Skip to main content

Formally Verifying Proofs for Algebraic Identities of Matrices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12236))

Abstract

We consider proof certificates for identities of rectangular matrices. To automate their construction, we introduce an algebraic framework and supply explicit algorithms relying on non-commutative Gröbner bases. We address not only verification, but also exploration and reasoning towards establishing new identities and even proving mathematical properties. Especially Gröbner-driven elimination theory navigates us to insightful conclusions. We present several applications, that is efficiently formalized proofs for important identities of matrices: cancellation properties of triple products with Moore–Penrose pseudoinverses, a generalized Sherman–Morrison–Woodbury formula and an automated derivation of feedback loops in the famous Youla controller parametrization from control theory.

For actual computations we employ the open source computer algebra system Singular which is used as a backend by systems like SAGE and OSCAR. The non-commutative extension Letterplace provides users with all the required functionality. Singular has numerous conversion tools and supports various standards. Therefore, it can facilitate the integration with existing theorem provers.

Supported by DFG TRR 195 “Symbolic Tools in Mathematics and their applications”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  2. Chenavier, C., Hofstadler, C., Raab, C.G., Regensburger, G.: Compatible rewriting of noncommutative polynomials for proving operator identities. https://arxiv.org/abs/2002.03626 (2020)

  3. Damm, T., Wimmer, H.K.: A cancellation property of the Moore-Penrose inverse of triple products. J. Aust. Math. Soc. 86(1), 33–44 (2009)

    Article  MathSciNet  Google Scholar 

  4. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-3 – A computer algebra system for polynomial computations (2020). http://www.singular.uni-kl.de

  5. Deng, C.Y.: A generalization of the Sherman-Morrison-Woodbury formula. Appl. Math. Lett. 24(9), 1561–1564 (2011)

    Article  MathSciNet  Google Scholar 

  6. Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp. 42–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-4_3

    Chapter  MATH  Google Scholar 

  7. Helton, J., Kronewitter, F.: Computer algebra in the control of singularly perturbed dynamical systems (1999). http://math.ucsd.edu/~ncalg/DELL/SingPert/singpertcdc99.pdf

  8. Hofstadler, C., Raab, C.G., Regensburger, G.: Certifying operator identities via noncommutative Gröbner bases. ACM Commun. Comput. Algebra 53, 49–52 (2019)

    Article  MathSciNet  Google Scholar 

  9. Joswig, M., Fieker, C., Horn, M., et al.: The oscar project (2020). https://oscar.computeralgebra.de

  10. Kronewitter, F.D.: Using noncommutative Gröbner bases in solving partially prescribed matrix inverse completion problems. Linear Algebra Appl. 338(1–3), 171–199 (2001)

    Article  MathSciNet  Google Scholar 

  11. Levandovskyy, V., Abou Zeid, K., Schönemann, H.: Singular: Letterplace – A singular 4-1-3 subsystem for non-commutative finitely presented algebras (2020). http://www.singular.uni-kl.de

  12. Mora, T.: Groebner bases in non-commutative algebras. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 150–161. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51084-2_14

    Chapter  Google Scholar 

  13. Mora, T.: An introduction to commutative and non-commutative Gröbner bases. Theor. Comput. Sci. 134, 131–173 (1994)

    Article  Google Scholar 

  14. Mora, T.: Solving Polynomial Equation Systems IV: vol. 4. Buchberger Theory and Beyond. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  15. Pritchard, F.L.: The ideal membership problem in non-commutative polynomial rings. J. Symb. Comput. 22(1), 27–48 (1996)

    Article  MathSciNet  Google Scholar 

  16. Raab, C.G., Regensburger, G., Poor, J.H.: Formal proofs of operator identities by a single formal computation. https://arxiv.org/abs/1910.06165 (2019)

  17. Stein, W., et al.: Sage Mathematics Software. The Sage Development Team (2020)

    Google Scholar 

  18. Wavrik, J.J.: Rewrite rules and simplification of matrix expressions. Comput. Sci. J. Moldova 4(3), 360–398 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Youla, D.C., Jabr, H.A., Bongiorno, J.J.: Modern Wiener-Hopf design of optimal controllers. II: the multivariable case. IEEE Trans. Autom. Control 21 319–338 (1976)

    Google Scholar 

  20. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Eva Zerz (Aachen) and Bernd Sturmfels (Leipzig) for fruitful discussions. We also thank Mariia Anapolska and Sven Gross for carefully reading preliminary versions of this article. The authors have been supported by Project II.6 of SFB-TRR 195 “Symbolic Tools in Mathematics and their Applications” of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonard Schmitz or Viktor Levandovskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmitz, L., Levandovskyy, V. (2020). Formally Verifying Proofs for Algebraic Identities of Matrices. In: Benzmüller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53518-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53517-9

  • Online ISBN: 978-3-030-53518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics