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Abstract. SMT-based model checkers, especially 1C3-style ones, are
currently the most effective techniques for verification of infinite state
systems. They infer global inductive invariants via local reasoning about
a single step of the transition relation of a system, while employing SMT-
based procedures, such as interpolation, to mitigate the limitations of
local reasoning and allow for better generalization. Unfortunately, these
mitigations intertwine model checking with heuristics of the underlying
SMT-solver, negatively affecting stability of model checking.

In this paper, we propose to tackle the limitations of locality in a
systematic manner. We introduce explicit global guidance into the local
reasoning performed by 1C3-style algorithms. To this end, we extend the
SMT-IC3 paradigm with three novel rules, designed to mitigate funda-
mental sources of failure that stem from locality. We instantiate these
rules for the theory of Linear Integer Arithmetic and implement them on
top of SPACER solver in Z3. Our empirical results show that GSPACER,
SPACER extended with global guidance, is significantly more effective
than both SPACER and sole global reasoning, and, furthermore, is insen-
sitive to interpolation.

1 Introduction

SMT-based Model Checking algorithms that combine SMT-based search for
bounded counterexamples with interpolation-based search for inductive invari-
ants are currently the most effective techniques for verification of infinite state
systems. They are widely applicable, including for verification of synchronous
systems, protocols, parameterized systems, and software.

The Achilles heel of these approaches is the mismatch between the local
reasoning used to establish absence of bounded counterexamples and a global
reason for absence of unbounded counterexamples (i.e., existence of an induc-
tive invariant). This is particularly apparent in IC3-style algorithms [7], such as
SPACER [18]. IC3-style algorithms establish bounded safety by repeatedly com-
puting predecessors of error (or bad) states, blocking them by local reasoning
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about a single step of the transition relation of the system, and, later, using
the resulting lemmas to construct a candidate inductive invariant for the global
safety proof. The whole process is driven by the choice of local lemmas. Good
lemmas lead to quick convergence, bad lemmas make even simple-looking prob-
lems difficult to solve.

The effect of local reasoning is somewhat mitigated by the use of interpo-
lation in lemma construction. In addition to the usual inductive generalization
by dropping literals from a blocked bad state, interpolation is used to further
generalize the blocked state using theory-aware reasoning. For example, when
blocking a bad state x = 1 A y = 1, inductive generalization would infer a sub-
clause of x #% 1V y # 1 as a lemma, while interpolation might infer z # y —
a predicate that might be required for the inductive invariant. SPACER, that is
based on this idea, is extremely effective, as demonstrated by its performance
in recent CHC-COMP competitions [10]. The downside, however, is that the
approach leads to a highly unstable procedure that is extremely sensitive to syn-
tactic changes in the system description, changes in interpolation algorithms,
and any algorithmic changes in the underlying SMT-solver.

An alternative approach, often called invariant inference, is to focus on the
global safety proof, i.e., an inductive invariant. This has long been advocated by
such approaches as Houdini [15], and, more recently, by a variety of machine-
learning inspired techniques, e.g., FreqHorn [14], LinearArbitrary [28], and ICE-
DT [16]. The key idea is to iteratively generate positive (i.e., reachable states)
and negative (i.e., states that reach an error) examples and to compute a can-
didate invariant that separates these two sets. The reasoning is more focused
towards the invariant, and, the search is restricted by either predicates, tem-
plates, grammars, or some combination. Invariant inference approaches are par-
ticularly good at finding simple inductive invariants. However, they do not gen-
eralize well to a wide variety of problems. In practice, they are often used to
complement other SMT-based techniques.

In this paper, we present a novel approach that extends, what we call, local
reasoning of 1C3-style algorithms with global guidance inspired by the invariant
inference algorithms described above. Our main insight is that the set of lem-
mas maintained by IC3-style algorithms hint towards a potential global proof.
However, these hints are lost in existing approaches. We observe that letting the
current set of lemmas, that represent candidate global invariants, guide local
reasoning by introducing new lemmas and states to be blocked is often sufficient
to direct IC3 towards a better global proof.

We present and implement our results in the context of SPACER—a solver
for Constrained Horn Clauses (CHC)—implemented in the Z3 SMT-solver [13].
SPACER is used by multiple software model checking tools, performed remarkably
well in CHC-COMP competitions [10], and is open-sourced. However, our results
are fundamental and apply to any other IC3-style algorithm. While our imple-
mentation works with arbitrary CHC instances, we simplify the presentation by
focusing on infinite state model checking of transition systems.

We illustrate the pitfalls of local reasoning using three examples shown in
Fig. 1. All three examples are small, simple, and have simple inductive invariants.
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All three are challenging for SPACER. Where these examples are based on SPACER-
specific design choices, each exhibits a fundamental deficiency that stems from
local reasoning. We believe they can be adapted for any other IC3-style verification
algorithm. The examples assume basic familiarity with the IC3 paradigm. Readers
who are not familiar with it may find it useful to read the examples after reading
Sect. 2.

a, c :=0, 0; a, b :=0, 0; a, b, c :=90, 0, 0;
// b, d:=a, c; while(nd()) while(nd())
b, d := 0, 0; // inv: a > @ AN b > 0; // inv: b = c;
while(nd()) { {
// inv: a - c=b - d; a:=a+b; at++; bt+; ct+;
{ b++; }
if(nd()) { a++; b++; } 3} assert(a > 100 = b = c);
else { c++; d++; } assert(a > 0);
}
assert(a < c = b < d);
(a) myopic generalization (b) excessive generalization (c) stuck in a rut

Fig. 1. Verification tasks to illustrate sources of divergence for SPACER. The call nd()
non-deterministically returns a Boolean value.

Myopic Generalization. SPACER diverges on the example in Fig. 1(a) by itera-
tively learning lemmas of the form (a —c¢ < k) = (b—d < k) for different values
of k, where a, b, ¢, d are the program variables. These lemmas establish that
there are no counterexamples of longer and longer lengths. However, the process
never converges to the desired lemma (a — ¢) < (b — d), which excludes coun-
terexamples of any length. The lemmas are discovered using interpolation, based
on proofs found by the SMT-solver. A close examination of the corresponding
proofs shows that the relationship between (a — ¢) and (b — d) does not appear
in the proofs, making it impossible to find the desired lemma by tweaking local
interpolation reasoning. On the other hand, looking at the global proof (i.e.,
the set of lemmas discovered to refute a bounded counterexample), it is almost
obvious that (a — ¢) < (b—d) is an interesting generalization to try. Amusingly,
a small, syntactic, but semantic preserving change of swapping line 2 for line 3
in Fig. 1(a) changes the SMT-solver proofs, affects local interpolation, and makes
the instance trivial for SPACER.

Ezcessive (Predecessor) Generalization. SPACER diverges on the example
in Fig. 1(b) by computing an infinite sequence of lemmas of the form a+k; x b >
ko, where a and b are program variables, and k; and ko are integers. The root
cause is excessive generalization in predecessor computation. The Bad states
are a < 0, and their predecessors are states such as (¢ = 1 Ab = —10),
(a =2 ANb = —10), etc., or, more generally, regions (a +b < 0), (a +2b < —1),
etc. SPACER always attempts to compute the most general predecessor states.
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This is the best local strategy, but blocking these regions by learning their nega-
tion leads to the aforementioned lemmas. According to the global proof these
lemmas do not converge to a linear invariant. An alternative strategy that under-
approximates the problematic regions by (numerically) simpler regions and, as
a result, learns simpler lemmas is desired (and is effective on this example). For
example, region a + 3b < —4 can be under-approximated by a < 32 A b < —12,
eventually leading to a lemma b > 0, that is a part of the final invariant:
(a>0Ab>0).

Stuck in a Rut. Finally, SPACER converges on the example in Fig. 1(c), but only
after unrolling the system for 100 iterations. During the first 100 iterations,
SPACER learns that program states with (a > 100 A b # ¢) are not reachable
because a is bounded by 1 in the first iteration, by 2 in the second, and so
on. In each iteration, the global proof is updated by replacing a lemma of the
form a < k by lemma of the form a < (k + 1) for different values of k. Again,
the strategy is good locally — total number of lemmas does not grow and the
bounded proof is improved. Yet, globally, it is clear that no progress is made
since the same set of bad states are blocked again and again in slightly different
ways. An alternative strategy is to abstract the literal a > 100 from the formula
that represents the bad states, and, instead, conjecture that no states in b # ¢
are reachable.

Our Approach: Global Guidance. As shown in the examples above, in all the
cases that SPACER diverges, the missteps are not obvious locally, but are clear
when the overall proof is considered. We propose three new rules, Subsume,
Concretize, and, Conjecture, that provide global guidance, by considering exist-
ing lemmas, to mitigate the problems illustrated above. Subsume introduces a
lemma that generalizes existing ones, Concretize under-approximates partially-
blocked predecessors to focus on repeatedly unblocked regions, and Conjecture
over-approximates a predecessor by abstracting away regions that are repeatedly
blocked. The rules are generic, and apply to arbitrary SMT theories. Further-
more, we propose an efficient instantiation of the rules for the theory Linear
Integer Arithmetic.

We have implemented the new strategy, called GSPACER, in SPACER and
compared it to the original implementation of SPACER. We show that GSPACER
outperforms SPACER in benchmarks from CHC-COMP 2018 and 2019. More sig-
nificantly, we show that the performance is independent of interpolation. While
SPACER is highly dependent on interpolation parameters, and performs poorly
when interpolation is disabled, the results of GSPACER are virtually unaffected
by interpolation. We also compare GSPACER to LinearArbitrary [28], a tool that
infers invariants using global reasoning. GSPACER outperforms LinearArbitrary
on the benchmarks from [28]. These results indicate that global guidance miti-
gates the shortcomings of local reasoning.

The rest of the paper is structured as follows. Sect. 2 presents the necessary
background. Sect. 3 introduces our global guidance as a set of abstract inference
rules. Sect. 4 describes an instantiation of the rules to Linear Integer Arithmetic
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(LIA). Sect. 5 presents our empirical evaluation. Finally, Sect. 7 describes related
work and concludes the paper.

2 Background

Logic. We consider first order logic modulo theories, and adopt the standard
notation and terminology. A first-order language modulo theory 7 is defined
over a signature X' that consists of constant, function and predicate symbols,
some of which may be interpreted by 7. As always, terms are constant symbols,
variables, or function symbols applied to terms; atoms are predicate symbols
applied to terms; literals are atoms or their negations; cubes are conjunctions of
literals; and clauses are disjunctions of literals. Unless otherwise stated, we only
consider closed formulas (i.e., formulas without any free variables). As usual, we
use sets of formulas and their conjunctions interchangeably.

MBP. Given a set of constants v, a formula ¢ and a model M = ¢, Model Based
Projection (MBP) of ¢ over the constants v, denoted MBP (v, ¢, M), computes
a model-preserving under-approximation of ¢ projected onto X \ v. That is,
MBP (v, p, M) is a formula over X'\ v such that M = MBP(v, ¢, M) and any
model M" | MBP (v, ¢, M) can be extended to a model M” |= ¢ by providing
an interpretation for v. There are polynomial time algorithms for computing
MBP in Linear Arithmetic [5,18].

Interpolation. Given an unsatisfiable formula A A B, an interpolant, denoted
ITP(A, B), is a formula I over the shared signature of A and B such that
A= 1Tand [ = —B.

Safety Problem. A transition system is a pair (Init, Tr), where Init is a formula
over X and Tr is a formula over ¥ U X', where X’ = {s' | s € X'}.! The states
of the system correspond to structures over X, Init represents the initial states
and Tr represents the transition relation, where X' is used to represent the pre-
state of a transition, and X’ is used to represent the post-state. For a formula
o over X, we denote by ¢’ the formula obtained by substituting each s € X
by s’ € X'. A safety problem is a triple (Init, Tr, Bad), where (Init, Tr) is a
transition system and Bad is a formula over X representing a set of bad states.

The safety problem (Init, Tr, Bad) has a counterexample of length k if the
following formula is satisfiable: Init® A /\i:ol Tr* A Bad®, where ' is defined over
Yt ={s"|s e X} (acopy of the signature used to represent the state of the
system after the execution of 7 steps) and is obtained from ¢ by substituting
each s € X by s* € X% and Tr' is obtained from Tr by substituting s € X by
st € X' and s’ € X' by st! € X+l The transition system is safe if the safety
problem has no counterexample, of any length.

! In fact, a primed copy is introduced in X’ only for the uninterpreted symbols in X.
Interpreted symbols remain the same in X’.
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Algorithm 1: SPACER algorithm as a set of guarded commands. We use the
shorthand F(p) =U"V (¢ A Tr).
function SPACER:

In: (Init, Tr, Bad)
Out: (SAFE, Inv) or UNSAFE

Q:=10 // pob queue
N:=0 // maximum safe level
Op :=Init,O; :=T for all i > 0 // lemma trace
U = Init // reachable states

forever do
Candidate [ 1SSAT(ON A Bad) | Q := Q U (Bad, N)
Predecessor [ {p,i+1) € Q, M = O; ATrA¢' ] Q := QU (MBP(z', Tr A¢', M), i)
Successor [ {p,i+1) € Q, M = FU)A¢' U :=UV MBP(z, F(U), M)z’ — x|
Conflict [ (p,i+ 1) € Q, F(O;) = —¢’ | Oj := (O AITP(F(O;), ¢ )|z’ — x]) for all j <i+1
Induction [ £ € Oi11,£=(p V), F(pANO;) = ¢' ] O :=0; Ap forall j <i+1
Propagate [ £ € O;, O; A Tr = £' ]| Ojq1 := (Os41 A £)
Unfold [ Oy = ~Bad | N := N +1
Safe [ O;4+1 = O; for some i < N | return (SAFE, O;)
Unsafe [ 1SSAT(Bad AU ) | return UNSAFE

Algorithm 2: Global guidance rules for SPACER.

Subsume [£LC O k>i,F(Or) =" Ve LAYp=1]
i = (0; ANY) for all j < k41

Concretize [ £ C Ol,( .)€ Q, VL € L.ISSAT(p A —£),1SSAT(p AN L),y = ¢, 1SSAT(y AN L) ]
Q:=QU (v,k+ 1) where k = max{j | O; = v}
ConJecture[[ECO,(ga]) Qe=aApB,Vle L L= BANISSATUA a),U = -]
1) w

Q:=QU (o, k+ here k = max{j | O; = —a}

Inductive Invariants. An inductive invariant is a formula Inv over X such that
(i) Init = Inv, (i) Inv A Tr = Inv’, and (iii) Inv = —=Bad. If such an inductive
invariant exists, then the transition system is safe.

Spacer. The safety problem defined above is an instance of a more general prob-
lem, CHC-SAT, of satisfiability of Constrained Horn Clauses (CHC). SPACER is
a semi-decision procedure for CHC-SAT. However, to simplify the presentation,
we describe the algorithm only for the particular case of the safety problem. We
stress that SPACER, as well as the developments of this paper, apply to the more
general setting of CHCs (both linear and non-linear). We assume that the only
uninterpreted symbols in Y are constant symbols, which we denote . Typically,
these represent program variables. Without loss of generality, we assume that
Bad is a cube.

Algorithm 1 presents the key ingredients of SPACER as a set of guarded
commands (or rules). It maintains the following. Current unrolling depth N at
which a counterexample is searched (there are no counterexamples with depth
less than N). A trace O = (Op, Oy, ...) of frames, such that each frame O; is a
set of lemmas, and each lemma ¢ € O; is a clause. A queue of proof obligations
@, where each proof obligation (POB) in @ is a pair (¢, ) of a cube ¢ and a level
number 4, 0 < ¢ < N. An under-approximation I of reachable states. Intuitively,
each frame O; is a candidate inductive invariant s.t. O; over-approximates states
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reachable up to i steps from Init. The latter is ensured since Oy = Init, the trace
is monotone, i.e., O;41 C O;, and each frame is inductive relative to its previous
one, i.e., O; A Tr = O;,. Each POB (p,i) in @ corresponds to a suffix of a
potential counterexample that has to be blocked in O;, i.e., has to be proven
unreachable in ¢ steps.

The Candidate rule adds an initial POB (Bad, N) to the queue. If a POB (y, )
cannot be blocked because ¢ is reachable from frame (i — 1), the Predecessor
rule generates a predecessor ¥ of ¢ using MBP and adds (¢,i — 1) to Q. The
Successor rule updates the set of reachable states if the POB is reachable. If the
POB is blocked, the Conflict rule strengthens the trace O by using interpolation
to learn a new lemma ¢ that blocks the POB, i.e., £ implies —p. The Induction
rule strengthens a lemma by inductive generalization and the Propagate rule
pushes a lemma to a higher frame. If the Bad state has been blocked at N,
the Unfold rule increments the depth of unrolling N. In practice, the rules are
scheduled to ensure progress towards finding a counterexample.

3 Global Guidance of Local Proofs

As illustrated by the examples in Fig. 1, while SPACER is generally effective, its
local reasoning is easily confused. The effectiveness is very dependent on the
local computation of predecessors using model-based projection, and lemmas
using interpolation. In this section, we extend SPACER with three additional
global reasoning rules. The rules are inspired by the deficiencies illustrated by
the motivating examples in Fig. 1. In this section, we present the rules abstractly,
independent of any underlying theory, focusing on pre- and post-conditions. In
Sect. 4, we specialize the rules for Linear Integer Arithmetic, and show how
they are scheduled with the other rules of SPACER in an efficient verification
algorithm. The new global rules are summarized in Algorithm 2. We use the
same guarded command notation as in description of SPACER in Algorithm 1.
Note that the rules supplement, and not replace, the ones in Algorithm 1.

Subsume is the most natural rule to explain. It says that if there is a set of
lemmas L at level i, and there exists a formula ¢ such that (a) ¢ is stronger
than every lemma in £, and (b) ¢ over-approximates states reachable in at most
k steps, where k > 7, then v can be added to the trace to subsume L. This rule
reduces the size of the global proof — that is, the number of total not-subsumed
lemmas. Note that the rule allows 1) to be at a level k that is higher than ¢. The
choice of ¥ is left open. The details are likely to be specific to the theory involved.
For example, when instantiated for LIA, Subsume is sufficient to solve example
in Fig. 1(a). Interestingly, Subsume is not likely to be effective for propositional
IC3. In that case, ¥ is a clause and the only way for it to be stronger than L is
for 1 to be a syntactic sub-sequence of every lemma in £, but such ¥ is already
explored by local inductive generalization (rule Induction in Algorithm 1).
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Concretize applies to a POB, unlike Subsume. It is motivated by example in
Fig. 1(b) that highlights the problem of excessive local generalization. SPACER
always computes as general predecessors as possible. This is necessary for refu-
tational completeness since in an infinite state system there are infinitely many
potential predecessors. Computing the most general predecessor ensures that
SPACER finds a counterexample, if it exists. However, this also forces SPACER to
discover more general, and sometimes more complex, lemmas than might be nec-
essary for an inductive invariant. Without a global view of the overall proof, it
is hard to determine when the algorithm generalizes too much. The intuition for
Concretize is that generalization is excessive when there is a single POB (i, j)
that is not blocked, yet, there is a set of lemmas £ such that every lemma ¢ € £
partially blocks . That is, for any ¢ € L, there is a sub-region ¢, of POB ¢ that
is blocked by ¢ (i.e., £ = —py), and there is at least one state s € ¢ that is not
blocked by any existing lemma in £ (i.e., s = @ A A £L). In this case, Concretize
computes an under-approximation v of ¢ that includes some not-yet-blocked
state s. The new POB is added to the lowest level at which ~ is not yet blocked.
Concretize is useful to solve the example in Fig. 1(b).

Conjecture guides the algorithm away from being stuck in the same part of the
search space. A single POB ¢ might be blocked by a different lemma at each level
that ¢ appears in. This indicates that the lemmas are too strong, and cannot
be propagated successfully to a higher level. The goal of the Conjecture rule is
to identify such a case to guide the algorithm to explore alternative proofs with
a better potential for generalization. This is done by abstracting away the part
of the POB that has been blocked in the past. The pre-condition for Conjecture
is the existence of a POB (yp,j) such that ¢ is split into two (not necessarily
disjoint) sets of literals, o and 3. Second, there must be a set of lemmas L, at a
(typically much lower) level ¢ < j such that every lemma ¢ € £ blocks ¢, and,
moreover, blocks ¢ by blocking (. Intuitively, this implies that while there are
many different lemmas (i.e., all lemmas in £) that block ¢ at different levels, all
of them correspond to a local generalization of =3 that could not be propagated
to block ¢ at higher levels. In this case, Conjecture abstracts the POB ¢ into
«, hoping to generate an alternative way to block . Of course, « is conjectured
only if it is not already blocked and does not contain any known reachable states.
Conjecture is necessary for a quick convergence on the example in Fig. 1(c). In
some respect, Conjecture is akin to widening in Abstract Interpretation [12]
— it abstracts a set of states by dropping constraints that appear to prevent
further exploration. Of course, it is also quite different since it does not guarantee
termination. While Conjecture is applicable to propositional IC3 as well, it is
much more significant in SMT-based setting since in many FOL theories a single
literal in a POB might result in infinitely many distinct lemmas.

Each of the rules can be applied by itself, but they are most effective in
combination. For example, Concretize creates less general predecessors, that, in
the worst case, lead to many simple lemmas. At the same time, Subsume combines
lemmas together into more complex ones. The interaction of the two produces
lemmas that neither one can produce in isolation. At the same time, Conjecture
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helps unstuck the algorithm from a single unproductive POB, allowing the other
rules to take effect.

4 Global Guidance for Linear Integer Arithmetic

In this section, we present a specialization of our general rules, shown in
Algorithm 2, to the theory of Linear Integer Arithmetic (LIA). This requires
solving two problems: identifying subsets of lemmas for pre-conditions of the
rules (clearly using all possible subsets is too expensive), and applying the rule
once its pre-condition is met. For lemma selection, we introduce a notion of syn-
tactic clustering based on anti-unification. For rule application, we exploit basic
properties of LIA for an effective algorithm. Our presentation is focused on
LIA exclusively. However, the rules extend to combinations of LIA with other
theories, such as the combined theory of LIA and Arrays.

The rest of this section is structured as follows. We begin with a brief back-
ground on LIA in Sect. 4.1. We then present our lemma selection scheme, which
is common to all the rules, in Sect. 4.2, followed by a description of how the rules
Subsume (in Sect.4.3), Concretize (in Sect.4.4), and Conjecture (in Sect.4.5)
are instantiated for LIA. We conclude in Sect. 4.6 with an algorithm that inte-
grates all the rules together.

4.1 Linear Integer Arithmetic: Background

In the theory of Linear Integer Arithmetic (LIA), formulas are defined over a

signature that includes interpreted function symbols +, —, X, interpreted predi-
cate symbols <, <, |, interpreted constant symbols 0,1,2; ..., and uninterpreted
constant symbols a,b,...,z,y,.... We write Z for the set interpreted constant

symbols, and call them integers. We use constants to refer exclusively to the unin-
terpreted constants (these are often called wariables in LIA literature). Terms
(and accordingly formulas) in LIA are restricted to be linear, that is, multipli-
cation is never applied to two constants.

We write LIA™%Y for the fragment of LIA that excludes divisiblity (d|h)
predicates. A literal in LIA~ %Y is a linear inequality; a cube is a conjunction of
such inequalities, that is, a polytope. We find it convenient to use matrix-based
notation for representing cubes in LIA~%Y. A ground cube ¢ € LIA ™% with p
inequalities (literals) over k (uninterpreted) constants is written as A -z < n,
where A is a p x k matrix of coefficients in ZP**, & = (2 ---x4)T is a column
vector that consists of the (uninterpreted) constants, and n = (ny---n,)7 is a
column vector in ZP. For example, the cube z > 2 A 2z + y < 3 is written as
[_21 (1)] 1yl < [_ 32 ] In the sequel, all vectors are column vectors, super-script T’
denotes transpose, dot is used for a dot product and [n; ns] stands for a matrix
of column vectors n; and ns.
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4.2 Lemma Selection

A common pre-condition for all of our global rules in Algorithm 2 is the existence
of a subset of lemmas L of some frame O;. Attempting to apply the rules for every
subset of O; is infeasible. In practice, we use syntactic similarity between lemmas
as a predictor that one of the global rules is applicable, and restrict £ to subsets
of syntactically similar lemmas. In the rest of this section, we formally define
what we mean by syntactic similarity, and how syntactically similar subsets of
lemmas, called clusters, are maintained efficiently throughout the algorithm.

Syntactic Similarity. A formula m with free variables is called a pattern. Note
that we do not require 7 to be in LIA. Let ¢ be a substitution, i.e., a mapping
from variables to terms. We write wo for the result of replacing all occurrences
of free variables in 7 with their mapping under o. A substitution o is called
numeric if it maps every variable to an integer, i.e., the range of ¢ is Z. We
say that a formula ¢ numerically matches a pattern 7 iff there exists a numeric
substitution ¢ such that ¢ = mo. Note that, as usual, the equality is syntactic.
For example, consider the pattern m = vga + v1b < 0 with free variables vy and
v1 and uninterpreted constants a and b. The formula ¢; = 3a + 4b < 0 matches
7 via a numeric substitution o1 = {vg — 3,v; — 4}. However, @9 = 4b+3a < 0,
while semantically equivalent to 1, does not match 7. Similarly p3 =a+b <0
does not match 7 as well.

Matching is extended to patterns in the usual way by allowing a substitution
o to map variables to variables. We say that a pattern 7; is more general than
a pattern mo if mo matches m;. A pattern 7 is a numeric anti-unifier for a
pair of formulas ¢; and 9 if both ¢; and ¢ match 7 numerically. We write
anti(p1, @2) for a most general numeric anti-unifier of ¢; and po. We say that
two formulas ; and @9 are syntactically similar if there exists a numeric anti-
unifier between them (i.e., anti(p1, p2) is defined). Anti-unification is extended
to sets of formulas in the usual way.

Clusters. We use anti-unification to define clusters of syntactically similar for-
mulas. Let @ be a fixed set of formulas, and 7 a pattern. A cluster, Cp(7), is
a subset of @ such that every formula ¢ € Cg(m) numerically matches 7. That
is, m is a numeric anti-unifier for Cs (7). In the implementation, we restrict the
pre-conditions of the global rules so that a subset of lemmas £ C O; is a cluster
for some pattern 7, i.e., L = Co, (7).

Clustering Lemmas. We use the following strategy to efficiently keep track of
available clusters. Let £, be a new lemma to be added to @;. Assume there is at
least one lemma ¢ € O; that numerically anti-unifies with ¢, via some pattern
m. If such an ¢ does not belong to any cluster, a new cluster Co, (1) = {¢new, £}
is formed, where m = anti(lnew, ). Otherwise, for every lemma ¢ € O; that
numerically matches ¢,y and every cluster Co, () containing ¢, £y, is added
to Co, (7) if Lhew matches @, or a new cluster is formed using ¢, few, and any
other lemmas in Co, (7) that anti-unify with them. Note that a new lemma £pey
might belong to multiple clusters.
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For example, suppose lhew = (@ < 6V b < 6), and there is already a cluster
Co,(a<vgVb<5)={(a<5Vb<5)(a <8Vb<5)}. Since lpey anti-unifies
with each of the lemmas in the cluster, but does not match the pattern a <
v Vb < 5, a new cluster that includes all of them is formed w.r.t. a more general
pattern: Co, (a < voVb<wv1) ={(a <6Vb<6),(a<5Vb<5)(a<8Vb<H)}

In the presentation above, we assumed that anti-unification is completely
syntactic. This is problematic in practice since it significantly limits the applica-
bility of the global rules. Recall, for example, that a+b < 0 and 2a+2b < 0 do not
anti-unify numerically according to our definitions, and, therefore, do not cluster
together. In practice, we augment syntactic anti-unification with simple rewrite
rules that are applied greedily. For example, we normalize all LIA terms, take
care of implicit multiplication by 1, and of associativity and commutativity of
addition. In the future, it is interesting to explore how advanced anti-unification
algorithms, such as [8,27], can be adapted for our purpose.

4.3 Subsume Rule for LTA

Recall that the Subsume rule (Algorithm 2) takes a cluster of lemmas £ = Cp, ()
and computes a new lemma 1) that subsumes all the lemmas in £, that is ¢ =
A\ £. We find it convenient to dualize the problem. Let S = {—¢ | £ € L} be the
dual of L, clearly v = A L iff (\/ §) = —. Note that L is a set of clauses, S is a
set of cubes, 9 is a clause, and —) is a cube. In the case of LIA~4Y this means
that \/ S represents a union of convex sets, and —) represents a convex set that
the Subsume rule must find. The strongest such —p in LTA =" exists, and is the
convex closure of S. Thus, applying Subsume in the context of LIA~9Y is reduced
to computing a convex closure of a set of (negated) lemmas in a cluster. Full
LIA extends LIA™%" with divisibility constraints. Therefore, Subsume obtains
a stronger — by adding such constraints.

Example 1. For example, consider the following cluster:

L={(z>2Va<2Vy>3),(z>4Ve<4Vy>5),(r>8Ver<8Vy>9)}
S={xz<2hnx>2Ny<3),(x>4Nx<4ANy<5),(z>8ANx<8Ay<9)}

The convex closure of S in LIA ™4 is 2 <z <8Ay < z+1. However, a stronger
over-approximation exists in LIA: 2 <ax <8Ay<z+1A(2]|x). O

In the sequel, we describe SUBSUMECUBE (Algorithm 3) which computes a
cube @ that over-approximates (\/ §). Subsume is then implemented by removing
from £ lemmas that are already subsumed by existing lemmas in £, dualizing
the result into S, invoking SUBSUMECUBE on S and returning —¢ as a lemma
that subsumes L.

Recall that Subsume is tried only in the case £ = Cp, (7). We further require
that the negated pattern, -, is of the form A -a < v, where A is a coefficients
matrix, & is a vector of constants and v = (v1---v,)T is a vector of p free
variables. Under this assumption, S (the dual of £) is of the form {(A-z < n;) |
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1 <i < ¢}, where ¢ = |S], and for each 1 < ¢ < ¢, n; is a numeric substitution
to v from which one of the negated lemmas in § is obtained. That is, |n;| = |v|.
In Example 1, - =2z < v A —x < vy Ay <wsg and

1 0 T (%) 2 4 8
A=1|-1 0 w:[} v = |vg ng= [—2 no = |—4 nsy = [—8
0 1 4 vs 3 5 9

Each cube (A-x < n;) € S is equivalent to Fv. Az < v A (v = n;).
Finally, (VS) = Fv.(4-x < v) A (\/(v = n;)). Thus, computing the over-
approximation of S is reduced to (a) computing the convex hull H of a set
of points {n; | 1 < i < ¢}, (b) computing divisibility constraints D that are
satisfied by all the points, (¢) substituting H A D for the disjunction in the
equation above, and (c) eliminating variables v. Both the computation of H A D
and the elimination of v may be prohibitively expensive. We, therefore, over-
approximate them. Our approach for doing so is presented in Algorithm 3, and
explained in detail below.

Computing the convexr hull of {n; |1 <4 < g¢}. lines 3 to 8 compute the convex
hull of {n; | 1 < ¢ < g} as a formula over v, where variable v;, for 1 < j < p,
represents the j'" coordinates in the vectors (points) n;. Some of the coordinates,
v;, in these vectors may be linearly dependent upon others. To simplify the
problem, we first identify such dependencies and compute a set of linear equalities
that expresses them (L in line 4). To do so, we consider a matrix Ny ,, where the
ith row consists of n]. The j*" column in N, denoted N,;, corresponds to the ;!
coordinate, v;. The rank of N is the number of linearly independent columns (and
rows). The other columns (coordinates) can be expressed by linear combinations
of the linearly independent ones. To compute these linear combinations we use
the kernel of [IV;1] (N appended with a column vector of 1’s), which is the
set of all vectors y such that [N;1] -y = 0, where O is the zero vector. Let
B = kernel([N;1]) be a basis for the kernel of [V;1]. Then |B| = p — rank(N),
and for each vector y € B, the linear equality [vi---v, 1] -y = 0 holds in
all the rows of N (i.e., all the given vectors satisfy it). We accumulate these
equalities, which capture the linear dependencies between the coordinates, in
L. Further, the equalities are used to compute rank(N) coordinates (columns
in N) that are linearly independent and, modulo L, uniquely determine the
remaining coordinates. We denote by v’ the subset of v that consists of the
linearly independent coordinates. We further denote by niLl the projection of

n; to these coordinates and by Nt the projection of N to the corresponding
columns. We have that (\/(v =mn;)) = LA (\/(vE = nLl).

i

2 -2 3
In Example 1, the numeral matrix is N = {ASL —g g}, for which
kernel([N;1]) = {(1100)", (10 —=11)"}. Therefore, L is the conjunction of
equalities v1 + v = 0A vy —ws + 1 =0, or, equivalently v = v + 1 A vy = —vq,

vl = (vl)T, and
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2
nlLl = [2} néi = [4] ngl = [8} NIt = |4

oo

Next, we compute the convex closure of \/(vlt = niLl)7 and conjoin it with
L to obtain H, the convex closure of (\/(v = n;)).

If the dimension of v”! is one, as is the case in the example above, convex
closure, C, of \/(vlt = nZLl) is obtained by bounding the sole element of vt
based on its values in NXt (line 6). In Example 1, we obtain C =2 < v; < 8.

If the dimension of v’ is greater than one, just computing the bounds of
one of the constants is not sufficient. Instead, we use the concept of syntactic
convex closure from [2] to compute the convex closure of \/ (vl = nZLi) as dJa. C
where « is a vector that consists of ¢ fresh rational variables and C' is defined
as follows (line 8): C = a > 0A Ya = 1A al - NI = (v1)T. C states that
(vE)T is a convex combination of the rows of Nt  or, in other words, v’! is a
convex combination of {nZLl |1<i<gq}.

To illustrate the syntactic convex closure, consider a second example with a
set of cubes: S = {(z < 0Ay < 6), (x < 6Ay <0), (z < 5Ay < 5)}. The coefficient
matrix A, and the numeral matrix N are then: A = [}{] and N = [E 5}.
Here, kernel([N; 1]) is empty — all the columns are linearly independent, hence,

L = true and v = v. Therefore, syntactic convex closure is applied to the full
matrix N, resulting in

C:(al20)/\(@220)/\(0[320)/\(0[1+O[2+043:1)/\
(6a2+5a3 :1}1)/\(6041+5013 :’UQ)

The convex closure of \/(v = n;) is then L A 3. C, which is Je. C' here.

Divisibility Constraints. Inductive invariants for verification problems often
require divisibility constraints. We, therefore, use such constraints, denoted D,
to obtain a stronger over-approximation of \/(v = n;) than the convex closure.
To add a divisibility constraint for v; € vl we consider the column N, *le that
corresponds to v; in N L1, We find the largest positive integer d such that each
integer in N*le leaves the same remainder when divided by d; namely, there exists

0 < r < d such that n mod d = r for every n € N*le. This means that d | (v; —r)
is satisfied by all the points n;. Note that such r always exists for d = 1. To
avoid this trivial case, we add the constraint d | (v; — ) only if d # 1 (line 12).
We repeat this process for each v; € vl

In Example 1, all the elements in the (only) column of the matrix N*!, which
corresponds to vy, are divisible by 2, and no larger d has a corresponding r. Thus,
line 12 of Algorithm 3 adds the divisibility condition (2 | v1) to D.
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Eliminating Existentially Quantified Variables Using MBP. By combining the
linear equalities exhibited by N, the convex closure of N*! and the divisibility
constraints on v, we obtain Ja. L A C' A D as an over-approximation of \/(v =
n;). Accordingly, Jv.3a. ¢, where v = (A-x < v) ALAC A D, is an over-
approximation of (\/S§) = Jv. (A -x < v)A(\/(v =n;)) (line 13). In order to get
a LTA cube that overapproximates \/ S, it remains to eliminate the existential
quantifiers. Since quantifier elimination is expensive, and does not necessarily
generate convex formulas (cubes), we approximate it using MBP. Namely, we
obtain a cube ¢ that under-approximates Jv. Jax. 1) by applying MBP on ¢ and
a model My = 1. We then use an SMT solver to drop literals from ¢ until it
over-approximates Jv. 3a. v, and hence also \/ S (lines 16 to 19). The result is
returned by Subsume as an over-approximation of \/ S.

Models My that satisfy ¥ and do not satisfy any of the cubes in S are
preferred when computing MBP (line 14) as they ensure that the result of MBP
is not subsumed by any of the cubes in S.

Note that the o are rational variables and v are integer variables, which
means we require MBP to support a mixture of integer and rational variables. To
achieve this, we first relax all constants to be rationals and apply MBP over LRA
to eliminate cc. We then adjust the resulting formula back to integer arithmetic
by multiplying each atom by the least common multiple of the denominators of
the coefficients in it. Finally, we apply MBP over the integers to eliminate v.

Considering Example 1 again, we get that ¢ = (z < v1) A (—2z < wva) A (y <
v3)A(v3 =14v1)A(vg = —v1)A(2 <wv; <8)A(2]|v1) (the first three conjuncts
correspond to (A - (z y)T < (v v2 v3)T)). Note that in this case we do not have
rational variables « since |[v%!| = 1. Depending on the model, the result of MBP
can be one of

y<z+1A2<z<8A2|y—1)A(2]2) T>2Ne<2Ay<3
y<z+1A2<z<8A(2]|xz) r>8Nx<8AYy<9
y>x+1lAy<z+1A3<y<9IAn(2|y—-1)

However, we prefer a model that does not satisfy any cube in S = {(z > 2Az <
2Ny <3),(x <4Ax>4Nny <5H),(x <8Az>8Ay <9)}, rules off the two
possibilities on the right. None of these cubes cover i, hence generalization is
used.

If the first cube is obtained by MBP, it is generalized into y < x +1Ax >
2Nz < 8 A (2|z); the second cube is already an over-approximation; the third
cube is generalized into y < x + 1 Ay < 9. Indeed, each of these cubes over-
approximates \/ S.

4.4 Concretize Rule for LIA

The Concretize rule (Algorithm 2) takes a cluster of lemmas £ = Cp,(7) and a
POB (¢, j) such that each lemma in £ partially blocks ¢, and creates a new POB
that is still not blocked by £, but «y is more concrete, i.e., ¥ = . In our implemen-
tation, this rule is applied when ¢ is in LIA~4Y. We further require that the pat-
tern, 7, of £ is non-linear, i.e., some of the constants appear in 7 with free variables
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Algorithm 3: An implementation of Algorithm 4: An implementation of
the Subsume rule for the dual of a cluster the Concretize rule in LIA.
S={A-z<n;|1<i<qg}.
1 function suBSUMECUBE: 1 function CONCRETIZE:
IntS={(A-z < ni). |1 i< q}, In: A POB (i, j) in LIAT9Y  a cluster of
Out: An over-approximation of (\/ S). LIA~%Y lemmas £ = Co, () s.t. 7 is
/*x v are integer variables such that: non-linear, 1ISSAT(p A /\LL)
(VS) <= Fv.(A-z<v)An(Vv=mn;) * Out: A cube v such that v = ¢ and
2 N:=[ng; - ;ng]7 Ve € L.I1SSAT(y A £)
/* Compute the set of linear dependencies 2 U := {z | COEFF(z, w) € VARS(m)}
implied by N */ 3 find Mst. Ml=pAAL
3 B := kernel([N;1]) 4 v:=T
a L:=Aycp(vivwpl) y=0 s foreach lit € ¢ do
5 if [v“l| = 1 then 6 if Consts(lit) N U # 0 then

L, v := v A CONCRETIZE_LIT(lit, M, U)
7 elsey:=~yAlit
7 := RM_SUBSUME(y)

// Convex closure over a single constantv; € v

®

6 C:=min(N,;) <v; < max(N.;)

9 return vy

7 else

// Syntactic convex closure 10 function CONCRETIZE_LIT:
8 C:= (@ Nl =@ ")T)A(Sa = 1)A(a > 0) In: A literal lit = ¥;n;x; < b; in LIAT9Y,

/* Compute divisibility constraints */ model M = lit, and a set of constants U
o D:=T Out: A cube " that concretizes lit

/* Construct a single literal using all the
10 for v; € v"! d
1 ?; v €V © constants in Consts(lit) \ U x/
it
L 11 =0
3d,r.d # 1A (Vn € N*Ji4 (n mod d = r)) then 12 Z:: 0

12 D:=DAd](v; —r) 13 foreach z; € Consts(lit) \ U do
18 p:=(A-z <v)ALACAD 14 s:=s+n;x;

/* Under-approximate quantifier elimination */ 15 ,ym = (s < M[s])
14 find My s.t. Mo |= + and, if possible, Mo = (V S) /% Generate one dimensional literals for each
15 ¢ := MBP((a v), v, Mo) constant in U */

/* Over-approximate quantifier elimination */ 16 foreach z; € Consts(lit) N U do
16 while 1SSAT(=¢ A 1)) do R it (niws < Mlnizs))
17 find M; s.t. My = (mp AY) . : ’let iy S iTq
18 p:=A{l€p|(M -0} 18 return vy

19 return ¢

as their coeflicients. We denote these constants by U. An example is the pattern
T = vox + 11y + z < 0, where U = {z, y}. Having such a cluster is an indication
that attempting to block ¢ in full with a single lemma may require to track non-
linear correlations between the constants, which is impossible to do in LIA. In such
cases, we identify the coupling of the constants in U in POBs (and hence in lemmas)
as the potential source of non-linearity. Hence, we concretize (strengthen) ¢ into
a POB 7y where the constants in U are no longer coupled to any other constant.

Coupling. Formally, constants u and v are coupled in a cube ¢, denoted u <, v,
if there exists a literal lit in ¢ such that both w and v appear in lit (i.e., their
coefficients in lit are non-zero). For example, x and y are coupled in z +y <
0 A z < 0 whereas neither of them are coupled with z. A constant u is said to
be isolated in a cube ¢, denoted Is0O(u, ¢), if it appears in ¢ but it is not coupled
with any other constant in c¢. In the above cube, z is isolated.

Concretization by Decoupling. Given a POB ¢ (a cube) and a cluster L,
Algorithm 4 presents our approach for concretizing ¢ by decoupling the con-
stants in U—those that have variables as coefficients in the pattern of £ (line 2).
Concretization is guided by a model M = ¢ A A\ L, representing a part of ¢ that
is not yet blocked by the lemmas in £ (line 3). Given such M, we concretize ¢
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into a model-preserving under-approximation that isolates all the constants in
U and preserves all other couplings. That is, we find a cube -, such that

Yy=¢ ME~y VYueU.Iso(u,y) Vu,vgU. (ux<,v)= (uptyv) (1)

Note that «y is not blocked by L since M satisfies both A £ and . For example,
ifo=(x+y<0)A(z—y <0)A(x+2z>0)and M =[x =0,y =0,z = 1], then
y=0<y<0Az<0Az+z>1Iis amodel preserving under-approximation
that isolates U = {y}.

Algorithm 4 computes such a cube 7 by a point-wise concretization of the
literals of ¢ followed by the removal of subsumed literals. Literals that do not
contain constants from U remain unchanged. A literal of the form lit = ¢ < b,
where t = 37, n;x; (recall that every literal in LIA™%" can be normalized to this
form), that includes constants from U is concretized into a cube by (1) isolating
each of the summands n;x; in ¢ that include U from the rest, and (2) for each
of the resulting sub-expressions creating a literal that uses its value in M as a
bound. Formally, ¢ is decomposed to S+Zmi€U n;x;, where s = ZrieU n;xr;. The
concretization of lit is the cube 7% = s < M[s] A Ne,cv nizi < M(n;x;], where
M t'] denotes the interpretation of ¢’ in M. Note that v = it since the bounds
are stronger than the original bound on ¢: M(s| + > iy M[nz;] = M[t] < b.
This ensures that -, obtained by the conjunction of literal concretizations,
implies . It trivially satisfies the other conditions of Eq. (1).

For example, the concretization of the literal (x +y < 0) with respect to
U={y} and M = [z =0,y =0,z = 1] is the cube z < 0 Ay < 0. Applying
concretization in a similar manner to all the literals of the cube p = (z+y < 0)A
(x—y < 0)A(z+2z > 0) from the previous example, we obtain the concretization
z<0AN0<y<0Axz+z>0.Note that the last literal is not concretized as it
does not include y.

4.5 Conjecture Rule for LTA

The Conjecture rule (see Algorithm 2) takes a set of lemmas £ and a POB
= a A 8 such that all lemmas in £ block 3, but none of them blocks a, where
a does not include any known reachable states. It returns « as a new POB.

For LTA, Conjecture is applied when the following conditions are met: (1) the
POB ¢ is of the form ¢ A g A 3, where p3 = (nT - < b), and ¢, and ¢y are
any cubes. The sub-cube 1 A 5 acts as a, while the sub-cube @2 A @3 acts as (.
(2) The cluster £ consists of {bg V (nT -x > b;) | 1 <i < g}, where b; > b and
bg = —s. This means that each of the lemmas in £ blocks 8 = @2 A 3, and they
may be ordered as a sequence of increasingly stronger lemmas, indicating that they
were created by trying to block the POB at different levels, leading to too strong
lemmas that failed to propagate to higher levels. (3) The formula (bg V (n? -z >
bi)) A @1 A o is satisfiable, that is, none of the lemmas in £ block o« = @1 A g,
and (4) U = —(p1 A @2), that is, no state in p1 A 2 is known to be reachable. If
all four conditions are met, we conjecture & = @1 A po. This is implemented by
CONJECTURE, that returns « (or L when the pre-conditions are not met).
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Algorithm 5: GSPACER for LIA.

1

function GSPACER:
In: (Init, Tr, Bad)
Out: An Inductive invariant or UNSAFE

function CONCRETIZEPOB:

(m1, L1) = Cpop({, 1))
Lo :={l| €€ L1 NSSAT(LA @) AISSAT(—LAp)}

/* Initialize state of the solver */ 21 if (L2 # O ANONLIN(71) AISSAT(A L2 A ¢)) then
2 Q:=0; N :=0;U := Init; 28~y := CONCRETIZE(y, (71, L2))
3 Op:=Init; O; :=T,Vi >0 2% k:=max{j| O; = v}
4  ENQUEUE(Q, (Bad, 0)) 30 PUsH(Q, (v, k)) // Concretize
s while T do 31 PusH(Q, (p, 1))
6 (p,1) := PopP(Q) 32 return T
7 if CONCRETIZEPOB((p,i)) = T then 33 else return L
8 continue .
N if 1SSAT(F(Oi_1) A @) then 34 fl.}nctl(ln ADDPREDEC{ESSOR:
// The pob ¢ cannot be blocked at 7 3 df ,ISSATU:(M) A ¢") then
y ’
10 ADDPREDECESSOR( (¢, 7)) 3 find My st My = F(U) A °
1 if ISSAT(U A Bad) then ¥ s:= (MBP(z, F(U), My)[z" — z])
12 return UNSAFE // Unsafe ¥ U:=UVs // Successor

else
// The pob ¢ can be blocked at %
BLocK({¢p, 1))
for 0 < j < N do
for £ € O; \ Oj41 do
if Oj A Tr = (' then
Ojp1:=0541 NL
if 30 <j < N-0O; = O;_; then

// Propagate

44
45

return
find Mz s.t My = ©
p:= MBP(x/, Tr A ¢’, M2)
PUSH(Q, (p, i — 1))
PUSH(Q, (¥, 7))
function BLOCK:
£ := GEN(F(O;-1),¢")

// Predecessor

// Conflict

46 for 0 < j<ido O;:=0; Nl
20 _return (SAFE, Oj) /1 safe g (73, L3) = Clemma(£)
21 if Oy = —Bad then 48 o := CONJECTURE(p, L3,U)
2 N:=N+1 // Unfold 4 if o % L then

pUSH(Q, (Bad, N))

k:=max{j | O; = —-a}

PUSH(Q, (o, k))
if w3 = A-ax < v then
1 1= SUBSUME((m3, L3))
k:=max{j | F(O;) = ¢}
Oj:=0; ANy for all j <k+1

// Conjecture

// Subsume

For example, consider the POB ¢ = = > 10A (z+y > 10) Ay < 10 and a
cluster of lemmas £ = {(z+y <0Vy > 101),(x +y < 0Vy > 102)}. In this
case, o1 = x > 10, 3 = (x+y > 10), p3 = y < 10, and bg = = +y < 0. Each of
the lemmas in £ block 3 A @3 but none of them block ¢ A @s. Therefore, we
conjecture p1 A @o: & > 10 A (z +y > 10).

4.6 Putting It All Together

Having explained the implementation of the new rules for LIA, we now put all
the ingredients together into an algorithm, GSPACER. In particular, we present
our choices as to when to apply the new rules, and on which clusters of lemmas
and POBs. As can be seen in Sect. 5, this implementation works very well on a
wide range of benchmarks.

Algorithm 5 presents GSPACER. The comments to the right side of a line
refer to the abstract rules in Algorithm 1 and 2. Just like SPACER, GSPACER
iteratively computes predecessors (line 10) and blocks them (line 14) in an infi-
nite loop. Whenever a POB is proven to be reachable, the reachable states are
updated (line 38). If Bad intersects with a reachable state, GSPACER terminates
and returns UNSAFE (line 12). If one of the frames is an inductive invariant,
GSPACER terminates with SAFE (line 20).

When a POB (i, i) is handled, we first apply the Concretize rule, if possi-
ble (line 7). Recall that CONCRETIZE (Algorithm 4) takes as input a cluster that
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partially blocks ¢ and has a non-linear pattern. To obtain such a cluster, we first
find, using Cpop({, 1)), a cluster (w1, L1) = Co, (m1), where k < ¢, that includes
some lemma (from frame k) that blocks ¢; if none exists, £1 = (). We then filter
out from £; lemmas that completely block ¢ as well as lemmas that are irrele-
vant to ¢, i.e., we obtain Lo by keeping only lemmas that partially block ¢. We
apply CONCRETIZE on (71, L2) to obtain a new POB that under-approximates
@ if (1) the remaining sub-cluster, Lo, is non-empty, (2) the pattern, 7y, is non-
linear, and (3) A L2 A ¢ is satisfiable, i.e., a part of ¢ is not blocked by any
lemma in Lo.

Once a POB is blocked, and a new lemma that blocks it, ¢, is added to
the frames, an attempt is made to apply the Subsume and Conjecture rules on
a cluster that includes ¢. To that end, the function Ciepme(€) finds a cluster
(73, L3) = Co,(m3) to which ¢ belongs (Sect. 4.2). Note that the choice of cluster
is arbitrary. The rules are applied on (w3, L£3) if the required pre-conditions are
met (line 49 and line 53, respectively). When applicable, SUBSUME returns a
new lemma that is added to the frames, while CONJECTURE returns a new POB
that is added to the queue. Note that the latter is a may POB, in the sense that
some of the states it represents may not lead to safety violation.

Ensuring Progress. SPACER always makes progress: as its search continues, it
establishes absence of counterexamples of deeper and deeper depths. However,
GSPACER does not ensure progress. Specifically, unrestricted application of the
Concretize and Conjecture rules can make GSPACER diverge even on executions
of a fixed bound. In our implementation, we ensure progress by allotting a fixed
amount of gas to each pattern, =, that forms a cluster. Each time Concretize
or Conjecture is applied to a cluster with 7 as the pattern, 7w loses some gas.
Whenever 7w runs out of gas, the rules are no longer applied to any cluster
with 7 as the pattern. There are finitely many patterns (assuming LIA terms
are normalized). Thus, in each bounded execution of GSPACER, the Concretize
and Conjecture rules are applied only a finite number of times, thereby, ensuring
progress. Since the Subsume rule does not hinder progress, it is applied without
any restriction on gas.

5 Evaluation

We have implemented? GSPACER (Algorithm 5) as an extension to SPACER. To
reduce the dimension of a matrix (in SUBSUME, Sect. 4.3), we compute pairwise
linear dependencies between all pairs of columns instead of computing the full
kernel. This does not necessarily reduce the dimension of the matrix to its rank,
but, is sufficient for our benchmarks. We have experimented with computing the
full kernel using SageMath [25], but the overall performance did not improve.
Clustering is implemented by anti-unification. LIA terms are normalized using

2 https://github.com/hgvk94/z3 /tree/gspacer-cav-ae.
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default Z3 simplifications. Our implementation also supports global generaliza-
tion for non-linear CHCs. We have also extended our work to the theory of LRA.
We defer the details of this extension to an extended version of the paper.

To evaluate our implementation, we have conducted two sets of experiments>.
All experiments were run on Intel E5-2690 V2 CPU at 3 GHz with 128 GB mem-
ory with a timeout of 10 min. First, to evaluate the performance of local reasoning
with global guidance against pure local reasoning, we have compared GSPACER
with the latest SPACER, to which we refer as the baseline. We took the bench-
marks from CHC-COMP 2018 and 2019 [10]. We compare to SPACER because it
dominated the competition by solving 85% of the benchmarks in CHC-COMP
2019 (20% more than the runner up) and 60% of the benchmarks in CHC-
COMP 2018 (10% more than runner up). Our evaluation shows that GSPACER
outperforms SPACER both in terms of number of solved instances and, more
importantly, in overall robustness.

Second, to examine the performance of local reasoning with global guidance
compared to solely global reasoning, we have compared GSPACER with an ML-
based data-driven invariant inference tool LINEARARBITRARY [28]. Compared to
other similar approaches, LINEARARBITRARY stands out by supporting invari-
ants with arbitrary Boolean structure over arbitrary linear predicates. It is com-
pletely automated and does not require user-provided predicates, grammars, or
any other guidance. For the comparison with LINEARARBITRARY, we have used
both the CHC-COMP benchmarks, as well as the benchmarks from the artifact
evaluation of [28]. The machine and timeout remain the same. Our evaluation
shows that GSPACER is superior in this case as well.

Comparison with SPACER. Table 1 summarizes the comparison between SPACER
and GSPACER on CHC-COMP instances. Since both tools can use a variety of
interpolation strategies during lemma generalization (Line 45 in Algorithm 5),
we compare three different configurations of each: bw and fw stand for two inter-
polation strategies, backward and forward, respectively, already implemented in
SPACER, and sc stands for turning interpolation off and generalizing lemmas
only by subset clauses computed by inductive generalization.

Any configuration of GSPACER solves significantly more instances than even
the best configuration of SPACER. Figure 2 provides a more detailed comparison
between the best configurations of both tools in terms of running time and depth
of convergence. There is no clear trend in terms of running time on instances
solved by both tools. This is not surprising—SMT-solving run time is highly non-
deterministic and any change in strategy has a significant impact on performance
of SMT queries involved. In terms of depth, it is clear that GSPACER converges
at the same or lower depth. The depth is significantly lower for instances solved
only by GSPACER.

Moreover, the performance of GSPACER is not significantly affected by the
interpolation strategy used. In fact, the configuration sc in which interpolation is

3 Detailed experimental results including the effectiveness of each rule, and the exten-
sions to non-linear CHCs and LRA can be found at https://hgvk94.github.io/
gspacer/.
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disabled performs the best in CHC-COMP 2018, and only slightly worse in CHC-
COMP 2019! In comparison, disabling interpolation hurts SPACER significantly.

Figure 3 provides a detailed comparison of GSPACER with and without inter-
polation. Interpolation makes no difference to the depth of convergence. This
implies that lemmas that are discovered by interpolation are discovered as effi-
ciently by the global rules of GSPACER. On the other hand, interpolation signif-
icantly increases the running time. Interestingly, the time spent in interpolation
itself is insignificant. However, the lemmas produced by interpolation tend to
slow down other aspects of the algorithm. Most of the slow down is in increased
time for inductive generalization and in computation of predecessors. The com-
parison between the other interpolation-enabled strategy and GSPACER (sc)
shows a similar trend.

Table 1. Comparison between SPACER and GSPACER on CHC-COMP.

SPACER GSPACER
Bench

fw bw sc fw bw sc VBS

safe unsafe safe unsafe safe unsafe||safe unsafe safe unsafe safe unsafe||safe unsafe
CHC-18 159 66 163 69 123 68 (214 67 214 63 214 69 |[229 74
CHC-19 193 84 186 84 125 84 (/202 84 196 85 200 84 |/207 85

Spacer(bw) time
<1
g
Spacer(bw) depth
g

4 100 200 300 400 500 600 4 20 40 60 80 100 120 140
GSpacer(fw) time GSpacer(fw) depth

(a) running time (b) depth explored

Fig. 2. Best configurations: GSPACER versus SPACER.

Comparison with LINEARARBITRARY. In [28], the authors show that LINEAR-
ARBITRARY, to which we refer as LARB for short, significantly outperforms
SPACER on a curated subset of benchmarks from SV-COMP [24] competition.
At first, we attempted to compare LARB against GSPACER on the CHC-
COMP benchmarks. However, LARB did not perform well on them. Even the
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80

(
GSpacer(fw) depth

40

0 100 200 300 400 500 600 6 20 40 60 100 120 140
GSpacer(sc) time GSpacer(sc) depth

(a) running time (b) depth explored

Fig. 3. Comparing GSPACER with different interpolation tactics.

baseline SPACER has outperformed LARB significantly. Therefore, for a more
meaningful comparison, we have also compared SPACER, LARB and GSPACER
on the benchmarks from the artifact evaluation of [28]. The results are sum-
marized in Table2. As expected, LARB outperforms the baseline SPACER on
the safe benchmarks. On unsafe benchmarks, SPACER is significantly better
than LARB. In both categories, GSPACER dominates solving more safe bench-
marks than either SPACER or LARB, while matching performance of SPACER
on unsafe instances. Furthermore, GSPACER remains orders of magnitude faster
than LARB on benchmarks that are solved by both. This comparison shows
that incorporating local reasoning with global guidance not only mitigates its
shortcomings but also surpasses global data-driven reasoning.

Table 2. Comparison with LARB.

Bench  SPACER LARB GSPACER VB

safe unsafe safe unsafe safe unsafe safe unsafe
PLDI18 216 68 270 65 279 68 284 68

6 Related Work

The limitations of local reasoning in SMT-based infinite state model checking
are well known. Most commonly, they are addressed with either (a) different
strategies for local generalization in interpolation (e.g., [1,6,19,23]), or (b) shift-
ing the focus to global invariant inference by learning an invariant of a restricted
shape (e.g., [9,14-16,28]).

Interpolation Strategies. Albarghouthi and McMillan [1] suggest to minimize the
number of literals in an interpolant, arguing that simpler (i.e., fewer half-spaces)
interpolants are more likely to generalize. This helps with myopic generalizations
(Fig. 1(a)), but not with excessive generalizations (Fig.1(b)). On the contrary,
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Blicha et al. [6] decompose interpolants to be numerically simpler (but with more
literals), which helps with excessive, but not with myopic, generalizations. Decid-
ing locally between these two techniques or on their combination (i.e., some parts
of an interpolant might need to be split while others combined) seems impos-
sible. Schindler and Jovanovic [23] propose local interpolation that bounds the
number of lemmas generated from a single POB (which helps with Fig. 1(c)), but
only if inductive generalization is disabled. Finally, [19] suggests using external
guidance, in a form of predicates or terms, to guide interpolation. In contrast,
GSPACER uses global guidance, based on the current proof, to direct different
local generalization strategies. Thus, the guidance is automatically tuned to the
specific instance at hand rather than to a domain of problems.

Global Invariant Inference. An alternative to inferring lemmas for the inductive
invariant by blocking counterexamples is to enumerate the space of potential
candidate invariants [9,14-16,28]. This does not suffer from the pitfall of local
reasoning. However, it is only effective when the search space is constrained.
While these approaches perform well on their target domain, they do not gener-
alize well to a diverse set of benchmarks, as illustrated by results of CHC-COMP
and our empirical evaluation in Sect. 5.

Locality in SMT and IMC. Local reasoning is also a known issue in SMT, and, in
particular, in DPLL(T) (e.g., [22]). However, we are not aware of global guidance
techniques for SMT solvers. Interpolation-based Model Checking (IMC) [20,21]
that uses interpolants from proofs, inherits the problem. Compared to IMC,
the propagation phase and inductive generalization of IC3 [7], can be seen as
providing global guidance using lemmas found in other parts of the search-space.
In contrast, GSPACER magnifies such global guidance by exploiting patterns
within the lemmas themselves.

I1C3-SMT-based Model Checkers. There are a number of IC3-style SMT-based
infinite state model checkers, including [11,17,18]. To our knowledge, none
extend the IC3-SMT framework with a global guidance. A rule similar to Subsume
is suggested in [26] for the theory of bit-vectors and in [4] for LRA, but in both
cases without global guidance. In [4], it is implemented via a combination of syn-
tactic closure with interpolation, whereas we use MBP instead of interpolation.
Refinement State Mining in [3] uses similar insights to our Subsume rule to refine
predicate abstraction.

7 Conclusion and Future Work

This paper introduces global guidance to mitigate the limitations of the local rea-
soning performed by SMT-based IC3-style model checking algorithms. Global
guidance is necessary to redirect such algorithms from divergence due to persis-
tent local reasoning. To this end, we present three general rules that introduce
new lemmas and POBs by taking a global view of the lemmas learned so far. The
new rules are not theory-specific, and, as demonstrated by Algorithm 5, can
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be incorporated to IC3-style solvers without modifying existing architecture.
We instantiate, and implement, the rules for LTA in GSPACER, which extends
SPACER.

Our evaluation shows that global guidance brings significant improvements
to local reasoning, and surpasses invariant inference based solely on global rea-
soning. More importantly, global guidance decouples SPACER’s dependency on
interpolation strategy and performs almost equally well under all three inter-
polation schemes we consider. As such, using global guidance in the context of
theories for which no good interpolation procedure exists, with bit-vectors being
a primary example, arises as a promising direction for future research.
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