguments are given, the graphical user interface depicted in

Fig. 2(a) is launched. The interface offers three tabs. New Analysis starts a
repair analysis, New Experiment starts fault seeding which is described later
in Sect. 5, and Version shows the current version number of TarTar.

All tool interfaces expect the same types of inputs in order to start a TarTar
analysis run. The user specifies a file containing the Uppaal model as input
and selects the kind of repair to compute. Optionally, a file with a TDT of
the given Uppaal model can be specified. When no TDT is provided, TarTar
automatically calls Uppaal to compute a TDT. The result of an analysis is
one repaired model file for every computed repair, as well as a text file that
summarizes which repairs are admissible.

(a) TarTar GUI (b) TarTar Architecture

Fig. 2. TarTar tool

4 Software Architecture and Implementation of TarTar

The software architecture of TarTar is depicted in Fig. 2(b). The orange rect-
angles in the figure represent external tools that TarTar calls in the course of
the repair analysis. Uppaal is a state-of-the-art and closed-source model checking
tool, which TarTar uses to compute a TDT for a given model and property.
The SMT solver Z3 [dMB08] is used to solve the generated partial MaxSMT
problems. To check the admissibility of a repair, TarTar uses opaal and the
AutomataLib component of LearnLib [IHS15] since they conveniently provide
functionality used during admissibility checking.



534 M. Kölbl et al.

Data Flow Architecture. TarTar consists of many computation steps. For exam-
ple, a TDT is parsed internally and stored as a Trace. This Trace is then modi-
fied and exported as SMT-LIB2 [BFT17] code. We define a computation step of
TarTar as the computation transforming input into result artifacts. This focus
on artifacts ensures a highly cohesive architecture and clear interfaces between
any two computation steps. Computation steps with identical objectives are
grouped into a project. This results in four projects depicted by blue rectangles
in Fig. 2(b).

– HMI denotes the user interfaces of TarTar. The user inputs a timed model.
TarTar then calls the project Repair Computation using a faulty timed
model as a parameter. In case that the model is correct, TarTar calls the
project Fault Seeding.

– Fault Seeding seeds faults into a correct model and then repairs the faulty
model by computing repairs using Repair Computation. We use this analysis
in Sect. 5 in order to benchmark the Repair Computation analyses.

– Repair Computation computes candidate repairs for a faulty timed model,
applies these repairs to the model and finally automatically calls the Admis-
sibility Test.

– Admissibility Test checks for every repaired model whether the computed
repair is also admissible.

Control Flow Architecture. TarTar computes iteratively a set of repairs for a
given faulty Uppaal model and a given property Π using the following steps:

0. Counterexample Creation. TarTar calls Uppaal to verify the model against
Π. In case Π is violated, it stores a shortest symbolic TDT witnessing the
violation in XML format.

1. Diagnostic Trace Creation. TarTar parses the model and the TDT into a
data structure Trace. To add potential repairs, TarTar copies the trace and
replaces the constraints that will potentially be subject to a repair by their
modified variants. The modified trace is then translated to a logic constraint
system, represented in SMT-LIB2 code.

2. Repair Computation. Z3 [dMB08] then solves a MaxSMT problem on the
modified trace constraint system, computing a repair in which the number
of unmodified constraints on the variation variables of type v = 0 is maxi-
mized. Since Z3 can solve a MaxSMT problem only for quantifier-free linear
real arithmetic, TarTar first runs a quantifier elimination on the constraint
system. It then solves the MaxSMT problem with soft constraints requir-
ing v = 0 for all variation variables. For a more comprehensive presentation
of this construction we refer the reader to [KLW20]. In case no solution is
found, TarTar terminates. Otherwise, TarTar applies the repair to the
faulty model and returns a repaired model.

3. Admissibility Check. TarTar checks the admissibility of a repair and com-
pares the untimed languages of the faulty and repaired models. TarTar
calls the model checker opaal in order to compute the timed transition sys-
tems (TTS) of the original and the repaired Uppaal model. We modified the



TarTar: A Timed Automata Repair Tool 535

opaal model checker in such a way that it returns the TTS for a model. Tar-
Tar then checks whether the two TTS have equivalent untimed languages,
in which case the repair is admissible. This check is implemented using the
library AutomataLib. In case the two TTS are not equivalent, the admissi-
bility test returns a trace as a witness for the difference.

4. Iteration. TarTar enumerates all repairs, i.e., all combinations of constraint
modifications that correct the TDT. The repairs are iteratively enumerated
starting with the ones that require the smallest number of modifications to
the model. After a repair is computed, the combination of modified variables
that has been found is prevented from being reconsidered for future repairs by
setting these modification variables to 0 using hard asserts. TarTar then pro-
ceeds with attempting to compute further, previously unconsidered repairs.

Fig. 3. TarTar component architecture

Component Architecture. We imple-
mented TarTar with the general
infrastructure depicted in Fig. 3. The
interface Job provides a general
abstraction for an algorithm and spec-
ifies the necessary input and result
values of the algorithm by the class
Description. TarTar contains a Job
for the projects Fault Seeding, Repair
Computations and Admissibility Test.
The class Session executes a Job and derivations of Session provide the different
interfaces to the user. With this infrastructure, the analysis implementation in
TarTar is independent from the implementation of the user interfaces, thus
reducing coupling and improving modifiability of the code.

Implementation Details. We implemented the different projects that constitute
TarTar in Java and use the build-management tool maven [Mav19] to manage
the dependencies between the projects. TarTar interacts differently with the
external tools that are needed for different purposes. It calls Uppaal via the
command-line interface in order to generate a TDT and calls Z3 via its API to
compute a repair. For the admissibility check, it calls opaal using a command-line
script and the AutomataLib as an included Java library. For the implementation
of the TarTar analyses the following two details are essential.

We modify constraints in an Uppaal model in order to apply a repair or
to seed a fault. Since neither clock constraints nor transitions possess explicit
unique identifiers in an Uppaal model, it is not obvious which constraint to
change. We therefore uniquely identify a constraint by traversing the constraints
in the sequence stored in the Uppaal model file and use the constraint index in
this sequence as its identifier.

The complexity of the algorithms for solving quantifier elimination and the
MaxSMT problem increase exponentially with the number of variables in the
SMT model [KLW19]. We therefore reduce the number of variables by exploit-
ing implied equality constraints. For example, a variable cj is created for every



536 M. Kölbl et al.

clock c in every step j of the TDT. We eliminate cj explicitly before quantifier
elimination by replacing it with the term

∑
i∈r..j di, where di is the time delay

at step i in the trace and r is the last step before j where c was reset.

5 Evaluation

Evaluation Strategy. In order to evaluate the repair analyses both qualitatively
and quantitatively, we need to synthesize a set of faulty timed automata. To the
best of our knowledge, no benchmark suite for faulty timed automata exists. We
therefore create faulty models by using the fault seeding strategy from [KLW19]
which is motivated by ideas from mutation testing [JH11]. Mutation testing eval-
uates the quality of a test suite for a given program by systematically corrupting
program code and determining the ratio of corruptions that the test suite is able
to detect. We apply the same principle to evaluate the quality of our repair
technique. As proposed in [KLW19], fault seeding modifies a single clock con-
straint so that the result is a set of models that violate a given property. During
the seeding, the bound of a single clock constraint is modified by an amount
of {−10,−1,+1,+0.1M,+M}, where M is the maximal clock bound occurring
in a given model. Our observation was that making either small modifications
that are close to the bound value or modifications in the order of the maximal
bound value M often introduce actual errors in the model. We have extended
fault seeding to the new types of repairs. In particular, fault seeding addition-
ally exchanges the comparison operator in a clock constraint by {<,≤,=,≥, >},
swap a referenced clock with all other clocks occurring in the given model, mod-
ify the reset clocks of any transition, and switch for any location whether it is
urgent. TarTar checks automatically whether a modified TA violates a given
property. If this is the case, it performs all of the above defined repair analyses.

Results. We applied fault seeding to the models in [KLW19] and analyzed
the obtained TDTs using the above described repair analyses implemented in
TarTar. All analyses were performed on a computer with an i7-6700K CPU
(4.00 GHz), 60 GB of RAM and a 64 bit Linux operating system. We summarize
the results of the experiment per considered model (Table 1) and per type of
considered repair (Table 2). Column Sd contains the count of seeded faults that
result in a number #T of faulty models. TUP is the maximal time that Uppaal
needs to create a TDT for the faulty models, and the longest TDT has a length of
Ln. TarTar computed for the TDTs overall a number #R repairs of which #A
are admissible. An admissible repair is found for #S of the TDTs. The computa-
tion effort for a repair analysis is given by the time TQE for successful quantifier
elimination, the number of timeouts #O of quantifier eliminations after 10 min,
the average time TR to compute a repair and the memory consumption MR. The
constraint system that Z3 solves has the count #Vr of variables and #Cn of con-
straints. The effort for the admissibility check is given in time TAdm and memory
MA. All times are given in seconds and memory consumption in MB. Notice that
we omit the columns pertaining to the fault seeding and TDT computation in
Table 2 as they are irrelevant here.



TarTar: A Timed Automata Repair Tool 537

Table 1. Experimental results according to model.

Repair #Sd #T TUP Ln #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

db rep. 110 13 0.016 4 229 138 9 89.346 2 0.911 14.53 30 91 2.080 45

csma 191 10 0.012 2 70 26 8 0.049 0 0.023 0.58 16 72 1.825 75

elevator 88 5 0.011 1 7 5 4 0.049 0 0.020 0.53 6 28 1.665 17

viking 310 9 0.015 18 9 7 5 86.539 21 1.436 20.07 120 180 1.952 543

bando 1, 955 40 0.111 279 4, 061 209 21 31.555 46 4.922 20.86 1, 156 8, 144 19.57 1251

Pacemaker 1, 187 12 0.022 9 62 19 10 0.663 20 0.325 2.59 116 988 1.994 206

SBR 353 50 0.027 84 751 660 31 117.057 86 2.686 37.16 765 1, 211 138.004 211

FDDI 314 36 0.014 11 166 105 34 29.859 51 3.074 9.70 116 272 2.241 128

Overall, TarTar seeded 4.508 faults. This resulted in 175 TDTs in total
(60 TDTs due to bound modification, 72 due to operator variation, 27 due to
changing the clock reference, 8 due to complementing the reset of clocks and
8 due to the switching of urgent locations). TarTar found 5,355 repairs, out
of which 1,169 were admissible. It found at least one admissible repair for 122
of the TDTs. The maximal number of modified constraints in the admissible
repairs computed for a single TDT using all types of analysis was 25.

Table 2. Experimental results according to type of repair.

Repair #R #A #S TQE #O TR MR #Vr #Cn TAdm MA

Bound Modification 533 364 85 15.209 8 4.922 20.86 1, 156 2,498 138.004 525

Operator Variation 3, 929 96 51 117.057 44 2.686 37.16 996 8,144 59.117 543

Clock Reference 693 625 35 33.282 61 3.074 14.13 1, 120 5,355 116.944 206

Reset Clock 45 37 13 89.346 113 0.911 14.53 996 2,836 2.051 45

Urgent Location 155 47 37 0.107 0 0.135 3.16 1, 120 2,502 58.551 1, 251

Interpretation. Few of the seeded faults resulted in a property violation. TarTar
seeded 4.508 faults which led to 175 TDTs, thus only 3.9% of these faults result in
a TDT. This supports the hypothesis that, in practice, often times only few time
constraints have an impact on a property violation. TarTar computes at least
one admissible repair by bound modification for 85 (48%) of the 175 TDTs, by
operator variation for 51 (29%), by clock reference for 35 (20%), by clock reset for
13 (7%) and by urgent location for 37 (21%). Every analysis on its own computes
less admissible repairs than the combination of all repair analyses, which solves
122 (69%) of the 175 TDTs. The largest number of modified constraints in all
the admissible repairs for a single TDT was 25, which is less than anticipated.
This low number of modified constraints infer that, for the examples that we
considered, only a few constraints of each TDT combined to admissible repairs.
The number of modified constraints determines the number of possible repairs
that have an impact on whether a property is violated or not. Since it was
observed in [KLW19] that the computational effort for the repair computation is
largely determined by the quantifier elimination step, we expect that in light of



538 M. Kölbl et al.

the observed 226 timeouts a more efficient quantifier elimination would lead to
a significantly higher number of repairs. Furthermore, the number of timeouts,
and thus the computation time needed for the repair, rises with the length of
the analyzed TDT. The model SBR has the most timeouts with 86 and the
third longest trace with a length of 84 steps. The model bando has the third
most timeouts with 46 and the longest trace. Obviously, the longer the TDT,
the larger the resulting constraint system, leading to increased computational
effort. The bando model has the largest constraint system with 1, 156 variables
and 8, 144 constraints. The SBR model has the second largest constraint system
with 765 variables and 1, 211 constraints. The model FDDI has a shorter trace
of length of 11 and a much smaller constraint system with 116 variables and
272 constraints. From this we conclude that the complexity of a repair depends
not only on the trace length, but also on the intrinsic complexity of the model.
Modifying states from urgent to non-urgent during fault seeding resulted in
only 8 TDTs. This low number is due to the observation that the considered
models contain only few urgent states. Modifying non-urgent states to urgent
ones, however, did not lead to a single property violation resulting in a TDT.
The rationale is that urgency ensures to leave a state immediately without a
delay which leads to a restriction rather than a relaxation regarding the time
budget spent along an execution trace. As a consequence, making a state urgent
does not cause a property violation in many models since the type of the checked
properties is typically time bounded reachability, and a restricted time budget
does not make it more likely that the property is violated. We finally observe
that the admissibility check requires more computation resources than the repair
computation. The maximal memory used for the admissibility test was 1, 251MB
in contrast to 37.16MB for the repair computation. This is in line with our
expectation since the admissibility test searches the state space of the full NTA,
while the repair analyses only considers a single TDT.

6 Conclusion

We have presented the TarTar tool, its architecture and implementation, and
illustrated its application to a number of significant case studies. In the course
of our work we have extended the repair analysis that is implemented in Tar-
Tar for bound modification to modifications of comparison operators, clock
references, reset of clocks and missing urgencies. The evaluation of the repair
analyses showed that an admissible repair is computed for at least 69% of the
analyzed TDTs. The integration of various tools with heterogeneous interfaces
posed a particular challenge to the architecture of TarTar which we addressed
by the definition of intermediate artifacts.

In future work we plan to explore the interplay between different repairs that
are computed for a repaired system that still violates a property, and develop
refined strategies to select promising repairs from a repair set. A further gener-
alization of the analysis is to not only compute clock constraint modifications
for faulty models but also to compute possible relaxations of clock constraints
for correct models in order to support design space exploration.



TarTar: A Timed Automata Repair Tool 539

References

[BFT17] Barrett, C., Fontaine, P., Tinelli, C.: SMT-lib (2017). http://smtlib.cs.
uiowa.edu/language.shtml

[BLL+95] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—
a tool suite for automatic verification of real-time systems. In: Alur, R.,
Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–
243. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020949

[BY03] Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools.
In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol.
3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27755-2 3

[DDG+11] Daniel, B.: Reassert: a tool for repairing broken unit tests. In: ICSE, pp.
1010–1012. ACM (2011)

[DHJ+11] Dalsgaard, A.E., et al.: opaal: a lattice model checker. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol.
6617, pp. 487–493. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20398-5 37

[dMB08] de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24

[HZWK18] Hua, J., Zhang, M., Wang, K., Khurshid, S.: SketchFix: a tool for
automated program repair approach using lazy candidate generation. In:
ESEC/SIGSOFT FSE, pp. 888–891. ACM (2018)

[IHS15] Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 32

[JH11] Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

[JM11] Jose, M., Majumdar, R.: Bug-assist: assisting fault localization in ANSI-C
programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 504–509. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22110-1 40

[KLW19] Kölbl, M., Leue, S., Wies, T.: Clock bound repair for timed systems. In: Dil-
lig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 79–96. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 5

[KLW20] Kölbl, M., Leue, S., Wies, T.: Tartar: a timed automata repair tool. CoRR,
abs/2002.02760 (2020). https://www.sen.uni-konstanz.de/publications

[LCL+17] Le, X.-B.D., Chu, D.-H., Lo, D., Goues, C.L., Visser, W.: S3: syntax-
and semantic-guided repair synthesis via programming by examples. In:
ESEC/SIGSOFT FSE, pp. 593–604. ACM (2017)

[LPR19] Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair.
Commun. ACM 62(12), 56–65 (2019)

[Mav19] Apache Software Foundation. Maven (2019). https://maven.apache.org/
[MYR16] Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program

patch synthesis via symbolic analysis. In ICSE, pp. 691–701. ACM (2016)
[NQRC13] Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program

repair via semantic analysis. In: ICSE, pp. 772–781. IEEE Computer Soci-
ety (2013)

[tar20] Tartar 2019–2020. https://github.com/sen-uni-kn/tartar

http://smtlib.cs.uiowa.edu/language.shtml
http://smtlib.cs.uiowa.edu/language.shtml
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-030-25540-4_5
https://www.sen.uni-konstanz.de/publications
https://maven.apache.org/
https://github.com/sen-uni-kn/tartar


540 M. Kölbl et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	TARTAR: A Timed Automata Repair Tool
	1 Introduction
	2 New Types of Repair Analyses
	3 Usage of TarTar
	4 Software Architecture and Implementation of TarTar
	5 Evaluation
	6 Conclusion
	References




