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Abstract

Building a large library of mathematical knowledge is a complex and labour-intensive

task. By examining current libraries of mathematics, we see that the human effort put

in building them is not entirely directed towards tasks that need human creativity.

Instead, a non-trivial amount of work is spent on providing definitions that could

have been mechanically derived.

In this work, we propose a generative approach to library building, so definitions

that can be automatically derived are computed by meta-programs. We focus our

attention on libraries of algebraic structures, like monoids, groups, and rings. These

structures are highly inter-related and their commonalities have been well-studied

in universal algebra. We use theory presentation combinators to build a library of

algebraic structures. Definitions from universal algebra and programming languages

meta-theory are used to derive library definitions of constructions, like homomor-

phisms and term languages, from algebraic theory presentations. The result is an

interpreter that, given 227 theory expressions, builds a library of over 5000 defini-

tions. This library is, then, exported to Agda and Lean.
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Chapter 1

Introduction

A large library of formalized, ready-to-use mathematics has long been the pursuit

of mathematicians and computer scientists. The influential QED manifesto [Boyer

et al., 1994], released in 1994, envisioned a library in which all mathematics is formal-

ized and rigorously checked. The QED manifesto believed in one-formalization-fits-all

approach to building this library. Diversity in mathematical formalizations was a big

obstacle towards realizing the library described by QED. There was not an agree-

ment even on which foundation to use for formalizing all of mathematics [Kohlhase

and Rabe, 2016]. Since then, mathematical knowledge management (MKM) has be-

come an active area of research framing a new vision for a large math library. The

universal digital math library (UDML), described in [Farmer, 2004], is a collection of

heterogeneous, intercommunicating systems and building this library is described as

a grand challenge facing MKM.

Despite the many efforts dedicated to building math libraries, a large universal

library has not become a reality.1 One reason is that developing and maintaining

1However, in 2020, the mathlib team is making serious inroads in that direction [Team, 2019] .

1



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

libraries of mathematics requires a lot of person-power. One would want to believe

that this human effort is put into the creative work of formalizing new pieces of

knowledge. By examining current libraries of theorem provers, we know this is not

always the case. The algebraic hierarchy has been formalized various times in different

libraries, sometimes even within the same system [Geuvers et al., 2002; Garillot et al.,

2009; Spitters and van der Weegen, 2010; Pottier, 2019]. In every formalization, the

library developers had to provide all the definitions of the structures in the hierarchy

and related constructions such as homomorphisms. We want to add more automation

to the process of building libraries. We identify some sources of redundancy that can

be eliminated and use the theory of Monoid as our running example. Monoid is an

algebraic structure, a member of the algebraic hierarchy, that describes algebras with

a carrier set and an associative binary operation over that set that has an identity

element.

Handwritten Boilerplate. Monoid is defined in [Jacobson, 1985] as:

A monoid is a triple (M,p,1) in which M is a non-vacuous set, p is an

associative binary composition (or product) in M , and 1 is an element of

M such that p(1, a) = a = p(a,1) for all a ∈M

The definition of Monoid is followed by the definition of its homomorphism as:

If M and M ′ are monoids, then a map η of M into M ′ is called a homo-

morphism if

η(ab) = η(a)η(b), η(1) = 1, a, b ∈M

2
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More monoid-related constructions are defined, like submonoids, and quotient monoids.

The same constructions are defined for Group and Ring.

Formal systems2 present algebraic structures using axiomatic theories. Monoid

and its notion of homomorphism are presented axiomatically in a minimal (imaginary)

computer language as follows:

theory Monoid {

A : type

e : A

op : A → A → A

lun i t : {x : A} → op e x = x

run i t : {x : A} → op x e = x

assoc : {x y z : A} →

op x ( op y z ) = op ( op x y ) z

}

theory MonoidHom {

M1, M2 : Monoid

hom : M1.A → M2.A

pres−e : hom (M1. e ) = M2. e

pres−op : ( x y : M1.A) →

hom (M1. op x y ) =

M2. op (hom x) (hom y) }

Let us now define Group and Group homomorphism within the same language:

2We use the term formal systems to refer to all computer systems with logical foundations, be it
automatic theorem prover (ATP), interactive theorem prover (ITP), specification system, or others.

3



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

theory Group {

A : type

e : A

op : A → A → A

inv : A → A

lunit_e : {x : A} → op e x = x

runit_e : {x : A} → op x e = x

l i n v e r s e : {x : A} →

op x ( inv x ) == e

r i n v e r s e : {x : A} →

op ( inv x ) x == e

assoc : {x y z : A} →

op x ( op y z ) = op ( op x y ) z }

theory GroupHom {

G1, G2 : Group

hom : G1 .A → G2.A

pres−e : hom (G1 . e ) = G2 . e

pres−op : ( x y : G1 .A) →

hom (G1 . op x y ) =

G2 . op (hom x) (hom y)

pres−inv : ( x : G1 .A) →

hom (G1 . inv x ) =

G2 . inv (hom x) }

Notice how the two definitions of homomorphisms are similar and depend uni-

formly on the details of the theory. This observation is not specific to Monoid and

Group. Generally, the homomorphism of a theory Γ is a mapping between two in-

stances (algebras) of Γ and has 3 components: 1) the two instances of the theory,

2) the function hom that maps the carriers of the 2 instances, and 3) a preservation

axiom pres-op for each operation symbol op. The preservation axioms follow the

pattern

{x1 .. xn ∈ A1} → hom (op1 x1 .. xn) = op2 (hom x1) .. (hom xn)

where A1 is the carrier of the first instance and the domain of the hom function. op1

and op2 are the instances of the function symbol op residing in the first and the second

instances, respectively.

4
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This definition of homomorphism is given to us by universal algebra [Whitehead,

1898], which studies commonalities between algebraic structures and define their re-

lated constructions. It defines an algebra as [McKenzie et al., 1987]3:

An algebra is an ordered pair ⟨A,F ⟩ such that A is a nonempty set and

F = ⟨Fi ∶ i ∈ I⟩ where Fi is a finitary operation on A for each i ∈ I. A is

called the universe of ⟨A,F ⟩, Fi is referred to as a fundamental or basic

operation of ⟨A,F ⟩ for each i ∈ I, and I is called the index set of the set

of operation symbols for ⟨A,F ⟩.

Libraries formalizing the algebraic hierarchy would contain axiomatic theories de-

scribing algebras and their related constructions, like homomorphisms, subalgebras,

quotient algebras, term languages, etc. For every one of those constructions, universal

algebra provides a uniform definition in terms of the components of the theory. It

gives us the meta theory and the abstractions that enables us to instantiate those

definitions for every theory. This suggests that we can have a program generate those

constructions from the individual theories, instead of having library developers pro-

vide them manually. As there are many algebraic structures in mathematics and

computer science and many constructions for each of them, this automation can save

significant human effort. In this work, we provide a framework for generating these

constructions.

Variabilities in Theory Presentations. Universal algebra gives us the right ab-

stractions to implement the generation framework, but we need to start with a choice

of a theory presentation from which the constructions will be computed. We have
3An axiomatic theory that describes an algebra will also have a field in the ordered pair for the

axioms describing its properties.

5
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shown the definition of Monoid in an imaginary language. But formal systems have

different ways to define Monoid. In Figure 1.1, we show the definitions of Monoid in

5 different language. The 5 definitions refer to the same mathematical concept, but

they look different. Each one has all the components needed to describe a Monoid.

Yet, they also reflect the design decisions taken by the library developers. For exam-

ple, the Haskell and MMT definitions exposes the fact that Monoid in these libraries

is defined as an extension of Semigroup . This forces users of the definition to deal

with Semigroup theory even if their formalization does not need to. The two Coq

definitions takes two extreme views to the bundling problem [Team, 2019; Al-hassy

et al., 2019; Spitters and Van der Weegen, 2011] by either having the carrier and

all the function symbols as arguments (the first definition) or having all elements

of the theory as declarations of a record type (the second definition). The formal-

ization of the Algebraic hierarchy in the Agda standard library is based on setoids

(sets equipped with an equivalence relation). Therefore, we find an extra field of the

definition of Monoid corresponding to the equivalence relation _ ≈ _.

Having design decisions embedded into the library definitions is a big usability

problem. Users won’t be able to use them in their projects unless they employ the

same decisions. Otherwise, they are forced to redefine them. That leads to many

libraries formalizing the same knowledge, even in the same language. Coq has at

least 4 different algebra libraries [Garillot et al., 2009; Geuvers et al., 2002; Spitters

and van der Weegen, 2010; Pottier, 2019]. In [Garillot et al., 2009], the authors

acknowledge this situation saying:

“In spite of this body of prior work, however, we have found it difficult to

make practical use of the algebraic hierarchy in our project to formalize

6
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Haskell

class Semigroup a =>
Monoid a

where
mempty :: a
mappend :: a -> a -> a
mappend = (<>)
mconcat :: [a] -> a
mconcat =
foldr mappend mempty

Lean

class monoid (M : Type u)
extends semigroup M,

has_one M :=
(one_mul : ∀ a : M,

1 * a = a)
(mul_one : ∀ a : M,

a * 1 = a)

Coq

class Monoid {A : type}
(dot : A → A → A)
(one : A) : Prop := {
dot_assoc :
forall x y z : A,
(dot x (dot y z)) =
dot (dot x y) z

unit_left : forall x,
dot one x = x

unit_right : forall x,
dot x one = x

}
Alternative Definition:
Record monoid := {
dom : Type;
op : dom -> dom -> dom
where "x * y" := op x y;

id : dom where "1" := id;
assoc : forall x y z,
x * (y * z) = (x * y) * z;

left_neutral : forall x,
1 * x = x;

right_neutal : forall x,
x * 1 = x;

}

Agda

record Monoid c ` :
Set (suc (c ⊔ `)) where

infixl 7 _●_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier `
_●_ : Op2 Carrier
isMonoid : IsMonoid _≈_ _●_ ε

record IsMonoid (● : Op2) (ε : A)
: Set (a ⊔ `) where
field
isSemigroup : IsSemigroup ●
identity : Identity ε

open IsSemigroup isSemigroup public

identityl : LeftIdentity ε ●
identityl = proj1 identity
identityr : Rightdentity ε ●
identityr = proj2 identity

MMT

theory Monoid : ?NatDed =
includes ?Semigroup
unit : tm u # e
unit_axiom : ⊢ ∀ [x] = x * e = x

theory Semigroup : ?NatDed =
u : sort
comp : tm u → tm u → tm u
# 1 * 2 prec 40

assoc : ⊢ ∀ [x, y, z]
(x * y) * z = x * (y * z)

assocLeftToRight :
{x,y,z} ⊢ (x * y) * z

= x * (y * z)
= [x,y,z]
allE (allE (allE assoc x) y) z

assocRightToLeft :
{x,y,z} ⊢ x * (y * z)

= (x * y) * z
= [x,y,z] sym assocLR

Figure 1.1: Representation of Monoid theory in different languages.
7
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the Feit-Thompson Theorem in the Coq system."

We seek to use a generative approach to building libraries that would compute

derivable information from a theory presentation. We want to abstract over design

decisions, so our generated definitions become accessible to more platforms and user

projects.

1.1 Research Problem

We want to enhance the process of library development. Instead of having library

developers provide every piece of detail in the library, we want to employ a generative

approach to the development. The library developers would be providing expres-

sions describing the definitions to be included. Our generator would produce those

definitions.

We believe a generative approach is possible because definitions within a library

are written in formal languages which provide uniform syntax for expressing informa-

tion and universal algebra provides the definitions of many constructions in terms of

the components of the algebraic structure.

A generative approach would have the following benefits:

• Reduce the human effort put into producing standard knowledge by internaliz-

ing this knowledge in the generator.

• Enhance the library maintainability. Library developers write generative algo-

rithms to create and manipulate definitions. Changing design decisions leads

to changes in the generative algorithm.

8
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Figure 1.2: Example of deriving information in Haskell.
source: Xest Window Manager Project on github.

• Increase the usability of library definitions by reducing the amount of design

decisions embedded into them.

We are inspired by the deriving mechanism in Haskell. When defining a new

datatype, a Haskell user can ask for some utilities to be readily available for them to

use on that type. The Haskell compiler would then generate these functions for the

user. Some of these are basic, like equality and printer, but the community has gone

as far as giving users the chance to define their own templates for deriving instances,

knows as the deriving-via technique [Blöndal et al., 2018]. A pretty impressive ex-

ample of deriving information is shown in Figure 1.2. Also, the Lens library [Lens

Library, 2020] in Haskell, uses Template Haskell [Sheard and Jones, 2002] for the

same purpose.

9
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In this work, we address the following research questions:

RQ1 Can the uniformity provided by universal algebra be captured by a meta pro-

gram that generates parts of an algebra library?

RQ2 What are the preconditions for generating this new information?

RQ3 What design decisions can be abstracted away and which can be reintroduced

after the generation of new constructs?

RQ4 How would this affect the activity of library building?

RQ5 Can these generative algorithms be extended beyond the structure captured by

universal algebra?

1.2 Contributions

These are the principal contributions of the thesis:

• Highlight the redundancy in libraries formalizing the algebraic hierarchy (in

Chapter 4).

• Build a library of over 200 theories describing the algebraic hierarchy, imple-

mented using the combinators in [Carette et al., 2019] (Chapter 7).

• Compile a list of structures that can be generated from theory presentations

(Section 3.2).

• Generate some of these constructions in Tog, a small implementation of a de-

pendently typed language, in the style of Agda, Coq and Lean (Chapter 9).

• Export this implementation to Agda and Lean, (Chapter 10).

10
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1.3 Broader Context

The Tetrapod project [Carette et al., 2020a] envisions a software system in which 5

aspects of doing mathematics are integrated. These 5 aspects are organization, infer-

ence, computation, narration, and concretization. The system will have a tetrapodal

structure with knowledge organization in the center and each of the 4 modes making

one of the legs of the tetrapod, as shown in Figure 1.3.

Organization

Computation

InferenceNarration

Concretization

Figure 1.3: The tetrapodal structure of a mathematical software system that
supports the five aspects of doing mathematics.

The organization aspect is reflected in the efforts of building libraries of math-

ematics. The Tetrapod project supports building a large library of mathematical

knowledge organized as theory graph of biform theories [Carette et al., 2018]. The

theory graph structure connects theories by describing how the symbols of a source

theory can be interpreted in the target one. In a graph, one can express facts like

‘a group is a monoid’ and that ‘monoid and additive monoid are isomorphic’. We

explain theories, morphisms and graphs in more details in Chapter 2. Ideally, we

want the nodes of the theory graph to be biform theories [Carette et al., 2018] which

connect axiomatic theories (used by theorem provers) and algorithmic theories (used

by computer algebra systems) using meaning formulas. This way communication

11
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between reasoning and computation systems becomes possible. Communication can

take the form of reasoning about algorithmic theories or using results of computer

algebra systems in theorem provers.

This work contributes to the Tetrapod project by investigating how a generative

approach can contribute to building the library at the center of the tetrapod. We

focus on building the algebraic hierarchy and the constructions related to the theories

in it, mainly as described by universal algebra. The library we build has a theory

graph structure, but the nodes are axiomatic, rather than biform, theories.

1.4 Publications

The work on this thesis lead to the following publications; the following describe my

role in these:

• [Carette et al., 2018]

Contributed to writing the project description of biform theories, mainly

the motivation. The project description appeared in the proceedings of

CICM 2018.

• [Carette et al., 2019]

Contributed to an extended paper discussing the MathScheme combina-

tors that were initially published in [Carette and O’Connor, 2012]. The

extended paper has been submitted to the Journal of Automated Reason-

ing. I contributed to surveying related work and framing the novelty of

the work with respect to this related work, developing the type systems for

12
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the combinators, and implementing them as discussed here in Section 8.

I used this implementation to build a revised version of the MathScheme

library.

• [Rabe and Sharoda, 2019]

Used the diagram infrastructure developed in MMT [Rabe and Kohlhase,

2013a] and described in the paper to implement the MathScheme combi-

nators described in [Carette et al., 2019]. Since the combinators compute

a theory and some arrows, we considered treating their inputs and outputs

as diagrams. This was an earlier attempt to implement the combinators

and also the first time diagrams combinators in MMT were tested. There

were promising results, but they did not scale up since — at that time —

there were problems with how MMT supports the diagram combinators.

• [Sharoda, 2019]

Extended abstract submitted to the Doctoral Program at CICM 2019. The

abstract was presented in the conference, but not refereed.

• [Carette et al., 2020b]

Presented redundancy in existing libraries and highlighted some of the

problems we tackle in this thesis. Some of the main results of this thesis

are published in the paper. I collected the examples of redundancy, and

implemented and tested the framework.

• [Bercic et al., 2020] (preprint)

13
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Contributed to surveying and categorizing how different mathematics soft-

ware organize knowledge. Knowledge organization is one of 5 categories

of mathematics software the paper surveys. The other 4 are inference,

computation, concretization, and narration.

1.5 Outline

We start by introducing some background knowledge in Chapter 2. We introduce

universal algebra and the constructions of interest to this work in Chapter 3. We give

in Chapter 4 examples of how some of these constructions are currently presented

in libraries of formal systems, highlighting the redundancies that can be avoided. In

Chapter 5, we introduce the methodology we use to enhance the library development

process. We present Tog, the language and type checker that we use to develop our

framework in Chapter 6. We discuss the combinators we use to build our library

in Chapter 7, with the implementation discussed in Chapter 8. Chapter 9 discusses

our generative framework that computes the constructions related to a specific the-

ory. The theories and the generated constructions are exported to Agda and Lean.

We discuss the exporter in Chapter 10. We present related work in Chapter 11.

Conclusions and future work are discussed in Chapter 12.

14



Chapter 2

Background

Our ideas and implementation are based on dependent type theory (DTT). It is the

meta theory for this work. We introduce it in Section 2.1 and define the notion of a

theory and a context in Section 2.2.

Part of our work is building a library of axiomatic theories. The library is orga-

nized as a theory graph, in which theories are connected via morphisms. We intro-

duce morphisms in Section 2.3 and discuss theory graphs and different strategies for

building them in Section 2.4. To build the library we use combinators motivated by

category theory, so we give a brief introduction for that in Section 2.5. Two of the con-

structions we generate are not typically defined within universal algebra texts. These

are relational interpretations and staged terms, used in multi-staged programming.

We give details on these in Sections 2.6 and 2.7, respectively.

15
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2.1 Dependent Type Theory

Dependent type theory (DTT) is a version of type theory that enables writing types

like Π x : A ⋅ M x, where the type M x depends on the value of x, i.e. M : A → Type.

Having types that depend on values adds to the expressiveness of the logic. A com-

mon example for introducing dependent types is the type of a vector of n elements

of a type A. In most programming languages, the type of this vector is defined in

terms of the type of its elements as Vec A. Using dependent types, the type of a

vector can depend on both the type of its elements and also its length, written as

Π n : N ⋅ Vec A n.

Having this extra information in the type allows detection of some errors, like

accessing out of bounds elements, during type checking.

DTT is seen by many as a convenient foundation for representing mathemat-

ics [Gross et al., 2020; Bauer, 2020; Shulman, 2010]. It lets one express ideas fre-

quently used in mathematics. Statements like "the non-zero element", operations

such as projecting the first unit vector in a specific dimension, or representation of a

family of sets. The constructive nature of DTT adds the advantage that proofs can

be run as programs.

Figures 2.1 and 2.2 shows the grammar and typing rules of a small version of

dependent type theory with Π- and Σ-types like the one we use. The terms permissible

in this type theory are variables, λ-abstractions, function applications, dependent type

pairs, and their projections.

Σ-types. Types of dependent pairs, in which the type of the second element depends

on value of the first one, are referred to as Σ-types. For example, Σ n : N ⋅ Vec A n

16
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t ::= terms:
| x variable
| λ(x : T ).t abstraction
| t t application
| (t,t) typed pair
| t.1 first projection
| t.2 second projection

T ::= types:
| X type/ family variable
| Πx : T .T dependent product type
| T t type family application
| Σx : T .T dependent sum type

K ::= kinds:
| ∗ kind of proper types
| Πx : T .K kind of type families

Γ ::= contexts:
| ∅ empty context
| Γ, x : T term variable binding
| Γ, X : K type variable binding

1

Figure 2.1: Grammar for a dependently typed language with dependent sum types.
Adapted from [Aspinall and Hofmann, 2005].

x ∶ T ∈ Γ Γ ⊢ T ∶ ∗

Γ ⊢ x ∶ T

Γ ⊢ S ∶ ∗ Γ, x ∶ S ⊢ t ∶ T

Γ ⊢ (λx ∶ S ⋅ t) ∶ Πx ∶ S ⋅ T

Γ ⊢ t1 ∶ Πx ∶ S ⋅ T Γ ⊢ t2 ∶ S

Γ ⊢ t1t2 ∶ T [x↦ t2]

Γ ⊢ t ∶ T Γ ⊢ T ≡ T ′ ∶ ∗

Γ ⊢ t ∶ T ′

Γ ⊢ Σx ∶ S ⋅ T ∶ ∗ Γ ⊢ t1 ∶ S Γ ⊢ t2 ∶ T [x↦ t1]

Γ ⊢ (t1, t2) ∶ Σx ∶ S ⋅ T

Γ ⊢ t ∶ Σx ∶ S ⋅ T

Γ ⊢ t.1 ∶ S

Γ ⊢ t ∶ Σx ∶ S ⋅ T

Γ ⊢ t.2 ∶ T [x↦ t.1]

Figure 2.2: Typing rules for a dependently typed language with dependent sum
types. Adapted from [Aspinall and Hofmann, 2005].

17
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refers to the type of a pair that contains the value of n : N in the first position and

a vector of length n in the second one.

Telescopes. The concept of Σ types is generalized into that of telescopes or, equiv-

alently, dependently-typed records [Pollack, 2002]. A telescope T is defined as

T ≡ [x1 ∶ A1][x2 ∶ A2(x1)] ... [xk ∶ Ak(x1, ...,xk−1)] (2.1.1)

i.e. a sequence of typed name declarations where the type of later names can depend

on earlier ones. The type Vec A n represented as a telescope would be written as

[A : Type][n : N][Vec A n].

Contexts. In logic, a proposition is true if it is an axiom or is derivable from other

true propositions using inference rules. This is usually written as ϕ1...ϕn ⊢ ψ. In

categorical logic, instead of talking about propositions, one talks about contexts.

[Pitts, 2001] defines a context as:

A context, Γ, is a finite list [x1 ∶ A1, ..., xn ∶ An] of (variable,sort) pairs,

subject to the condition that x1, ..., xn are distinct.

When using dependent types, the context becomes a telescope, where every type in

the list can contain reference variables before it as described by Equation 2.1.1. The

statement Γ ⊢ ψ means that the type judgement ψ follows from the context Γ. The

concatenation of two contexts Γ1 and Γ2 is noted by Γ1; Γ2.

18
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2.2 Theories

A theory Γ in some logic is defined as the tuple (S,F,A) such that

• S is a set of sorts

• F is a set of function symbols.

• A is the set of formulas that hold in Γ.

The sorts in S and the function symbols in F constitute the language of the theory.

The set A is closed under logical consequence and usually infinite. A theory presenta-

tion of a theory Γ includes a finite set of sorts, a finite set of function symbols, and a

finite subset of A containing its generating axioms, i.e. axioms from which formulas

that hold in Γ can be derived using inference. Note that the same theory can have

different theory presentations. In this work, as is traditionally the case, we use the

term theory to refer to theory presentations.

Theories as Contexts With dependent types and the Curry-Howard correspon-

dence in place, the distinction between the three components of an axiomatic theory,

sorts, function symbols, and axioms, is not needed anymore. Instead, a theory is seen

as a Σ-type, dependently-typed context, or a telescope as described by Equation 2.1.1.

For example, the axiomatic formalization of Monoid as a Σ type is:

Σ A : Type ⋅

Σ op : A → A → A ⋅

Σ e : A ⋅

Σ lunit : {x : A} → op e x = x ⋅

Σ runit : {x : A} → op x e = x ⋅
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Σ assoc : {x y z : A} → op x (op y z) =

op (op x y) z

where we assume that Type is the universe of all types and equality is provided by

the underlying logic. The same theory can be describe as a telescope as follows:

Monoid = [A : Type, op : A → A → A, e : A,

lunit : {x : A} → op e x = x,

runit : {x : A} → op x e = x,

assoc : {x y z : A} → op x (op y z) = op (op x y) z]

This definition induces a context from which the type op e e = e can be defined,

which is noted as Monoid ⊢ triv : op e e = e

A theory presentation is well-typed if every declaration c:t is well-typed given its

context. The formation rules for theory presentations are given in Figure 2.3, where

∣Γ∣ refers to the list of symbols defined in the context Γ.

∣∅∣ = ∅ ∣Γ ; x ∶ σ∣ = ∣Γ∣ ∪ {x}

∅ ctx

Γ ctx σ ∉ ∣Γ∣ Γ ⊢ κ ∶ ∗

(Γ ; σ ∶ κ) ctx

Γ ctx x ∉ ∣Γ∣ Γ ⊢ σ ∶ κ ∶ ∗

(Γ ; x ∶ σ) ctx

Figure 2.3: Formation rules for contexts as given in [Carette et al., 2019]
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2.3 Theory Morphisms

Morphisms are used to capture the structure of mathematics, by describing how

theories are related to each other. In mathematical texts, a theorem proved for an

arbitrary Monoid can be used when considering an arbitrary Group without extra

work. Formally, this can be done if a meaning preserving morphism between Monoid

and Group exists. The morphism specifies how results in Monoid can be interpreted

in Group.

A morphism [v] ∶ Γ → ∆ consist of a list of assignments [v], a source theory

Γ, and a target theory ∆. [v] assigns to every symbol1 x ∶ σ in Γ a term r ∶ σ[v]

in ∆. A term t in the language of Γ can be translated into a term t′ in the lan-

guage of ∆ using substitution induced by the assignment [v], such that t′ = t[v].

Using the morphism [op ↦ + ; e ↦ 0] : Monoid→ AdditiveMonoid we are able

to interpret the expression (op e x) in Monoid as (+ 0 x) in AdditiveMonoid using

substitution.

The formation rules for views are given in Figure 2.4.

∆ ctx

[] ∶ ∅→∆

(Γ ; x ∶ σ) ctx [v] ∶ Γ→∆ ∆ ⊢ r ∶ σ[v]

[v, x↦ r] ∶ (Γ ; x ∶ σ)→∆

Figure 2.4: Formation rules for morphisms as given in [Carette et al., 2019]

It is worth mentioning that the mapping is only a part of the morphism. A

morphism consists of the source and destination theories as well as the mapping, i.e.

the same substitution can induce different morphisms as the source and target are

modified.

Connecting theories have been known for a long time in logic [Tarski et al., 1953;
1The symbols of a theory are the names of its declarations.
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Enderton, 1972] under the name theory interpretations. The same name is used by

IMPS [Farmer et al., 1993; Farmer, 1994]. Clear [Burstall and Goguen, 1980], OBJ,

and their successors used the term morphisms, maybe because of using category

theory for semantics. The term view has also been used to refer to the same concept by

Maude, MathScheme, and MMT. In this work, we use the terms views and morphisms

interchangeably.

We distinguish between three types of morphisms.

2.3.1 Identity Morphism

If [v] ∶ Γ → ∆ is an identity morphism, then [v] maps every symbol x ∈ ∣Γ∣ to itself

such that x[v] = x. While it is common to name source and target of identities

with the same name, we do not do that here as Γ and ∆ are two different theory

presentations. The identity between them means that symbols in Γ are interpreted

the same way in ∆.

Identity morphisms exist between two theories if the source is included verbatim

in the destination, like in the case when describing a morphism from Monoid to Group.

It is the simplest form of morphisms and allow transport of results without the need

to perform substitution.

2.3.2 Embedding

If [v] ∶ Γ→∆ is an embedding, then [v] maps every symbol x ∈ ∣Γ∣ to a symbol r ∈ ∣∆∣,

which is not necessarily itself. [v] is an injective mapping, and therefore is a bijection

onto its range.
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Consider for example, the following morphism from Magma to AdditiveMagma

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A ∶ Type

op ∶ A→ A→ A

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A ∶ Type

+ ∶ A→ A→ A

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

[A↦ A,op↦ +]

A term t ∈ Γ is transported to ∆ as t[v], i.e.: by applying the substitution [v] to

the term t. So if t = op x y, where x and y are terms of type A, then using the

morphism above it is transported to ∆ as (+ x y).

We refer to an embedding morphism as m̃, and therefore identity morphisms are

referred to as ĩd.

2.3.3 General Morphism

A morphism in its general form is defined in the beginning of this section. An example

is a morphism that flips a binary operation, i.e.: maps op x y to op y x

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A ∶ Type

op ∶ A→ A→ A

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A ∶ Type

op ∶ A→ A→ A

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

[A↦ A,op↦ flip op]

2.4 Theory Graph

One way to organize theories is using theory graphs. A theory graph is a directed

graph consisting of theories as nodes and morphisms as edges between them. It is

helpful in managing large libraries [Kohlhase et al., 2010].

In systems that are based on categorical semantics, a theory graph is seen as a

diagram in the category of theories and theory morphisms. Specware [Smith, 1999]
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Pointed0

Carrier Pointed

Magma+ PointedMagma+ RightUnital+

Magma PointedMagma RightUnital

Semigroup+ LeftUnital+ Unital+

Semigroup LeftUnital Unital

Monoid+

Monoid

Figure 2.5: Structure of the algebraic hierarchy up to Monoids

uses the keyword diagram to build them. The work in [Autexier et al., 2000], based

on CASL, refer to them as development graphs.

Organizing a library as a theory graph leverages the structure of mathematics by

relying on morphisms to connect the different concepts presented within the theories.

Compare a library defining the graph leading to Monoid as in Figure 2.5 to one

that defines it only in terms of its components, as in Section 2.2. The theory graph

provides more information which makes it more useful to library users. Theory graphs

also make it possible to modularize a formalization by adding definitions or proving

theorems within smaller modules (theories). Definitions and theorems are then made

available to different other theories by transporting them via morphisms.

Here we discuss two strategies for decomposing theories; little and tiny theories.
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2.4.1 Little Theories

The little theories approach is introduced in [Farmer et al., 1992]. The idea is to

ensure that if a statement s is proven in context Γ, then every statement in Γ is

required to prove s. In this case, we say Γ is the minimal axiomatization needed to

prove s. This implies that theorems are proved in different contexts based on the

amount of structure needed to prove them. In contrast, the big theory approach

would use a small set of big theories for proving all results2.

Using little theories increases the ability to reuse results. For example, if the

theorem op e e = e is proven in the theory Unital, it can be transported to all

theories that are connected to Unital via morphisms, like Monoid. On the other

hand, if it is proven in the theory Group, it cannot be transported to Monoid, because

all declarations in Group becomes part of the context for proving the theorem.

2.4.2 Tiny Theories

Tiny theories is a refinement of little theories. When building up a theory hierarchy

in tiny theories style, only one new piece of information is added at a time [Carette

et al., 2011b]. To make this clear, let us consider a library that has the theories

PointedMagma and Unital defined as follows.

2Or a medium-sized set of medium-sized theories
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theory PointedMagma = {

A : Type

e : A

op : A → A → A }

theory Unita l = {

A : Type

e : A

op : A → A → A

lun i t : {x : A} → op e x = x

run i t : {x : A} → op x e = x }

Defining Unital this way overlooks that in some cases one might want to define

a theory to describe structures with a carrier and a binary operation on it that has

only a right unit, like a theory with Integers as carrier and subtraction as the only

binary operation. One will then need to add a new theory that is similar to Unital

without the lunit declaration. Theorems proved in the context of Unital cannot be

used, even if they only depends on runit.

Using tiny theories, one would first define a LeftUnital theory adding the lunit

axiom to PointedMagma, a RightUnital theory adding runit axiom, and the theory

of Unital would be connected to both LeftUnital and RightUnital, creating more

connections and therefore, allowing more reuse of results. Systematically using tiny

theories to develop a large library leads to the need for support to diamond structures,

which we discuss in Chapter 7 based on the work in [Carette et al., 2019].

2.5 Category Theory3

Category theory is a foundational framework, like set and type theory, that is abstract

and structured enough to allow hidden commonalities of concepts to emerge.

3This section is based on [Pierce, 1990].

26



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

While set theory has elements of sets as the main concept, category theory is built

around the concept of morphisms. The source and target of a morphism are objects

in the category. Category theory is not concerned with the internal structure of the

objects, but rather by how they relate to other objects.

A category C consists of

• A collection of objects, ∣C∣

• For any two objects, a collection of morphisms between them. A morphism

between objects Γ and ∆ is presented as u ∶ Γ→∆.

• Operations assigning to every morphism its domain and codomain

• A composition function ⋅ assigning to each pair of morphisms u ∶ Γ → ∆ and

v ∶ ∆→ Φ, a morphism v ⋅ u ∶ Γ→ Φ, such that for any arrow w ∶ Φ→ Ω

w ⋅ (v ⋅ u) = (w ⋅ v) ⋅ u

i.e. (⋅) is associative.

• For every object Γ in C, an identity morphism idΓ ∶ Γ → Γ, such that for

u ∶ Γ→∆

idΓ ⋅ u = u ⋅ id∆ = u

i.e. idΓ is a left unit for (⋅) and id∆ is a right unit.

A diagram in a category C is a graph homomorphism between collection of vertices

and directed edges (the shape of the diagram) to objects and morphisms of C. Finite
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Γ

∆ Φ

k

i

j

Figure 2.6: A diagrammatic representation of a category

categories can be represented diagrammatically as in Figure 2.6. A diagram is said

to commute if for every pair of vertices, Γ and ∆, all paths from Γ to ∆ are equal,

i.e.: compose to the same arrow.

In the following we introduce two concepts related to categories that we use in

Chapter 7. These are pushouts and colimits. [nLab authors, 2020a] gives an intuition

of what a colimit is as:

“The intuitive general idea of a colimit is that it defines an object ob-

tained by sewing together the objects of the diagram, according to the

instructions given by the morphisms of the diagram"

A pushout is a special case of a colimit. In [nLab authors, 2020b], it is mentioned

that:

“A pushout is the colimit of the diagram ● ● ● "

The formal definitions of the two constructions are given as follows:

Colimits. Colimits are defined in terms of cocones. The definitions we present here

are adapted from [Sannella and Tarlecki, 2012].

A cocone over a diagram D is an object Φ and a family of morphisms u0 ∶
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∆0 → Φ, ..., un ∶ ∆n → Φ, where ∆0 ... ∆n are the objects in D, such that for ev-

ery morphism v ∶ ∆i → ∆j in D: uj ⋅ v = ui, i.e. the following diagram commutes
Φ

∆i ∆j

ui

v

uj
. The notation used to describe cocones is ⟨ui ∶ Φ→∆i⟩i≤n.

The colimit of a diagram is a cocone ⟨ui ∶ Φ → ∆i⟩i≤n such that for any cocone

⟨u′i ∶ Φ′ → ∆i⟩i≤n there is a unique morphism v ∶ Φ → Φ′ such that for every ui, the

following diagram commutes
Φ Φ′

∆i

v

ui

u′i

Pushouts. The pushout is the colimit of a diagramD that has exactly 3 objects and

2 morphisms. The morphisms need to have the same source. For a pair of morphisms

u1 ∶ Γ → ∆1 and u2 ∶ Γ → ∆2, the pushout is an object Φ and a pair of morphisms

v1 ∶ ∆1 → Φ and v2 ∶ ∆2 → Φ such that

• v1 ⋅ u1 = v2 ⋅ u2

• for morphisms w1 ∶ ∆1 → Ω and w2 ∶ ∆2 → Ω, there is a unique w ∶ Φ → Ω, such

that

– w ⋅ v1 = w1

– w ⋅ v2 = w2

– w1 ⋅ u1 = w2 ⋅ u2

The definition of the pushout is illustrated in Figure 2.7.
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Γ ∆2

∆1 Φ

Ω

u1

u2

v2
w2

v1

w1

w

Figure 2.7: Diagram illustrating the definition of a pushout

2.6 Relational Interpretation

The relational interpretation of an algebraic structure is a generalization of its ho-

momorphism [Reynolds, 1983] that defines a structure-preserving relation between

carriers of its algebras. For example the relational interpretation between two monoid

algebras M1 = (A1, op1, e1, ...) and M2 = (A2, op2, e2, ...) is a relation interp ∶ A1 → A2

such that:

interp e1 e2

interp x1 x2 ∧ interp y1 y2 → interp (op x1 y1) (op x2 y2)

Relational interpretations have been used in [Reynolds, 1983] to develop the ab-

straction theorem that connects meanings of expressions under different assignments

and in [Plotkin and Abadi, 1993] to explain parameteric polymorphism. They have

been applied to deduce theorems that apply to functions, given their polymorphic

type [Wadler, 1989; Algehed et al., 2020]. They are used extensively when working on

the semantics of programming languages, often refered to as logical relations [Crary,

2005]. Supporting proofs of logical relations has been considered a benchmark for

theorem provers in the revised POPLmark challenge [Abel et al., 2019].

30



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

2.7 Multi-Stage Programming

Meta-programming is the practice of writing meta programs that manipulate object

programs [Sheard, 2001; Sheard and Jones, 2002; Lilis and Savidis, 2019]. Meta and

object programs can be in the same or different languages. Generative programming

is one form of meta-programming in which the meta-program compiles into a program

of the object language. Therefore, the process of running the meta-program involves

at least two stages, compile and run-time.

The meta program might need to refer to code in the object language, like in the

case of making a call to a predefined function in the object language. In this case, the

meta program is deferring the evaluation of this code to a later stage. Also, a meta

program might need to evaluate a meta or object language expression that results in

an object code. In this case, the expression is evaluated in the current stage.

In our implementation, we define two stages s0 and s1.

data Stage : Set where

s0 : Stage

s1 : Stage

Staging an expression means adding annotation to its components indicating

which stage it should be evaluated in, Now or Later.

data Staged (A : Set) : Set where

Now : A -> Staged A

Later : Comp A s1 -> Staged A

Annotating an expression of type A with the Now constructor indicates that it will

be evaluated in the current stage and a value of type A is promised to exist. On the
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other hand, if the evaluation is deferred to Later, then the expression will have the

type Comp, for computation.

data Comp (A : Set) (s : Stage) : Set where

Computation : Choice -> CodeRep A s -> Comp A s

Computations encapsulate quoted fragments of code. The CodeRep function as-

signs a stage s0 or s1 to the expression.

data Wrap (A : Set) : Set where

Q : A -> Wrap A

CodeRep : (A : Set) (s : Stage) -> Set

CodeRep A s0 = A

CodeRep A s1 = Wrap (CodeRep A s0)

We also add a flag indicating whether the quoted code represents an expression

(Expr) or a literal, a constant or a variable (Atom).

data Choice : Set where

Expr : Choice

Atom : Choice

Staging has 3 main applications; generating well-typed code as in MetaOcaml [Taha,

1999], removing abstraction overhead introduced by generic programming [Yallop,

2016; Carette and Kiselyov, 2005; Carette et al., 2011a], and developing domain spe-

cific languages [Sheard et al., 2000]. MetaOcaml and Haskell templates provide stag-

ing constructs under the names quote and eval instead of Now and Later. In logical

reasoning the same ideas are used for reflection, as in [Farmer, 2013].
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Chapter 3

Universal Algebra: An Overview

Algebraic structures, like monoids, groups, and rings, are classes of algebras that

have similar properties. Universal algbera studies those structures in a more generic

way. It abstracts over the specific definitions and properties of classes of algebraic

structures and deals with them as axiomatic theories in equational first-order logic.

With this abstraction in place, universal algebra defines some constructions useful

when dealing with algebras and prove some of their properties.

We use concepts of universal algebra to leverage the information in theory presen-

tations. We internalize a representation of uni-sorted equational first order theories

into DTT, our meta theory. This way we are able to manipulate them and generate

the constructions as described by universal algebra. In this chapter we introduce

core concepts that we use from universal algebra. In Chapter 9 we discuss how we

use it in our work. In Section 3.1 we present equational first order logic, the meta

theory for universal algebra, and define the components of a theory in this logic. We

then introduce some of the constructions of universal algebra that can be generated

from an equational theory presentation in Section 3.2. It is worth mentioning that
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although our framework generates only some of these constructions, they all follow

from the definition of a theory and the definitions we provide here will hopefully make

this noticeable.

3.1 Equational Theory

Logics give us the machinery to describe properties of entities as formulas and reason

about them. Equational logic restricts these formulas, whether axioms or theorems, to

be universally quantified equations of the form t1= t2, where t1 and t2 are terms ex-

pressible in the language of the theory. There are different notions of equality [Mazur,

2008; Grabowski et al., 2015]. In many cases the underlying logic offers its own equal-

ity. In some other cases, the equality is defined by the language of the theory, as is

the case with setoids.

Equational logic has 3 inference rules described in [Gries and Schneider, 1993]

t1 = t2

t[x↦ t1] = t[x↦ t2]

t1 = t2 t2 = t3

t1 = t3

p t

p (t[xs↦ ts])

where t, t1, t2, and t3 are expressions, x is a symbol in the language, ts is a list of

expressions, xs is a list of symbols, and p is a predicate. The leftmost rule refers to

Leibniz equality that states that two expressions are equal if one can be substituted

by the other without changing the truth of a statement. The rule in the middle

reflects the transitivity of equality. The rightmost rule states that if p t is true, then

it remains true under all substitutions.

A theory in universal algebra is described in first order equational logic. It restricts

the definition of a theory described in Section 2.2. It is defined as a tuple (S,F,E)

such that
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• S is a set of one sort s.

• F is a finite set of function symbols along with their arities. A 0-ary function

symbol is a constant.

• E is a finite set of generating equations.

An algebra A = (SA,FA) is a mathematical structure consisting of a domain and

functions on this domain. It provides an interpretation for the carrier S and the

function symbols in F of a theory.

3.2 Constructions

The definition of an equational theory captures various algebraic structures. To effec-

tively use these structures, universal algebra provide us with definitions of construc-

tions related to them. We will describe some of these constructions here. We use the

symbol S to refer to the one sort in the set. We give the definitions of these constructs

based on set theory, as one would find them in a standard text book. They have been

formalized in type theory in both Coq [Capretta, 1999; Spitters and van der Weegen,

2010] and Agda [Gunther et al., 2018]. The definitions are adapted from [Ehrig and

Mahr, 1985] and [Meinke and Tucker, 1993].

• The signature of a theory (S,F ,E) is (S,F) consisting of the sort and n-ary

function symbols, where n ≥ 0. The signature specifies the language of the

theory, without any laws.

• A sub-theory ∆ of a theory Γ is a theory (S∆,F∆,E∆) satisfying the conditions:

1. S∆ ⊆ SΓ
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2. c∆ = cΓ ∈ S∆ for every constant symbol in the set of function symbols F .

3. op∆ x1 ... xn = opΓ x1 ... xn ∈ S∆, for all op ∈ ∣ F ∣, x1 ... xn ∈ S∆, and n ∈ N

such that n ≥ 1.

• The trivial sub-theory is the sub-theory with the empty carrier. Because the

carrier is empty, the 3 conditions above trivially hold. Note that the trivial

sub-theory is not defined for theories with constants.

• The product of two algebras A and B of the same theory Γ is a theory with sort

(SA ×SB). If a theory is uni-sorted, then the set of sorts S is a singleton and we

refer to that one sort as S for simplicity. In this case, the sort of the product

theory is (S × S).

– c×:(SA × SB) = cA × cB, for every constant symbol c ∈ ∣ Γ ∣.

– op×:(SA × SB)→ ... → (SA × SB), for every function symbol op ∈ ∣ Γ ∣ based

on its arity, defined as:

op× (x1A,x1B) ... (xnA,xnB) = (opA x1A ... xnA, opB x1B ... xnB)

– The set of equations E× is given by substituting the new sort, constant and

function symbols in the equations in E .

• A homomorphism between two algebras A and B of the same theory Γ is a

function hom : SA → SB such that

– for every constant symbol c in F : hom cA = cB

– for every function symbol op in F :

hom (opA x1 ... xn) = opB (hom x1) ... (hom xn)
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There are some variants of homomorphism that can be easily generated from

it. These variants are

– monomorphisms are injective homomorphisms.

– epimorphisms are surjective homomorphisms.

– endomorphisms are homomorphisms from an object to itself.

– isomorphisms are bijective homomorphisms.

– automorphisms are isomorphisms from an object to itself.

• The kernel of a homomorphism from algebra A to algebra B of the same theory

Γ is defined as the binary relation ≡hom on the sort of A, such that

a ≡hom b ⇔ hom a ≡hom hom b

for every a and b in SA.

• The composition of two morphisms f : A → B and g : B → C is denoted by

the function g ○ f : A → C and is defined as (g ○ f) a = g (f a) for every

a ∈ A

• A relational interpretation between two algebras A and B of the same theory Γ

is a relation interp :SA → SB → B, such that

– interp cA cB, where cA cB are the assignments of the constant c ∈ Γ in

algebras A and B, respectively.

– interp x1 y1 ∧ ... ∧ interp xn yn

⇒ interp (opA x1 ... xn) (opB y1 ... yn),

for all function symbols op ∈ F , where x1 ... xn ∈ SA and y1 ... yn ∈ SB.
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• A congruence relation ≡ for a theory Γ is an equivalence relation on elements of

its sort which respects its operations, such that:

– x1 ≡ y1 ∧ ... ∧ xn ≡ yn ⇒ op x1 ... xn ≡ op y1 ... yn

for all function symbols op ∈ F .

• The quotient algebra for a theory Γ with respect to some congruence relation ≡

is defined as the theory Γ/ ≡ = (SQ,FQ,EQ) such that

– SQ is the factor set of S, defined as

SQ = {[x] ∣ x ∈ S}

where [x] is the equivalence class defined as [x] = {y ∈ S ∣ x ≡ y}

– cQ = [c], for constant symbols c ∈ F and cQ ∈ FQ.

– fQ[x1] ... [xn] = [f x1 ... xn] for function symbols fQ ∈ FQ and f ∈ F .

Term Languages

We define the term language of a theory, as well as some of its related constructions:

• The closed term language L induced by a theory is a set of terms that is defined

inductively as

– all constants belong to L (basic terms)

– for every function symbol op :S → ... → S of arity n and for all terms

t1 ... tn ∈ L, the term top t1 ... tn.

• An open term language of a theory is similar to the closed term language, except

that basic terms include the set of variables.
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• The staged term language of a theory is the term language in which expres-

sions can be marked for execution in compile or runtime stages as discussed in

Section 2.7.

• Induction Principle on Terms : Let p be a predicate defined on terms t ∈ Top(X)

of a signature SIG =(S,F) with a set of variables X. The assertion p(t) is true

for all t ∈ Top if the following conditions are satisfied:

– (p t) is true for all constant and variable symbols t.

– If (p t1), ... , (p tn) are true, then p (f t1 ... tn) is true, for every term

f t1 ... tn.

• Evaluation functions : Given an algebra A of a theory Γ = (S,F ,E), let T be

the set of closed terms of the language of the theory as defined above; then the

function eval : T → SA is defined recursively by:

– eval c = cA

– eval (op t1 ... tn) = opA (eval t1) ... (eval tn)

The evaluation function for open term language would be similar except it has

an additional environment that assigns value of the carrier to variables.

• Simplification via rewriting : Given a set of equations, each represented as

(X,L,R), where X is a set of variables, L and R are terms of the language, L

is the term on the left of the equation, and R is the term on the right side.

By fixing the set of variables, we can represent equations as (L,R). Each equa-

tion represented in this form gives rise to two rewrite rules 1) L ⇒ R and

2) R ⇒ L. Any of these can result in rewriting systems, but when simplifying
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one need to define an ordering relation, which is a preorder (reflexive, transi-

tive relation) that decides if a term is simpler than another. When having the

equations and the ordering relation, a simplifier can be defined.

• Equivalence of terms : two terms can be denoted equal in one or more of the

following cases:

– Evaluation of the two terms yields the same value.

– Simplification of the two terms yield the same term.

– The two terms are structurally identical, i.e.: they have the same syntax

tree.
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Chapter 4

Boilerplate in Libraries1

One of our observations is that current formalizations of algebra contain quite a

bit of information that is “free” in the sense that it can be mechanically generated

from basic definitions. For example, given a theory Γ, it is mechanical to define

Γ-homomorphism.

Lest the reader think that our quest is a little quixotic, we first look at current

libraries from a variety of systems, to find concrete examples of human-written code

that could have been generated. We look at libraries of Agda and Lean. More

specifically, we look at version 1.4 of the Agda standard library and 2019 release of

Lean’s mathlib, where we link to the proper release tag.

We use the theory Monoid as our running example, and we highlight the reusable

components that the systems use to make writing the definitions easier and more

robust.

1This chapter is adapted from [Carette et al., 2020b].
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4.1 Agda Standard Library

The Agda standard library defines the following constructions related to Monoid:

1. Raw Monoid: The raw representation of a theory is a definition of its signature..

RawMonoid is defined in the standard library as

record RawMonoid c ` : Set (suc (c ⊔ `)) where

infixl 7 _●_

infix 4 _≈_

field

Carrier : Set c

_≈_ : Rel Carrier `

_●_ : Op2 Carrier

ε : Carrier

The definition of RawMonoid is identical to that of Monoid except for one dec-

laration that instantiates the isMonoid record that checks for the properties of

a Monoid.

2. Open Term Language and Evaluator: The “term language” of a theory is the

(inductive) data type that represents the syntax of well-formed terms of that

theory, along with an interpretation function from expressions to the carrier of

the (implicitly single-sorted) given theory, i.e. its denotational semantics.

In Agda, the definition of Monoid term language is straightforward:
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data Expr (n : N) where

var : Fin n → Expr n

id : Expr n

_⊕_ : Expr n → Expr n → Expr n

Defining the interpretation function requires the concept of an environment. An

environment associates a value to every variable, and the semantics associates

a value (of type Carrier) to each expression of Expr.

Env : Set _

Env = λ n → Vec Carrier n

J_K : ∀ {n} → Expr n → Env n → Carrier

J var x K ρ = lookup ρ x

J id K ρ = ε

J e1 ⊕ e2 K ρ = J e1 K ρ ⋅ J e2 K ρ

These definitions are not found with the definitions of the algebraic structures

themselves, but rather as part of the Solver for equations over that theory.

3. Product: Until recently, there was no definition of the product of algebraic

structures in the Agda library. A recent pull request has suggested adding

these, along with other constructions. The following hand-written definition

has now been added:
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monoid : Monoid a `1 → Monoid b `2 → Monoid (a ⊔ b) (`1 ⊔ `2)

monoid M N = record

{ ε = M.ε , N.ε

; isMonoid = record

{ isSemigroup = Semigroup.isSemigroup

(semigroup M.semigroup N.semigroup)

; identity = (M.identityl , N.identityl <*>_)

, (M.identityr , N.identityr <*>_)

}

} where module M = Monoid M; module N = Monoid N

where semigroup is the definition of the product theory of Semigroup.

4. Morphisms Monoid homomorphism is defined in the Agda standard library using

Magma homomorphism as follows:

record IsMonoidHomomorphism (J_K: A → B) : Set(a ⊔ `1 ⊔ `2) where

field

isMagmaHomomorphism : IsMagmaHomomorphism J_K

ε-homo : Homomorphic0 J_K ε1 ε2

Monomorphism and isomorphism are also provided in the library, defined in

terms of homomorphisms.

These constructions constitute 7 definitions spanning over 35 lines for only the the-

ory Monoid. They are also repeated for other theories. The term language and

evaluator for Monoid are repeated verbatim for both theories CommutativeMonoid
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and IdempotentCommutativeMonoid. The Raw versions are provided for 7 theories;

Magma, Monoid, NearSemiring, Semiring, Ring, and Lattice. The definitions of the

3 morphisms are provided for the same theories.

The direct product is defined for 10 theories. From the 7 that we defined above,

only Magma, Monoid, and Group have definitions of direct product. In addition to those

3 theories, It is defined for Semigroup, Band, CommutativeSemigroup, Semilattice,

CommutativeMonoid, IdempotentCommutativeMonoid, and AbelianGroup. Beside

these definitions, the products of the signatures of Magma, Monoid, and Group is given

in the library.

These give us a total of 47 definitions that are provided by the library develop-

ers, but could instead be generated, bearing in mind that not all constructions are

provided for all theories. Also, constructions are not provided for additive or multi-

plicative versions of theories like Monoid and Group. A generative algorithm would

be able to provide those variants of the constructions, at no extra cost.

It is worth noting that the defintions in the Agda standard library employ mod-

ularity when defining structures, like the definition of IsMonoidHomomorphism which

depends on IsMagmaHomomorphism. Raw definitions from universal algebra do not

support this modularity and, therefore, the generated expressions would be more flat,

i.e. include the actual declarations instead of importing them from a different struc-

ture. Having flat definitions is, in some cases, a good way to abstract over library

design. Nevertheless, we do not want to lose the connections between different theo-

ries. To solve this problem, we support a library organized as theory graph on which

a flattener can be built. We leave working fully with unflattened theories as future

work.
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Summary

Construction Number of Occurrences

Signatures 7

Homomorphisms 7

Monoomorphisms 7

Isomorphisms 7

Products 10

Products of Signatues 3

Term Language 3

Evaluation Function 3

4.2 Lean MathLib

The homomorphism of monoids is defined in two ways in mathlib. One way is the un-

bundled predicate style definition in which the homomorphism function is a parameter

to the class definition.

class is_monoid_hom [monoid α] [monoid β] (f : α → β)

extends is_mul_hom f : Prop :=

(map_one : f 1 = 1)

where is_mul_hom is the definition of homomorphism of multiplicative magma, which

lean refers to as mul. A very similar definition is provided for add_monoid. The

other is the bundled definition in which the homomorphism function is part of the

declarations of the structure, not a parameter to it.
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structure monoid_hom (M : Type*) (N : Type*) [monoid M] [monoid N] :=

(to_fun : M → N)

(map_one' : to_fun 1 = 1)

(map_mul' : ∀ x y, to_fun (x * y) = to_fun x * to_fun y)

The library provide the unbundled (class) definitions for many theories, including

group, semiring, and ring. These definitions are marked deprecated. We were

able to only find the bundled definitions for monoid_hom, its additive variant, and

ring_hom.

The lean library also have definitions for the product of some theories. In a

hierarchy ranging from has_add and has_mul to nonzero_comm_ring, 22 definitions

of products are defined. It contains definitions of is_submonoid, is_subgroup, their

additive variants, and is_subring .

Summary

Construction Number of Occurrences

Homomorphisms (Bundled) 3

Homomorphisms (Unbundled) 8

Products 22

Subtheory 5

Total 38
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Chapter 5

Methodology

We highlighted some of the problems that make library building labor intensive and

suggest that by automating them we can lift some burden off the library developers.

In this Chapter, we give more details on how we use automation for this purpose.

One of the main components of an algebra library is the axiomatic theory presen-

tation of the algebraic structures, like the different formalizations of Monoid shown

in Figure 1.1. In most theorem provers, developers provide all the declarations of

the theory. Another way is to define theories by using combinators which describe

how the new theory can be formed in terms of existing ones. Combinators are also

a useful tool to leverage the structure of the theories by relating them to each other,

which is useful when organizing the library as a theory graph. A flattener is used

to compute the theory and morphisms resulting from the combinators. We discuss

our implementation of the flattener in Chapter 8. Using these ideas, Monoid can be

defined as

Monoid = combine Unital and Semigroup over Magma
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Figure 5.1: A 3-staged interpreter for generating libraries

Informally, this means that the theory of Monoid can be constructed by combin-

ing1 the declarations in Unital and Semigroup without repeating the declarations in

Magma.

The theories resulting from the flattener are used to compute some universal alge-

bra constructions that are also part of algebra libraries. Chapter 4 shows examples of

homomorphisms, product algebra and term languages provided by library developers.

These and more can be generated based on their definitions from universal algebra.

The generator does that by manipulating the components of the theories. We discuss

the generator in Chapter 9.

The flattener and generator deal with mathematical definitions while keeping

system-specific details to a minimum. In order to make the constructions more useful,

the exporter makes them available in feature-rich systems, like Agda and Lean. We

discuss the exporter in Chapter 10.

Figure 5.1 describes the 3-stage processing that a theory expression goes through.

This process leads to the generation of all the constructions2 described in Appendix B

in Tog, Agda, and Lean.

1The combine operation is explained in detail in Section 7.2.3.
2The generated constructions can be found at: https://github.com/ysharoda/Deriving-

Definitions/tree/115462d85389/Library/generated.
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Chapter 6

Tog: Language and Type Checker

To implement the methodology we presented in Chapter 5, we need a language for rep-

resenting and manipulating theories and a type checker to verify these manipulations.

Theories are written in some formal language, the object language. To manipulate

them we need to investigate and manipulate the syntax of the object language. This

can be done in the same language if it has a strong reflection mechanism, or in the

meta language in which the object language is embedded. As the main goal of our

work is to investigate the usefulness of a generative approach, we do not want to be

constrained by the amount of support given by the reflection mechanism. Working

in the meta language gives us full control over manipulating the object language’s

syntax. We need our meta language to support the following features in the object

language it represents:

• Π-Types: The semantics of the combinators we are using is given in categorical

dependent logic. Having Π-types is needed to represent the types of views in

terms of their source and target theories.
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• Dependent records to represent theories as telescopes.

• A module system to manage namespaces such that every theory with its gen-

erated constructions is a module.

• Inductive data types to represent term languages.

• Equality to represent the equations within a theory.

These features are available in most dependently typed systems, like Agda, Coq,

and Lean. But we refrained from using any of these systems to avoid delving into their

design decisions. Instead, we prefer a small language that does not have many other

extra features. We use Tog [Mazzoli et al., 2017], a small implementation of Martin-

Löf type theory. It provides a small dependently typed language and type checker. It

was created by the Agda developers to experiment with type checking ideas. It has

mainly been used to experiment with type checking through unification [Mazzoli and

Abel, 2016].

Tog is implemented in Haskell. Figure 6.1 shows its internal representation.

A Tog module is a list of declarations, such that each declaration is either a type

signature, function definition, datatype declaration, record definition, or a nested

module represented using the TypeSig, FunDef, Data, Record, and Module_ con-

structors, respectively. According to the type Decl, modules can import and open

other modules, but our experience shows that this feature is not supported.

Parameters to modules, records, and datatypes are represented by the Params

type. A single parameter has type Binding and can be declared implicit by using the

constructor HBind.
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data Decl
= TypeSig TypeSig
| FunDef Name [Pattern] FunDefBody
| Data Name Params DataBody
| Record Name Params RecordBody
| Module_ Module
| ⋯

deriving (Eq, Ord, Show, Read)

data TypeSig = Sig Name Expr
deriving (Eq, Ord, Show, Read)

data Where = Where [Decl] | NoWhere
deriving (Eq, Ord, Show, Read)

data Params
= NoParams | ParamDecl [Binding] | ParamDef [HiddenName]
deriving (Eq, Ord, Show, Read)

data HiddenName = NotHidden Name | Hidden Name
deriving (Eq, Ord, Show, Read)

data DataBody
= DataDecl Name | DataDef [Constr] | DataDeclDef Name [Constr]
deriving (Eq, Ord, Show, Read)

data RecordBody
= RecordDecl Name
| RecordDef Name Fields
| RecordDeclDef Name Name Fields
deriving (Eq, Ord, Show, Read)

data Fields = NoFields | Fields [Constr]
deriving (Eq, Ord, Show, Read)

data Constr = Constr Name Expr
deriving (Eq, Ord, Show, Read)

data FunDefBody = FunDefNoBody | FunDefBody Expr Where
deriving (Eq, Ord, Show, Read)

data Telescope = Tel [Binding]
deriving (Eq, Ord, Show, Read)

data Binding = Bind [Arg] Expr | HBind [Arg] Expr
deriving (Eq, Ord, Show, Read)

data Expr
= Lam [Name] Expr
| Pi Telescope Expr -- Π types
| Fun Expr Expr -- function types
| Eq Expr Expr -- equations
| App [Arg] -- type applications
| Id QName -- types names
deriving (Eq, Ord, Show, Read)

data Arg = HArg Expr | Arg Expr
deriving (Eq, Ord, Show, Read)

data Pattern
= EmptyP Empty | ConP QName [Pattern] | IdP QName | HideP Pattern
deriving (Eq, Ord, Show, Read)

Figure 6.1: Internal Representation of the Tog Language52
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A record field and a datatype constructor are both of type Constr, each hav-

ing a name and a type expression Expr. Dependent types are created with the Pi

constructor. Function types are curried and represented with the Fun constructor.

Axioms that are equations are represented with Eq constructor. Type and function

applications are created using the App constructor. The Id constructor is used for

0-ary types and functions, i.e.: If q : QName, then q is not a type, but Id q is.

To perform pattern matching, the Pattern type is used. Matching with a 0-ary

constructor is done using IdP. If the constructor takes parameters, then ConP is used.

HideP represents pattern matching on implicit arguments and EmptyP represents the

don’t care _ character.

We extend Tog to support the input theory expressions and flatten them into Tog

dependent records and morphisms between them. The structure of these dependent

records is used to generate new constructions. The generated constructions can be

records, datatypes, or functions presented in Tog syntax. The well-typedness of the

generated constructions is ensured by the Tog type checker.
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Chapter 7

A Library of Algebraic Structures

In this Chapter, we build a library of axiomatic theories representing the algebraic

hierarchy. Our library consists of equational first-order theories organized as a theory

graph using the tiny theories approach. Instead of having to provide all declarations

of the theories and morphisms within the graph, we use the MathScheme combinators

introduced in [Carette and O’Connor, 2012; Carette et al., 2019].

It is common to see the algebraic hierarchy as a series of inclusions as in Fig-

ure 7.1. But the algebraic hierarchy is richer than that, considering for example the

list in [Jipsen, 2019]. In Section 2.4.2 we discuss tiny theories as an adequate approach

to building a theory graph that captures this structure. The nodes of the graph are

theory presentations and they are connected via morphisms (see Section 2.4). Mor-

phisms describe how the different theory presentations relate to each other. We

presented the example of building the theory of Unital by extending the theory of

Magma Semigroup Monoid Group ⋯

Figure 7.1: Algebraic structures as extensions.
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LeftUnital

PointedMagma Unital

RightUnital

Figure 7.2: The diamond in the definition of Unital.

PointedMagma to create LeftUnital and RightUnital, then combining them. This

example is described by a diamond structure as in Figure 7.2. The diamond struc-

ture appearing in the definition of Unital is not a special case. Instead, diamonds

are pervasive in the algebraic hierarchy, as shown in the theory graph for defining

Monoid in Figure 2.5.

But the diamond structure does not come without problems. We need to have care-

ful infrastructure to deal with them in order to avoid the diamond problem [Bracha,

1992; Ducasse et al., 2006; Wimmer et al., 2011], a.k.a. multiple inheritance or the

fork-join problem [Sakkinen, 1989], which we discuss in Section 7.2.3.

In Section 7.1 we provide an overview of the support for morphisms in different

formal systems. Section 7.2 introduces the MathScheme combinators for a morphism-

based approach to building theory graphs, leading to a solution to the diamond prob-

lem. We discuss how to use the combinators to build the library in Section 7.3. We

end up with Section 7.4 discussing best practice for using the combinators.

7.1 Theory Graph Development

Although many formal systems support theory graph structures, more support for

using and defining morphisms is needed. Specware [Smith, 1999] and MMT [Rabe
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and Kohlhase, 2013b] force users to provide all details of theories and morphisms

between them. IMPS [Farmer et al., 1993], in some cases, generates morphisms given

source and target theories.

Another way to support building a library rich in morphisms is to provide com-

binators to handle some of the work. Clear [Burstall and Goguen, 1980] is — to

our knowledge — the first system to use combinators for creating new theories1.

OBJ [Goguen et al., 2000] and CASL [Mosses, 2004] are successors of Clear that also

support combinators. We focus our discussion on CASL as a representative of these

systems, as it is the only living one now and so we were only able to look at its

library and run experiments on it. We realized two problems related to combinators

in CASL. First, it is not always possible to flatten theories built through the use of

combinators, especially hiding and freeness combinators [Mosses, 2004]. The second

problem is related to how the union operation is implemented. The union operator

is the one responsible for combining different specifications. They are combined on

a ‘same name, same thing’ basis [Bidoit and Mosses, 2003], i.e. two declarations are

considered the same if they have the same name. Figure 7.3 shows the problems

that occur from using this principle. Both specifications Ext1 and Ext2, on the left

side, extend the BaseSpec with a binary operation and its unit element. A pushout

between the two morphisms BaseSpec→ Ext1 and BaseSpec→ Ext2 would result in

a theory with one sort, A, and two binary operations with two different unit elements.

When trying this specification in CASL2, it computes the declarations on the right

side of the figure which has only one unit element for the two binary operations. This

is different from what a pushout would compute.

1Clear is a specification language, and theories are used under the name specifications.
2Using the online tool at: http://rest.hets.eu
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spec BaseSpec = sort A end
spec Ext1 = BaseSpec then
ops e :A

__*__:A * A -> A,unit e
end
spec Ext2 = BaseSpec then
ops e :A

__+__:A * A -> A, unit e
end
spec Combine =

Ext1 and Ext2
end

sorts A
op __*__ : A * A -> A
op __+__ : A * A -> A
op e : A
forall x : A . x + e = x
%(ga_right_unit___+__)%

forall x : A . e + x = x
%(ga_left_unit___+__)%

forall x : A . x * e = x
%(ga_right_unit___*__)%

forall x : A . e * x = x
%(ga_left_unit___*__)%

Figure 7.3: CASL union operation: On the left, the specification Combine is defined
as the union of Ext1 and Ext2. On the right, the declarations of specification

Combine as computed by CASL.

We performed the same experiment with Isabelle locale expressions [Ballarin, 2003]

and got similar results. In the following section, we introduce a collection of combina-

tors that provide an infrastructure for building a large library organized as a theory

graph that enables us to avoid the problem we have just described.

7.2 MathScheme Combinators

Combinators manipulate theories in different ways. They enhance modularity, reusabil-

ity and maintainability of the library by saving the user the need to repeat definitions.

[Carette et al., 2019] introduces 4 combinators based on the definitions of theories as

contexts and theory morphisms in dependent type theory as we discussed them in

Sections 2.2 and 2.3.

A library built using these combinators embodies the following design decisions:
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• Theories can always be flattened. Not all users of a formal system are interested

in the hierarchy used to build the theories they need. A mathematician who

wants to prove results in Group theory is only interested in groups with their

standard definitions and results. This user should not be forced to work with

groups as extensions of some theory, like Monoid. Abstracting over the hierarchy

in users’ code also has the advantage that the code need not change in case

the hierarchy changes, like in the case of changing the type class hierarchy in

Haskell [Haskell Wiki, 2015].

• Names are taken seriously. Similar concepts have different names in different

contexts of mathematics. The unit of _+_ has a different name than the one

of _*_ and confusing their names would be a huge usability problem. The

combinators introduced in [Carette et al., 2019] neither generate any names nor

attempt to use any heuristics to solve name clashes. Instead name clashes are

detected and the library developer is asked to resolve them.

• Tiny theories are systematically used. Since we do not provide a drop combi-

nator, we use tiny theories to make sure all intermediate results are available

for future theories to use.

• Morphisms are the main building unit of the library. The semantics and the

implementation of the combinators are based on morphisms, not theories. This

makes it possible to compute category-theoretic operations, like union, based on

their real semantics, avoiding the need for assumptions like same-name-same-

thing.

The combinators assume the underlying logic in which theories are defined to be
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a dependent type theory (DTT). Therefore, a theory is viewed as a context, or a

telescope as defined by Equation 2.1.1. But a specific variant of DTT is not assumed;

instead many of the details are abstracted away. The minimum requirements of

the underlying DTT are listed in [Carette et al., 2019]. We include them here for

convenience and completeness. These requirements are:

• An infinite set S of symbols.

• A typing judgement for terms s of type σ in a context Γ which we write as

Γ ⊢ s ∶ σ.

• A kinding judgement for types σ of kind κ in a context Γ which we write as

Γ ⊢ σ ∶ κ ∶ ∗. We further assume that the set of valid kinds κ ∶ ∗ is given and

fixed.

• A definitional equality (a.k.a. convertibility) judgement of terms s1 of type σ1

and s2 of type σ2 in a context Γ, which we write as Γ ⊢ s1 ∶ σ1 ≡ s2 ∶ σ2. We

will write Γ ⊢ s1 ≡ s2 ∶ σ to denote Γ ⊢ s1 ∶ σ ≡ s2 ∶ σ.

• A notion of substitution on terms. Given a list of symbol assignments [xi ↦

si]i<n such that they form a total function over the symbols of the term, and an

expression e we write e[xi ↦ si]i<n for the term e after simultaneous substitution

of symbols {xi}i<n by the corresponding term in the assignment.

We now introduce the combinators we use from [Carette et al., 2019].

7.2.1 Extension

Extension is the most basic combinator. On its own, it makes it possible to define a

flat hierarchy as in Figure 7.1.
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The inputs to an extension combinator are a theory presentation Γ and a list3

of declarations ∆+ = {ai ∶ σi ∶ κi}i<n. The combinator computes a new theory Γ ⋊∆+

and an injective identity morphism (ĩd) from Γ to Γ⋊∆+, where ⋊ is an asymmetric

operation that adds definitions to a telescope. On one side Γ is a well-formed theory,

but ∆+ may not be well-formed on its own. The construction is defined as:

E (Γ,∆+) ≜

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pres = Γ ⋊∆+

embed = ĩd ∶ Γ→ Γ ⋊∆+

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

where pres is the theory resulting from the extension and embed is the identity

morphism from the theory being extended to pres.

An extension is well-formed if each new symbol ai ∶ σi ∶ κi in ∆+ does not occur in

Γi−1 and its type is well-formed in Γi−1, where Γi−1 = Γ⋊∆i−1 and ∆i−1 ⊆ ∆+ containing

the first i − 1 elements of ∆+.

∀i ⋅ ai ∉ ∣Γi−1∣

∀i ⋅ Γi−1 ⊢ σi ∶ κi

where Γi−1 = Γ ⋊ {a0 ∶ σ0 ∶ κ0 ⋯ ai−1 ∶ σi−1 ∶ κi−1}.

Example Extensions are used when new concepts are added. According to little

theories, the concept should be added in its smallest context, i.e. if Γ ⊢ c ∶ t then for

every Σ ⊂ Γ, Σ ⊬ c ∶ t. Tiny theories encourages adding one new concept at a time.

A good example is adding properties of a binary operation, like commutativity or

3As we use tiny theories approach, the list always has one declarations. The presentation here
is more general and considers finite lists of any size.
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associativity as follows4

Semigroup =

extend Magma {assoc : {x y z : A} → op x (op y z) == op (op x y) z}

CommMagma =

extend Magma {comm : {x y : A} → op x y == op y x}

where Magma is the theory Γ being extended, assoc and comm are definitions in ∆+.

7.2.2 Rename

A theory is a renaming of another if they contain the same declaration in the same

order but with different names for the symbols. A useful use case for rename is

obtaining boolean algebras from idempotent ring. Assuming some theorems have

been proved for idempotent rings, these theorems still hold for boolean algebras and

it would be useful to transport those theorems to boolean algebras without having to

prove them again. This can be done if a rename morphism exists between the two

theories. Renames allow using flexible notations while still reusing all results from

the source theory.

Given a theory presentation Γ and a rename function π, the output of the rename

operation is a new theory, pres, which is computed by performing a substitution of

π into the declarations of Γ, and an embedding morphism π̃ ∶ Γ→ π ⋅Γ that maps the

4The syntax we use here is the one used in our implementation. We give brief explanations for
it here, and introduce it in details in the next section.
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symbols of Γ to those of π ⋅ Γ based on the renaming function π.

R (Γ, π ∶ ∣Γ∣→ V) ≜

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pres = π ⋅ Γ

embed = π̃ ∶ Γ→ π ⋅ Γ

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

A rename operation is well-formed whenever the rename function π ∶ ∣Γ∣→ S is an

injection, and the codomain is a permutation of a subset of S with exactly k elements,

where k is the number of declarations in Γ.

Example After defining Semigroup in the example of the previous section over

a binary operation op, one would want to define the additive and multiplicative

versions using the symbols + and *, resp. It also make sense to have a morphism

from Semigroup to those variants that only differ in the names of the symbols. The

rename combinator does just that:

AddSemigroup = rename Semigroup {op to +}

MultSemigroup = rename Semigroup {op to *}

7.2.3 Combine

Consider the following small library:

Theory Empty = {}

Carrier = extend Empty {A : Set}

Pointed = extend Carrier {e : A}

Magma = extend Carrier {op : A -> A -> A}

The flattened version of the theories of these libraries are
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Empty = []

Carrier = [A : Set]

Magma = [A : Set, op : A→ A→ A]

Pointed = [A : Set, e : A]

Now we want to define the theory PointedMagma which has a binary operation and

a point. It makes sense to assume this theory to be an extension of both Magma and

Pointed. Using the extension combinator will not help us here. In this situation, we

want a diamond in which our new theory is inheriting from two theories, but it is not

clear whether a declaration, for example (A : Set) should be repeated or not. The

situation is more complicated if we consider the definition of AdditiveSemigroup by

relating it to AdditiveMagma defined as

AdditiveMagma = rename Magma {op to +}

and Semigroup defined as in Section 7.2.1. Here we have the same binary operation

with different names. Which name should be used? Or should they be repeated,

having two binary operations in the outcome?

The case when a theory needs to be related to more than one ancestor is prevalent

when building large libraries. As we see in these examples, it occurs very early on

when formalizing the algebraic hierarchy. The combine operation supports the mul-

tiple inheritance situation by relying on the information in the morphisms. Combine

performs a pushout of the morphisms in the category of theory presentations, i.e. a

pullback in the category of contexts. A pushout is a 5-ary operation that takes 2

morphisms and 3 objects of a category, as explained in Section 2.5. The morphisms
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need to originate from the same source. The 3 theories can be deduced from the

morphisms as the two target theories of the morphisms and their common source.

For cases where there are name clashes, like the name clash between op and + in the

AdditiveSemigroup example, the user is required to provide renames to resolve it.

This is consistent with our design decision to not use heuristics or name generation

to resolve any name conflicts.

The two morphisms of the combine operation u∆ and uΦ are both injective em-

beddings, having Γ as their source, and having ∆ and Φ, resp, as their targets.

C (u∆, uΦ, π∆, πΦ) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ0 ⋊ (Ξ∆ ∪ΞΦ)

embed∆ = [v∆] ∶ ∆→ Ξ

embedΦ = [vΦ] ∶ Φ→ Ξ

diag = [uv] ∶ Γ→ Ξ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

π∆ and πΦ are two rename functions given to resolve name conflicts.

A well-formed combine needs to ensure that any two symbols x ∈ ∣ ∆ ∣ and y ∈ ∣ Φ ∣

— after applying the renaming functions — map to the same symbol if they have

originated from the source theory Γ and that there are no name clashes when mapping

a symbol z across the two morphisms and rename functions. The precondition for

combine operation is described by the following equivalence:

π∆ (x) = πΦ (y)⇔ ∃z ∈ ∣Γ∣ . x = z[u∆] ∧ y = z[uΦ] (7.2.1)

Example We have given two examples in the beginning of this section illustrating

situations in which combine operations are needed. A PointedMagma is defined as
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PointedMagma = combine Magma {} Pointed {}

The embeddings being combined are Carrier↪ Magma and Carrier↪ Pointed.

The empty {} means the identity rename functions are used in this expression, as in

this case no name clashes need to be resolved.

The AddSemigroup is defined as

AdditiveSemigroup = combine AdditiveMagma {} Semigroup {op to +}

The embeddings used here are Magma↦ AdditiveMagma and Magma↪ Semigroup.

The declaration op in Magma is mapped to + in AdditiveMagma and remains as op in

Semigroup. Therefore, a rename {op to +} is needed to resolve this name clash.

7.3 Library Building

Using extends, rename, and combine, we build a library of 227 theories describing the

algebraic hierarchy organized as a theory graph using tiny theories approach. Those

theories range from Empty up to Ring and BoundedDistributedLattice. The library

definitions are given in Appendix A. Our guide in building this library are the defi-

nitions in [Carette and O’Connor, 2011a], which were part of an experiment [Carette

et al., 2011b] on the way to developing the combinators we discuss in this chapter.

Therefore, there are some definitions in that library that referred to non-existing

morphisms, like the definition of SemiRng presented in Chapter 8. As the imple-

mentation of combinators depends on finding the right morphisms in the underlying

theory graph, we had to work out the correct morphisms.

The examples in Section 7.2 give an intuition of how the combinators work together
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to build the library. In this section we discuss some the challenges we faced to build

the graph defining AdditiveMonoid as in Figure 2.5.

7.3.1 Defining AdditivePointedMagma

The very first theories of the algebraic hierarchy are defined as

Carrier = extend Empty {A : Set}

Pointed = extend Carrier {e : A}

Pointed0 = rename Pointed {e to 0}

Magma = extend Carrier {op : A -> A -> A}

AdditiveMagma = rename Magma {op to +}

PointedMagma = combine Pointed {} Magma {} over Carrier

These definitions would result in the black theories and morphisms in Figure 7.4.

Now we want to defined AdditivePointedMagma consisting of three declarations

(A,+,0) such that all the blue morphisms of Figure 7.4 are generated. Using one

Empty Carrier Magma AdditiveMagma

Pointed PointedMagma

Pointed0 AdditivePointedMagma

Figure 7.4: The construction of AdditivePointedMagma

combine to define it, we end up with the one of the following cases.

• combine AdditiveMagma {} Pointed0 {} over Carrier
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would generate the theory AdditivePointedMagma, and the three morphisms

– Carrier→ AdditivePointedMagma,

– AdditiveMagma→ AdditivePointedMagma,

– Pointed0→ AdditivePointedMagma.

The morphism PointedMagma→ AdditivePointedMagma won’t be generated.

• combine AdditiveMagma {} PointedMagma {op to +} over Magma

will not generate the morphism Pointed0→ AdditivePointedMagma.

• combine Pointed0 {} PointedMagma {e to 0} over Pointed

will not generate the morphism AdditiveMagma→ AdditivePointedMagma.

Instead, to get all these connections, we define AdditivePointedMagma as follows

Pointed0Magma =

combine Pointed0 {} PointedMagma {e to 0} over Pointed

PointedPlusMagma =

combine AdditiveMagma {} PointedMagma {op to +} over Magma

AdditivePointedMagma =

combine Pointed0Magma {op to +} PointedPlusMagma {e to 0}

over PointedMagma

which results in the graph in Figure 7.5. Although it is not immediately obvious

to define AdditivePointedMagma this way, it corresponds more to the tiny theories
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Carrier Magma AdditiveMagma

Pointed PointedMagma PointedPlusMagma

Pointed0 Pointed0Magma AdditivePointedMagma

Figure 7.5: The construction of AdditivePointedMagma

approach that advocates having all intermediate theories. The two intermediate theo-

ries Pointed0Magma and PointedPlusMagma become useful when we define the Zero0

theory, which is defined as follows:

PointedTimesZeroMagma =

combine PointedTimesMagma {e to 0} Pointed0Magma {op to *}

over PointedMagma

Zero0 =

combine Zero {op to *; e to 0} PointedTimesZeroMagma {}

over PointedMagma

7.3.2 Defining AdditiveMonoid

One would want to have AdditiveMonoid with all the morphisms we introduced

in Figure 2.5. We have discussed the construction of AdditivePointedMagma and

shown how the construction is not precisely depicted in Figure 2.5. Although all the

morphisms are defined, some are composed of other morphisms. Now, we focus more

on the part of defining AdditiveUnital.

The definition of AdditiveLeftUnital and AdditiveRightUnital goes as follows:
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AdditiveLeftUnital =

combine AdditivePointedMagma {} LeftUnital {op to +; e to 0}

over PointedMagma

AdditiveRightUnital =

combine AdditivePointedMagma {} RightUnital {op to +; e to 0}

over PointedMagma

It make sense to expect AdditiveUnital to have morphisms with all of Unital,

AdditiveLeftUnital, and AdditiveRightUnital. Similar to the case we had in the

previous section, one pushout will only compute two of these three morphisms. The

possible pushouts are

combine AdditiveLeftUnital {} AdditiveRightUnital {}

over AdditivePointedMagma

combine AdditiveLeftUnital {} Unital {op to +; e to 0}

over LeftUnital

combine AdditiveRightUnital {} Unital {op to +; e to 0}

over RightUnital

In order to compute the three, we need to to do 3 pushouts as follows:

AUnital1 = combine AdditiveLeftUnital {} Unital {op to +; e to 0}

over LeftUnital

AUnital2 = combine AdditiveRightUnital {} Unital {op to +; e to 0}

over RightUnital

AdditiveUnital = combine AUnital1 {} AUnital2 {} over Unital
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The theories AUnital1, AUnital2, and AdditiveUnital are all equivalent. There-

fore, the graph would have 3 presentations of the theory of additive unital without

the graph realizing they are equivalent.

The same problem occurs when defining AdditiveMonoid and attempting to gen-

erate the three morphisms

• AdditiveUnitalÐ→ AdditiveMonoid

• AdditiveSemigroupÐ→ AdditiveMonoid

• MonoidÐ→ AdditiveMonoid

We considered the possibility of using colimits or diagram combinators as in [Rabe

and Sharoda, 2019]. In either case, we want to arrive at the right pushouts and

build diagrams or colimits on top of that. Noticing that in all our experiments, the

morphisms we wish to have that are not generated included an identity embedding, we

adopted the solution of enabling the user to add those identity embeddings between

theories.

The declarations that we use to define AdditiveMonoid are

Theory Empty = {}

Carrier = extend Empty {A : Set}

Pointed = extend Carrier {e : A}

Pointed0 = rename Pointed {e to 0}

Magma = extend Carrier {op : A -> A -> A}

AdditiveMagma = rename Magma {op to +}

Pointed0Magma =

combine Pointed0 {} PointedMagma {e to 0} over Pointed
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PointedPlusMagma =

combine AdditiveMagma {} PointedMagma {op to +} over Magma

AdditivePointedMagma =

combine Pointed0Magma {op to +} PointedPlusMagma {e to 0}

over PointedMagma

Semigroup =

extend Magma {assoc_op : {x y z : A} ->

op (op x y) z == op x (op y z)}

AdditiveSemigroup =

combine AdditiveMagma {} Semigroup plus over Magma

LeftUnital = extend PointedMagma {lunit_e : {x : A} -> op e x == x}

RightUnital = extend PointedMagma {runit_e : {x : A} -> op x e == x}

AdditiveLeftUnital =

combine AdditivePointedMagma {} LeftUnital {op to +; e to 0}

over PointedMagma

AdditiveRightUnital =

combine AdditivePointedMagma {} RightUnital {op to +; e to 0}

over PointedMagma

Unital = combine LeftUnital {} RightUnital {} over PointedMagma

AdditiveUnital =

combine AdditivePointedMagma {} Unital {op to +; e to 0}

over PointedMagma

idUnital = id from AdditiveRightUnital to AdditiveUnital

Monoid = combine Unital {} Semigroup {} over Magma
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AdditiveMonoid =

combine AdditiveUnital {} Monoid {op to +; e to 0} over Unital

idMonoid = id from AdditiveSemigroup to AdditiveMonoid

Note that although we give names to identity morphisms, we never needed to refer

to them in our development.

7.4 Discussion

In many cases, there are many ways to define a theory. We restrict using extend for

adding new concepts within their minimal context, like adding associativity to Magma.

Whenever associativity is needed in a different context, it should be transported

through rename and combine. In other words, a concept should only be defined once

and transported to different theories via morphisms. It is also reasonable to assume

that AdditiveMagma should be an ancestor for any theory that contain the binary

operation +. This means that many renames take place using combine operation,

rather than the rename one. For example, compare the following two definitions of

AdditiveSemigroup

1. AdditiveSemigroup = rename Semigroup {op to +}

2. AdditiveSemigroup =

combine AdditiveMagma {} Semigroup {op to +} over Magma

Definition 1 connects AdditiveSemigroup only to Semigroup, but definition 2

creates more embeddings and connects it to AdditiveMagma, Semigroup and Magma,

which enriches the graph with useful morphisms.
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We also find that using theories that are deeper in the hierarchy when possible

adds more structure for the graph. For example, here are two possible definitions of

CommutativeGroup:

1. CommutativeGroup =

combine CommutativeMagma {} Group {} over Magma

2. CommutativeGroup =

combine CommutativeMonoid {} Group {} over Monoid

The first definition does not connect CommutativeMonoid and CommutativeGroup,

despite the fact that they are related. The second definition connects them, while

also keeping the connection to CommutativeMagma through the path that exists from

it to CommutativeMonoid.

These observations stem from the fact that we are not only interested in computing

the output theory of the expression, but we are also interested in building a rich theory

graph that captures as much of the structure of mathematics as possible.

In some cases, a whole hierarchy has been developed and one may want to perform

a pushout of the whole graph along a morphism, in a similar way to [Rabe and

Sharoda, 2019] and as shown in Figure 7.6. We encountered this situation while

creating Semiring, as that is when the additive and multiplicative variants of the

theories are combined together. We have not implemented diagram combinators in

the Tog framework and leave this as future work.

Another line of future work is to support general morphisms as described in Sec-

tion 2.3.3 and their usage in the mixin combinator as described in [Carette et al.,

2019]. The mixin combinator computes a pushout of an embedding along a general
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AddMagma LeftRingoid

Magma RingoidSig Ringoid

MultMagma RightRingoid

PointedMagma PointedMagma@Ringoid

⋯

Figure 7.6: Shift the PointedMagma hierarchy to Ringoid

morphism. Given a general morphism [u∆] ∶ Γ→∆ and an embedding [uΦ] ∶ Γ→ Φ

and two injective renaming functions π∆ ∶ ∣ ∆ ∣ → S and πΦ ∶ ∣ Φ ∣ → S, the mixin is

defined as follows

M (u∆, uΦ, π∆, πΦ) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ1 ⋊Ξ2

embed∆ = [v∆] ∶ ∆→ Ξ

viewΦ = [vΦ] ∶ Φ→ Ξ

diag = [uv] ∶ Γ→ Ξ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where Ξ1 = π∆ ⋅∆ is the theory presentation resulting from applying the rename func-

tion π∆ to ∆ via substitution. Ξ2 = πΦ ⋅Φ+ is not a well-formed theory presentation,

instead, it is the result of applying πΦ to declarations of Φ that are not mappings

of declarations in Γ. In [Carette et al., 2019], a proof that the mixin operation as

described above is always defined has been presented.

For example, the morphism flip : Magma→ FlippedMagma shown in Section 2.3.3

can be used to construct flipped Semigroup as follows.

FlippedSemigroup = mixin flip {} Semigroup {}
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In this case, u∆ is the flip morphism, uΦ is the morphism Magma→ Semigroup.

Therefore, the resulting presentation pres will have definitions from FlippedMagma

and the associativity axiom from Semigroup.
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Chapter 8

The Flattener

Theory expressions to theory graph

The combinators from [Carette et al., 2019] has been implemented in [Rabe and

Sharoda, 2019; Carette and O’Connor, 2011b; Al-hassy, 2019]. With the exception

of [Rabe and Sharoda, 2019], the implementations and the associated libraries did

not emphasize the morphisms in the way presented in [Carette et al., 2019] and

summarized in the previous chapter. Instead, different theories are combined using

same-name-same-thing approach, which makes problems like the one in Figure 7.3

go undetected. This approach also computes results for expressions that should not

be meaningful in the language of combinators presented in [Carette et al., 2019].

Consider the following expression:

SemiRng = combine AdditiveCommutativeMonoid Semigroup Ringoid

over RingoidSig

An implementation that reflects the principles of the combinators will not be
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able to find a morphism between RingoidSig (the common source) and Semigroup

(the second target) to compute the expression above. The theory RingoidSig has

declarations for two binary operations, while Semigroup has only one. A morphism

from RingoidSig to Semigroup needs to drop one binary operation. This is not

possible given the choice of combinators that avoids a drop operation.

It is worth noting that by implementing the combinators we mean computing a

flattened version of the theory presentation described by the given expressions. This is

performed by the flattener that given a theory presentation produces a Tog dependent

record of declarations within the described theory presentation.

In Section 8.1 we discuss a modification in the syntax of combine from the one in

Section 7.2.3 and why we have it. We introduce the syntax of the language we im-

plement in Section 8.2 and start discussing the implementation in Section 8.3 by pre-

senting how we represent theories and morphisms in our framework. In Section 8.3.2

we present the type of the theory graph. The implementation of the combinators that

build the graph is presented in Section 8.3.3.

8.1 Referring to Morphisms

The extension and rename combinators need to identify a theory in the graph to

operate on and compute the output theory and morphism. The input theory is

part of the expression of the combinator. In the case of combine, the inputs to the

combinator are two morphisms and two rename functions. But the syntax introduced

for combine in Section 7.2.3 is not defined in terms of morphisms. Instead, it is

defined in terms of theories and the morphisms are left for the implementation to

infer them. For example, the expression
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combine CommutativeMagma {} AssociativeMagma {}

does give information that the targets of the two embeddings involved are the theories

CommutativeMagma and AssociativeMagma, but it does not specify the source of the

embeddings. The algorithm has three choices of the source theory, which is common

to both morphisms:

• If the source theory is Magma, the theory resulting from the combine operation

will have one binary operation that is both associative and commutative

• If the source theory is Carrier, then the definition is describing a theory (along

with the related morphisms) that has two binary operations, one associative and

the other commutative. But this theory will not be computed because of the

name clash; The user has to choose another name for one of the two operations.

A possible fix is:

combine CommutativeMagma {op to +} AssociativeMagma {op to *}

As the hierarchy gets deeper, this problem becomes more complicated. For exam-

ple, CommutativeGroup and IdempotentGroup have many more possibilities for their

common source.

The reason of this problem is that the syntax of the language presented in [Carette

et al., 2019] is based on naming target theories, while the operation is based on having

the embeddings available. This leaves the gap of using the target theories to infer

the embeddings. Using theories, instead of morphisms, in the syntax is a usability

decision. Morphisms do not have canonical names, mainly because they do not appear
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in informal mathematics. For example, it is hard to think of a name for the morphism

(that result of composition of morphisms) from the PointedMagma to Monoid theory.

It is easier to refer to it in terms of the source and the target than to give it any

name.

We use an approach that still uses theories for usability reasons but gives more

information for inferring the embeddings. We modify the syntax of combine in the

paper to have an over part similar to the initial work on the combinators [Carette

and O’Connor, 2012].

8.2 Theory Expressions

The language that we implement has the following syntax

Map m = {a0 to b0 ; ⋯ ; an to bn}

Theory T = {a0 : t0 ⋯ an : tn}

T′ = extend T {a0 : t0 ⋯ an : tn}

T′ = rename T m

T′ = combine T1 m1 T2 m2 over T

i = id from T1 to T2

where T, T′, T1, and T2 are theories, m, m1, and m2 are mappings that can be ei-

ther previously defined using the Map keyword or expanded as a list of mappings

{a0 to b0; ... ; an to bn}.

Although one can declare a theory with a list of declarations using the Theory

keyword, we only use it to create the empty theory.
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8.3 Implementation

In Chapter 7, we described the library we are building. This library is the output of

the flattener. In Section 8.2, we introduced the theory expressions we need so that

we can generate this library. These expressions are the inputs to the flattener. In

the sequel of this chapter, we describe the implementation of the flattener that reads

those theory expressions and generates the graph.

The graph consists of theories and morphisms. In Section 8.3.1 we describe the-

ories and morphisms, which are the basic components of the graph. We use them

to define the theory graph data structure in Section 8.3.2, as well as the definition

of a library. The combinators add the theories and morphisms to the graph. Their

implementation is described in Section 8.3.3.

8.3.1 Theories and Morphisms

Theories are the building blocks of the library. We defined a theory in DTT in

Section 2.2 as a telescope. It is captured by the type GTheory.

data GTheory = GTheory {

declarations :: [Constr],

waist :: Int }

The waist is needed to determine how many of the declarations are parameters,

as in [Al-hassy et al., 2019].

In our implementation we refer to morphisms as views. The type GView describes

morphisms as defined in Section 2.3. It consists of source and target theories, as well

as the mapping between them. We discussed the combinators we use to build the

80



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

library in Section 7.2. Since all the morphisms resulting from these combinators are

embeddings, the mapping between theories can be described as a name-to-name map.

data GView = GView {

source :: GTheory,

target :: GTheory,

rename :: Rename }

Here type Rename = Map.Map Name_ Name_ is the type of mapping functions.

8.3.2 Theory Graph Structure

A theory graph consisting of nodes and morphisms as described in Section 2.4. The

datatype TGraph defines a theory graph as a set of named theories for nodes and a

set of named views for edges.

data TGraph = TGraph {

_nodes :: Map.Map Name_ GTheory,

_edges :: Map.Map Name_ GView }

An alternative way to represent graphs would have been to include only the

_edges, as they contain information about theories. We preferred to keep both map-

pings to make it easier to lookup theories in the graph.

We noticed that in many cases, the same renames are being reused. So, we also

added a Mapping type that allows the user to define something like

Map plus-zero = {op to + ; e to 0}

and reuse it. Accordingly, a library consists of a theory graph and some mappings.
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data Library = Library {

_graph :: TGraph,

_renames :: Map.Map Name_ Rename }

8.3.3 Combinators

Now we describe the implementation of the expressions introduced in Section 8.2

and how they build instances of the type Library. The language extension that we

introduce to Tog is described in the type Language

data Language =

MappingC Name [RenPair]

| TheoryC Name [Constr]

| ModExprC Name ModExpr

where MappingC creates a mapping function, TheoryC creates a theory from a list of

declarations, and ModExprC is the constructor for creating theory expressions. We

discuss them in the following sections.

8.3.3.1 Mappings

A definition of a mapping is elaborated into an entry in the renames list of the library.

addMapping :: Name -> [RenPair] -> Library -> Library

addMapping nm rens =

over mappings (Map.insert (nm^.name) (renPairsToMapping rens))

over is the setter function we get by using Haskell lenses. It sets the mappings field
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of the library to a new instance of Map that adds the new mapping to the ones in the

input library.

8.3.3.2 Flat Theories

Given a theory presentation as a list of declarations, we construct the new theory and

add it to the list of theories in the graph without any morphisms connecting them to

other theories.

theory :: Name -> [Abs.Constr] -> Library -> Library

theory nm cList =

let newThry = GTheory cList waistNm

in over graph (over nodes (Map.insert (nm^.name) newThry))

8.3.3.3 Theory Expressions

The syntax for the theory expression is introduced in Section 8.1. We now discuss

their implementation. We start with the function updateGraph which adds theories

and morphisms to the graph:
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updateGraph :: Name_ -> Either GView PushOut -> TGraph -> TGraph

updateGraph nm (Left view) =

over nodes (Map.insert nm (target view)) .

over edges (Map.insert ("To"++nm) view)

updateGraph nm (Right ut) =

over nodes (Map.insert nm (target $ uLeft ut)) .

over edges (\e -> foldr (uncurry Map.insert) e

[("To"++nm++"1",uLeft ut),

("To"++nm++"2",uRight ut),

("To"++nm++"D",diagonal ut)])

The first argument to updateGraph is the name of the new theory. Then, the

function expects the morphisms resulting from the combinator to be added to the

graph. We know that all the combinators compute only one new theory. But, the

number of computed morphisms is different based on the combinators. extends and

rename generates one morphism, while combine generates three. We capture this

with the type Either GView PushOut, where Pushout is defined as

data PushOut = PushOut { -- of a span

uLeft :: GView,

uRight :: GView,

diagonal :: GView,

apex :: GTheory } -- common point

The names of the new morphisms are generated based on the names of the new

theories. Since a new theory with a user-given name is defined every time, we know
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that the new morphism names have not been generated before.

The functions computeExtend, computeRename, and computeCombine calculate

the new morphisms and theories.

1. Computing Extension The inputs to the extension operation is the theory

being extended and the new declarations. The new theory is obtained by concate-

nating the new declarations to the ones already in the theory, given that there is no

name clashes between new constructs, and that they are well-typed in the context

presented by the theory declarations.

The resulting view has the input theory as source and the computed theory as

target. The identity mapping is computed using the validateRen function, which

assigns a mapping to every symbol in the input theory. In the case of extension the

mapping is the identity.

computeExtend :: [Constr] -> GTheory -> GView

computeExtend newDecls srcThry =

GView srcThry (extThry newDecls srcThry) (validateRen srcThry Map.empty)

extThry :: [Constr] -> GTheory -> GTheory

extThry newConstrs thry@(GTheory constrs wst) =

if List.intersect newConstrNames (symbols thry) == []

then GTheory (constrs ++ newConstrs) wst

else error $ "Name clash detected!"

where newConstrNames = map getConstrName newConstrs
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2. Computing Rename Computing renames requires computing substitutions.

This requires traversing the internal representation of the theory and performing

substitution as needed. We use Haskell’s scrap-your-boilerplate package [Scrap Your

Boilerplate, 2019], based on [Lämmel and Jones, 2003], to perform the traversal. The

substitution is then performed using the gmap function.

gmap :: (Generics.Typeable a, Generics.Data b) => (a -> a) -> b -> b

gmap r x = Generics.everywhere (Generics.mkT r) x

gmap traverses an instance of type b changing every instance of a according to the

input function r. computeRename uses gmap to perform substitution to declarations

of the input theory, as follows:

computeRename :: Rename -> GTheory -> GView

computeRename namesMap thry =

GView thry (renameThy thry namesMap) (validateRen thry namesMap)

renameThy :: GTheory -> Rename -> GTheory

renameThy (GTheory constrs wst) m =

GTheory (gmap (mapAsFunc m) constrs) wst

3. Computing Combine The algorithm to compute the result of combining two

embeddings work as follows:

• Given the name of the source theory and the two theories to be combined, the

first step is to lookup the paths from the source to the target theory. The type

Path is defined as a non-empty list of GView. The function getPath searches
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the graph for a path between given source and target theories. It starts at the

target node and goes backwards, exploring the possible paths until it finds the

source. Because none of the combinators result in backward morphisms, we

know the theory graph has no cycles. Therefore, this simple search for a path

algorithm works. The two paths are used to construct two instances of QPath.

data QPath = QPath {

path :: Path,

ren :: Rename }

• At this point we have the two embeddings and the two rename functions. The

next step is to check the preconditions of combine as in equation 7.2.1. The

function checkGuards checks that all symbols in the source theory are mapped

to the same symbol after applying the rename function. The scope checker of

tog ensures the backwards direction of the equivalence in equation 7.2.1. If the

two instances of QPath passes the precondition, the pushout can be computed.

• The result theory is computed by taking the disjoint union of the declarations in

the source theory, the one on the left of the diamond (the first argument), then

the one on the right. Note that this operation is not commutative. If we take

the disjoint union of the source, right, then left theories, we get an equivalent

but not equal theory. The order of declarations will be different, but the two

theories will have the same declarations.
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newThry =

GTheory (disjointUnion3 (declarations srcMapped)

(declarations lThry)

(declarations rThry))

(waist srcMapped)

• The source and target of the resulting morphisms are easy to figure out. The

function allMaps calculate the mappings by composing the mappings in the

views on the path between the two theories, and then the one described by the

rename function.

lView = GView lt newThry $ validateRen lt (allMaps left)

rView = GView rt newThry $ validateRen rt (allMaps right)

diag =

GView commonSrc newThry $ validateRen commonSrc (allMaps left)
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Chapter 9

The Generator

Graph theories to generated constructions

The flattener compiles theory expressions into a graph of flat theories and morphisms

between them. The generator uses the flat theories and manipulate them in order to

generate some constructions that are useful when working with algebraic structures.

The algorithms used to generate these constructions correspond to how universal

algebra defines the constructions.

In Section 9.1, we discuss the requirements of a generation framework that is capa-

ble of generating these constructions. In Section 9.2, we present how we have handled

those requirements using Tog as the object language. We discuss the generation of

the constructions in Section 9.3. We further discuss our approach in Section 9.4.
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9.1 Generation Framework

Generating information based on the content of a theory requires dealing with theo-

ries as data, and therefore working at the meta-level. Meta programming frameworks

differ in their capabilities. We lay out here some basic operations that are required to

manipulate theories based on universal algebra definitions. Section 9.1.1 discusses how

theories are preprocessed so information can be generated from them. The require-

ments needed to generate this information are presented in details in Section 9.1.2

and summarized in Section 9.1.3.

9.1.1 Equational Theories

Theories of the graph are instances of GTheory type; see Section 8.3, which is a

representation of telescopes as in Equation 2.1.1. In this representation, declarations

of a theory are represented as members of the [Constr] type, where each Constr

has a name and an expression denoting its type. Universal algbera has a different

representation of theories, which is discussed in Section 3.1. It separates declarations

that describe sorts, functions symbols, and axioms. The first requirement to be able

to process theories based on universal algebra definitions is to be able to classify

theory declarations into these three groups.

9.1.2 Constructions

After presenting a theory as described by universal algebra, it can be used to gener-

ate the constructions we present in Section 3.2 and possibly more. We implemented
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record Monoid (A : Set )
: Set where

e : A
op : A −> A −> A
lunit : ...
runit : ...
assoc : ...

r ecord Product (A : Set )
: Set where

e : Prod A A
op : Prod A A −> Prod A A −> Prod A A
l un i t : . . .
r un i t : . . .
a s soc : . . .

r ecord Sig (A : Set )
: Set where

e : A
op : A −> A −> A

Figure 9.1: Manipulating Monoid theory presentation to generate its signature and
product theories.

the generation of signatures, product theories, homomorphisms, relational interpreta-

tions, and term languages as well as some functions to operate on them. We discuss

the requirements of generating each of them in the sequel of this section, where con-

structions with similar requirements are discussed together.

9.1.2.1 Signatures and Product Theories

Figure 9.1 shows how the theory presentation of Monoid can be manipulated to gen-

erate signature and product theories. When computing the signature of a theory,

one only needs to drop the axioms. Product theories are obtained by replacing every

occurrence of the sort A with the sort Prod A A. To generate them we need to be

able to alter the definitions in a theory, by dropping and by substitution.

9.1.2.2 Homomorphisms and Relational Interpretations

91



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

record Monoid (A : Set)

: Set where
e : A
op : A −> A −> A
lun i t : . . .
r un i t : . . .
a s soc : . . .

r ecord Hom {A1 A2 : Set}

(M1 : Monoid A1) (M2 : Monoid A2)
: Set where

hom : A1 −> A2
pres−e : hom (e M1) = e M2
pres−op : {x1 x2 : A1} −>

hom ( (op M1) x1 x2 ) =

(op M2) (hom x1) (hom x2)

Figure 9.2: Manipulating the Monoid theory presentation to generate its
homomorphism.

Homomorphisms are structure-preserving mappings between the carriers of two

algebras. Relational interpretations are structure-preserving relations between them.

Figure 9.2 shows how components of the definitions of Monoid are used to generate

its corresponding homomorphism theory. To generate them we need the following:

• A representation of 2 instances of a theory with the necessary bindings to define

these instances.

• A function/relation between elements of the carriers of the two instances.

• Preservation axioms for every function symbol. To generate these axioms, we

need the following:

– Projection fields of the instances. The names of these projections are

qualified if they are fields within a record. Otherwise, they are unqualified.

– Given a function symbol of the theory, with information about its name

and type, a representation of function application of that symbol.
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-- Basic
data MonoidTerm : Set where

op : MonoidTerm →
MonoidTerm →
MonoidTerm

e : MonoidTerm

-- Closed
data ClMonoidTerm (A : Set)

: Set where
sing : A → ClMonoidTerm A
op : ClMonoidTerm A →

ClMonoidTerm A →
ClMonoidTerm A

e : ClMonoidTerm A

-- Basic Open
data OpMonoidTerm (n : Nat)

: Set where
v : Fin n → OpMonoidTerm n
op : OpMonoidTerm n →

OpMonoidTerm n →
OpMonoidTerm n

e : OpMonoidTerm n

-- Open
data OpMonoidTerm2 (n : Nat) (A : Set)

: Set where
v : Fin n → OpMonoidTerm2 n A
sing : A → OpMonoidTerm2 n A
op : OpMonoidTerm2 n A →

OpMonoidTerm2 n A →
OpMonoidTerm2 n A

e : OpMonoidTerm2 n A

Figure 9.3: The term language of Monoid expressed in 4 different ways.

9.1.2.3 Term Languages

Some of the constructions we generate for a theory are term languages. We differenti-

ate between 4 different forms of term languages that differ in their expressive power,

as shown in Figure 9.3.

The Basic term language defines expressions created using the function symbols

of the theory. At this level of abstraction, referring to elements of the carrier is not

possible. Considering, for example, the binary operation of the basic Monoid term

language in Figure 9.3, op. Its arguments are either the constant e or another call

for op. Closed term languages solve this problem by providing the sing constructor,

abbreviation for singleton, that lifts an element of type A to an instance of the closed

term language. Assuming that the carrier is the type of natural numbers Nat, a
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possible term in the language would be op (sing (suc zero)) e.

Open term languages provides extra constructor to represent variables, represented

using the Fin type of finite sets, which depends on a number n : Nat representing

the size of the set of variables. This representation has the advantage that one can

easily add fresh variables by incrementing n. The two open term languages are shown

on the right hand side of Figure 9.3.

For all 4 versions, we need to generate a constructor for every function symbol

of the theory. The term languages that support referring to elements of the carrier

would have an extra constructor for singleton elements with arguments of type A; and

those that support language with variables would have an extra constructor whose

arguments has the type Fin n.

The requirements for generating these term languages is:

• A representation for inductive types and constructors.

• A representation of types for natural numbers Nat, finite sets Fin, and vec-

tors Vec.

9.1.2.4 Functions on Term Languages

After generating the term languages, we generate functions that manipulate them.

These functions are simplifier, evaluator, induction principle, staged term languages,

and staging using representation type that abstracts over the stage. Generating these

functions requires the following:

• Pattern matching on the constructors of the term language.

• Constructing recursive calls on the arguments of the pattern.
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9.1.3 Requirements

We summarize the different points presented in this section as requirements for the

generation framework:

1. A representation of equational theories.

2. A mechanism to manipulate the declarations in a theory, by dropping and by

substitution.

3. A representation of instances of a theory.

4. A mechanism to project fields of the instances.

5. A function/relation between elements of the carriers of the two instances.

6. A representation of function application of this field.

7. Computing patterns and recursive calls of a function declaration.

8. Creating inductive types and their constructors.

9. A representation of natural numbers, finite sets and vector types.

9.2 Tog Infrastructure

The generative framework we present here uses Haskell as a meta language to gen-

erate construction in Tog, the object language. We mainly manipulate the types in

Figure 6.1. In this Section we discuss how we implement the requirements that we

laid out in the previous section.
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We create a type EqTheory to describe first order equational theories as in Chap-

ter 3. In Secion 9.2.1 we describe this type, our definition of an instance of a theory,

and how we project fields of an instance. This Section covers requirements 1, 3, and

4. Note that requirement 2 for substitutions is done using the gmap function built for

the rename combinator as explained in Section 8.3.3.

In Section 9.2.2 we describe how we implement requirements 5, 6 and 7, which are

related to function definitions and applications. Requirements 8 and 9 are discussed

in Sections 9.2.3 and 9.2.4.

9.2.1 Equational Theories

An equational theory in universal algebra abstracts over theory presentations of alge-

braic structures and consists of a sort, a list of function symbols and a list of axioms,

as discussed in Section 2.2. We capture this definition of equational theories by the

type EqTheory.

data EqTheory = EqTheory {

_thyName :: Name_ , -- the name of the theory

_sort :: Constr , -- the sort of the theory

_funcTypes :: [Constr], -- the set of function symbols

_axioms :: [Constr], -- the set of axioms

_waist :: Int } -- the number of parameters

The waist is used in the same way as in GTheory from Section 8.2.
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Instances of Theories

We define a representation of an instance in terms of its name, the bindings that

constitute its parameters and the expression representing the type of this instance.

type EqInstance = (Name_,[Binding],Expr)

For example, an instance m : Monoid A would be represented as:

(m,[A : Set], Monoid A)

Instances are computed by the function eqInstance, where the second argument

is used to index the instance in cases where more than one is needed. In this case,

both the name of the instances and the names of the bindings are indexed using the

input number.

eqInstance :: EqTheory -> Maybe Int -> EqInstance

eqInstance thry indx =

let iname i = twoCharName (thry ^. thyName) i

binds i =

let bs = map fldsToHiddenBinds (args thry)

in if i == 0 then bs else indexBindings i bs

expr i =

let bnames = getBindingsNames (binds i)

in App $ mkArg (thry ^. thyName) : map mkArg bnames

in case indx of

Nothing -> (iname 0, binds 0, expr 0)

Just i -> (iname i, binds i, expr i)

The value of expr denotes the type of the instance by applying the name of the theory
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to the bindings.

Projecting Fields

Based on whether a declaration of a theory components is a parameter or a field,

referring to it will be different. For an instance m : Monoid A of a Monoid theory

that has the carrier as the only parameter, one would refer to the carrier with its

name A, but would refer to the constant e of theory as m.e. We provide the function

projectConstr to compute the projection of one of the declarations of a theory.

projectConstr :: EqTheory -> EqInstance -> Constr -> Expr

projectConstr thry (instName,binds,_) c@(Constr n _) =

if isArg thry c then App [mkArg $ findInBindings binds c]

else App [mkArg (n ^. name),mkArg instName]

Checking whether the declaration is a an argument or a field is done by the function

isArg that checks for the waist of the EqTheory.

A variant of projConstr is the function applyProjConstr projects the declaration

and applies it to variables based on its arity. Its return type is ([Binding],Expr)

where [Binding] represents the variables to which the declaration is applied

9.2.2 Functions

A function symbol has the type Constr which consists of its name and an expression

describing its type. We use the type FApp to describe the application of this function

symbol to some variables.
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type FType = Constr

type FApp = ([Binding],Expr)

The [Binding] in FApp refers to the variables the function is being applied to.

A function application is generated by fapp. The types of all the bindings is set

to be the sort of the theory. The expression is the name of the constr applied to its

arguments

fapp :: FType -> FApp

fapp (Constr n typ) =

let nm = n ^. name

arity = farity typ

vars = genVars arity

in if (arity == 0) then ([],App [mkArg nm])

else ([HBind (map mkArg vars) (etyp typ)],

App $ mkArg nm : map mkArg vars)

The arguments of the functions are generated using the genVars function and are

used to create the bindings and the function application expression.

When generating functions that manipulate the terms of the theory, like simplifiers

and evaluators, one need to pattern match on the function symbols. One common

operation on functions is pattern matching. We define the type class MkPattern and

its two instances for FType and Expr.

class MkPattern a where

mkPattern :: a -> Pattern

The pattern depends on the arity of the function symbol, and is generally the
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application of the name of the function symbol to its parameters.

if (arity == 0)

then IdP $ mkQName nm

else ConP (mkQName nm) $ map (IdP . mkQName) vars

The functions functor and functor' support applying a functor to an expression,

be it the name of a function symbol or a more complex expressions.

9.2.3 Datatypes

Some of the constructions that can be generated from theory presentations are repre-

sented as datatypes, like term languages. A datatype in Tog has the type Decl. The

type DTInst captures the instances of a datatype in the same way as EqInstance.

Similar to functions, we deal with datatypes in two different forms, definitions and

instances.

type DTDef = Decl

type DTInstance = (Name_,[Binding],Expr)

Instances are computed by the function tinstance. The bindings are computed

based on the parameters of the datatype. The expression denoting the type of the

instance is computed by applying the name of the datatype to the bindings used the

App constructor.

9.2.4 Prelude Definitions

The constructions that we defined here depends on some definitions that act as the

prelude of the library. We define these as literals:
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nat :: [String]

nat =

("data Nat : Set where { " ++

"zero : Nat ;" ++

"suc : Nat -> Nat }") : []

These strings are parsed by the function parseDecl, which turns it to a Tog definition

of type Decl.

9.3 Constructions For Free!

By providing the appropriate tools to operate over the internal syntax of Tog, we

are ready to generate the universal algebra constructions related to equational theory

presentations. In the following sections we describe the generation of these construc-

tions.

9.3.1 Signature

Signatures represent the language of the theory, without any properties governing

them. It is common in mathematics to talk about algebras over some signature.

Signatures are obtained from theory presentations by dropping axioms. In Tog, the

process of generating the signature is done in 3 steps via the signature_ function.

signature_ :: Eq.EqTheory -> Eq.EqTheory

signature_ = set Eq.thyName ("Sig") . set Eq.axioms [] . gmap ren

The function ren :: Name -> Name renames the fields of a theory by adding a suffix
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"S". This is needed because the Tog scope checker would not accept overloaded names

of fields within the same module. In case the code is exported into a system that

supports this kind of overloading, the suffix can be removed. Note that this rename

will be needed when generating any new construction. gmap function traverses the

EqTheory applying ren whenever a Name type is encountered. The Eq.axioms list is

set to be empty, dropping the axioms of the theory.

9.3.2 Product Algebra

Product algebras group together algebras of the same theories. The type Prod lifts a

type A to a type Prod A A, where Prod is standard product type. The lifting of the

type A is done via substitution of every A with Prod A A. The function productThry

uses this type to compute the product theory

productThry :: Eq.EqTheory -> Eq.EqTheory

productThry t =

let sortName = getConstrName (t ^. Eq.sort)

in set Eq.thyName ("Product") $

gmap (prodType sortName) $

gmap (ren sortName) t

The prodType function does the type lifting for the sort as follows:
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prodType :: Name_ -> Expr -> Expr

prodType sortName (App [a]) =

if (getArgName a) == sortName

then App [mkArg "Prod", a, a] else App [a]

prodType _ x = x

9.3.3 Homomorphism

Theories are presented as record declarations in Tog, and so are their homomorphisms.

The following function generates the homomorphism declaration:

homomorphism :: Eq.EqTheory -> Decl

homomorphism thry =

let nm = "Hom"

i1@(n1,b1,e1) = Eq.eqInstance thry (Just 1)

i2@(n2,b2,e2) = Eq.eqInstance thry (Just 2)

fnc = homFunc thry i1 i2 (thry ^. Eq.sort)

axioms = map (presAxiom thry i1 i2 fnc) (thry ^. Eq.funcTypes)

in Record (mkName nm)

(mkParams $ b1 ++ b2 ++

map (/(n,e) -> Bind [mkArg n] e) [(n1,e1),(n2,e2)])

(RecordDeclDef setType (mkName $ nm ++ "C")

(mkField $ fnc : axioms))

i1 and i2 are the two instances of thry created using eqInstance as described in the
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Section 9.2.1. Those instances are used to create the parameters of the homomor-

phisms using the mkParams function.

The declarations of the homomorphism record are the homomorphism function

and the preservation axioms. The function is generated by homFunc which uses the

function projectConstr, described in Section 9.2.1, to project the carriers of the two

instances.

homFunc :: Eq.EqTheory -> Eq.EqInstance -> Eq.EqInstance -> Constr

homFunc thry i1 i2 =

let carrier = thry ^. Eq.sort

in Constr (mkName homFuncName) $

Fun (Eq.projectConstr thry i1 carrier)

(Eq.projectConstr thry i2 carrier)

Equations of the preservation axioms are generated by the equation function.

It uses applyProjConstr, explained in 9.2.1, which give the expression of function

application as well as list of the variables its applied to.

(bind1,expr1) = Eq.applyProjConstr thry i1 constr Nothing

(_,expr2) = Eq.applyProjConstr thry i2 constr Nothing

These pieces are used to construct the Pi-type as follows

Pi (Tel bind1) $ Eq (lhs homFunc expr1) (rhs homFunc expr2)
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9.3.4 Relational Interpretation

A relational interpretation is a structure preserving relation. We discuss it in Sec-

tion 2.6. Its implementation looks very similar to that of homomorphism — a struc-

ture preserving function. Some of the similarities are that they are both records and

have the same parameters. However the fields are different. Instead of having a

function between the two carriers, we have a relation. The function mkInterpType

generates the type of the relation field. It looks very similar to the function homFunc,

except the type is a relation from carriers to the type Set as follows:

Fun (Eq.projectConstr thry i1 carrier) $

Fun (Eq.projectConstr thry i2 carrier) setTypeAsId

Then, we generate the axioms that guarantees preserving structure. For a binary

operation, this axiom would look as follows

interp -op : {x1 x2 : A1} {y1 y2 : A2} →

interp x1 y1 → interp x2 y2 →

interp (op x1 x2) (op y1 y2)

To generate these axioms, we call applyProjConstr to get the bindings and the func-

tion application expression, the same as done in homomorphism generation. Then,

we align them into lists of the form [x1,x2,op x1 x2] and [y1,y2,op y1 y2]. The

elements of the lists are used to create the axioms by applying the relation on the

corresponding elements from the two lists

zipWith (\x y -> App [mkArg (interpName^.name),x,y]) args1 args2
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9.3.5 Term Algebras

We capture the 4 forms by the type Term.

data Term = Basic

| Closed CarrierName

| BasicOpen NumOfVars

| Open NumOfVars CarrierName

The arguments to the constructors reflect the arguments of the term language in every

case. For example, the type OpMonoidTerm2 in Figure 9.3 has the type Open "n" "A".

In Section 9.3.5.1 we discuss the generation of the 4 different forms of term lan-

guages. We also generate some functions related to the term languages; functions

for simplifying terms of the language, evaluating them, constructing the induction

principles, and constructing the staged version of the term language. To generate

these functions, we need to generate their types and the definitions which consists of

patterns and expressions evaluating the value of the functions at the given pattern.

The types of the functions are generated by implementing a typeSig function for

each of them. Each of their declarations has the form:

FunDef Name [Pattern] FunDefBody

The patterns and expressions of every declaration is defined using the patternsExprs

function. In cases when there is more than one argument, some adjustments to the

patterns and/or expressions may be needed which are defined within the adjustPatterns

or adjustFunCalls functions. Finally, each one of the 4 forms of a term language

will have its own oneX function that generates the function X. These functions serve

as the interface for defining functions on the term language. We describe each one of
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these functions in Sections 9.3.5.2 – 9.3.5.5. We also generate a staged version of the

term language based on a representation type, which we discuss in Section 9.3.5.6.

9.3.5.1 Term Language

A term language represents the type of terms described by the theory. We use the

TermLang type to represent term languages.

data TermLang = TermLang {

termTy :: Term, -- One of the 4 forms

tname :: Name_, -- The name of the term language

params :: Params, -- The parameters of the type

cons :: [Constr] -- The constructors of the type

}

Starting from an EqTheory, the function tlang generates a TermLang. The pa-

rameters are decided depending on the value of termTy. The constructors of the type

are declared based on both the type of the term and the fields of the theory. A Closed

or Open term language would have constructors for constants

Constr (mkName singConstrNm)

(Fun (App [mkArg carrierNm]) declType)

A BasicOpen and Open term languages would have constructors for variables.

let fin = App [mkArg "Fin", mkArg natVarNm]

in Constr (mkName vconstrNm) (Fun fin expr)

In all cases, a constructor is generated for every function symbol of the theory
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constrs = map (constructorsHelper $ termType thryNm t) cs

where cs is the list of fields of the theory, termTyp generates the type of one argu-

ment of the function by calling liftType' that applies the name of the type to its

arguments. constructorsHelper repeats this type for as many times as needed for

the type of the constructor.

9.3.5.2 Simplifiers

Some simplification rules can be generated from theory presentations based on the

axioms, i.e. rewriting some terms into simpler forms based on equality axioms. For

every term language of a theory, we generate a simplification function based on this

idea.

For a term language L, the simplifier has the type L→ L. In cases when L is

parametrized, the type is preceded by the bindings. The bindings and the type ex-

pressions are computed by calling tlangInstance which uses the tinstance function

described in Section 9.2.3. The construction of the type aftewards is straightforward

as follows

(_,binds,typApp) = tlangInstance tl

typeExpr Basic = Fun typApp typApp

typeExpr _ = Pi (Tel binds) (Fun typApp typApp)

The simplification rules are then generated by the simpRules function. For every

equation t1= t2, the simplifier need to decide if any of the two terms of the equations is

simpler than the other. For this purpose, a well-founded ordering relation is needed.

We choose a very simple relation that produces a basic simplifer, i.e. we do not
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guarantee to reach the simplest form of the term. The relation we use is the length of

the term in the sense of its number of literals, computed using the following expression:

explength :: Expr -> Int

explength e = everything (+) (mkQ 0 $ \ (Name _) -> 1) e

The function minMax make sure the expressions are oriented in the right way:

minMax :: Expr -> Expr -> Maybe (Expr,Expr)

minMax e1 e2 =

if (explength e1 == explength e2) then Nothing

else if explength e1 < explength e2 then Just (e1,e2)

else Just (e2,e1)

The longer term is converted to an element of type Pattern and used as input to

the simplifier that maps to the shorter term.

simpRules :: EqTheory -> Term -> [(Pattern,Expr)]

simpRules thry term =

let mpng = Map.toList $ mapping thry term

axms = map (foldrenConstrs mpng) (thry ^. axioms)

in mapMaybe simplify axms

The choice of the simplification function can be changed to reflect a more complex

relation, by providing an alternative function that has the same type as minMax.

For simplification to be effective, one needs to traverse the expression looking for

subexpressions that can be simplified. The declarations that does the traversals is

generated by simpDecls. For each constructor, the function generate a pattern using
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mkPattern and a term using the fapp function as discussed in Section 9.2.2. The re-

cursive calls on the arguments of the expression is generated by calling adjustFuncCalls.

simpDecls :: Term -> [Constr] -> [(Pattern,Expr)]

simpDecls term ftyps =

zipWith ((,)) patterns fundefs

where patterns = map mkPattern ftyps

fundefs = map (functor' (adjustFuncCalls term) . fappExpr) ftyps

Lastly, if there are singleton or variable constructors they need to be returned as

is using the simpVarsConsts function.

simpVarsConsts :: [Constr] -> [(Pattern,Expr)]

simpVarsConsts cs =

zipWith ((,)) (map mkPattern cs) (map fappExpr cs)

The declarations of the simplifier is the result of concatenating all these declara-

tions as follows

simpRules thry term

++ simpDecls term (filter (not . isConstOrVar) cs)

++ simpVarsConsts (filter isConstOrVar cs)

Note that we do not generate the simplification functions for the Basic term

language. In some cases, like in Magma, the Basic term language does not have a base

case, and therefore a termination proof of the simplification function is not trivial.

Some theorem provers, like Lean, would not accept this definition.
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9.3.5.3 Evaluators

The evaluator generates 4 functions, one for every term language. In the simplest case,

the Basic term language, the evaluation function for Monoid will have the following

type

evalB : {A : Set} → Monoid A → MonoidTerm → A

An expression of type MonoidTerm is evaluated to an element of a carrier A on

which a monoid structure exists. The constructors of the language is mapped to

operations of the theory, in a way opposite to what was done to generate the term

language. Therefore, the function that generates the evaluator needs to deal with both

the equational theory and the term language. The types of the evaluator functions

are generated by the ftype function. The first step is to generate the definition of

instances of both

(eqbind,eqinst) = eqInstance thry Nothing

(tbind,tinst) = tinstance (tlToDecl termlang) Nothing

newBinds = unionBindings eqbind tbind

The functions eqInstance and tinstance generate instances of the theory and

the term languages, as explained in Sections 9.2.1 and 9.2.3. Both instances might

be parameterized, in which case some bindings need to be defined before they can

be declared. Those bindings are defined in eqbind and tbind. The bindings of the

function are the union of the two bindings.

Function declarations are defined for variables, constants and function symbols.

In case of variables, a call to the lookup' function is performed as follows
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[FunDef (mkName $ evalFuncName term) -- call for vars

(concatMap (cpattern instName term) vs)

(lookup' envName)

| not (null vs)]

where vs is the list of variable declarations. The function cpattern creates the

pattern for a constructor. lookup' creates a call to the lookup function. Creating

the function declaration for constants look very similar, except it returns the constant

itself.

[FunDef (mkName $ evalFuncName term) -- call for constants

(concatMap (cpattern instName term) constants)

constFunc

| not (null constants)]

For every other constructor in the type, a pattern of it is created using cpattern

and assigned to one of the declarations of the theory using funcDef.

zipWith (FunDef (mkName $ evalFuncName term))

(map (cpattern instName term) tDecls)

(map (funcDef eq instName term) eqDecls)

The value of the expression at each constructor is mapped to the corresponding

function symbol in the same order. This make sense as we deal with theories as

telescopes, and so order matters. When we generate the term language we do not

change the order. Now that we are assigning back those declarations, the order is

used to map them back.
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9.3.5.4 Induction Principle

Induction principles are defined over sets with well-founded relations. In the case of

structural induction, they are based on the subterm relation. Structural induction

requires a base case, a constant or variable symbol in the language. In cases like the

Basic term language of magma, the variables x and y of an expression op x y can

only be substituted by other op expressions and therefore never gets smaller. One

can argue that in this case the induction principle is not defined. Despite that, we

run the following experiment in Coq, which automatically generates the induction

principle for types declared as Inductive.

Inductive magma : Set := op : magma -> magma -> magma.

Check magma_ind.

The following induction principle is generated

magma_ind : forall P : magma -> Prop,

(forall m : magma, P m ->

forall m0 : magma, P m0 -> P (op m m0)) ->

forall m : magma, P m

A possible explanation is that the type magma is empty, and therefore it’s fine to have

its induction principle generated. Based on this observation, we decided to generate

the induction principle for all term languages.

For every constructor of the term language, we use fapp to generate the term

resulting from applying this function symbol to some bindings, along with these

bindings. To generate the induction principle for a predicate P, we need to generate
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a type stating that given proofs of P applied to the bindings, we can induce the proof

of P applied to the term. For every constructor the function typeFun does that.

if null binds then applyPred fexpr

else Pi (Tel binds) $

curryExpr $ concatMap applyPredToBindings binds

++ [applyPred fexpr]

In cases when the term language has a singleton or variable constructor, those

ones also need to be included in the type, but their construction is straightforward.

9.3.5.5 Staged Term Languages

Systems that support multi-stage programming (MSP) enables staging the evaluation

of expressions between a current (Now) stage and a future (Later) one. An expression

that is staged for a Later stage, is dealt with as Code. The details of MSP is discussed

in Section 2.7.

We generate functions to automatically add staging annotations to terms of the

term language of the theory, as follows

• constants (whether elements of the carrier or 0-ary functions) has values at the

current stage.

• variables do not have values until runtime.

• A function symbol can be computed if all its parameters have values at compile

time.

The generator depends on functions stage1, and stage2 that provides the lifting of

unary and binary expressions based on the status of their arguments. In cases when
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the expression are annotated for a Later stage, one need to be able to talk about their

Code as expressions instead of their values. Therefore, we need functions codeLift1

and codeLift2 to lift an expression to its Code version. To give more clarity, the

type of stage and codeLift function for unary operations are

codeLift1 : {A B : Set } → (A → B ) →

(CodeRep A s1 → CodeRep B s1)

codeLift1 f (Q x ) = Q (f x )

stage1 : {A B : Set } → (A → B ) →

(CodeRep A s1 → CodeRep B s1 ) →

Staged A → Staged B

stage1 f g (Now x) = Now (f x )

stage1 f g (Later (Computation _ x )) = Later (Computation Expr (g x))

The codeLift functions expects functions of specific arities. We have those func-

tions as declarations within a record, instead of function definitions within the mod-

ule. Tog does not treat them the same way; therefore we had to generate function

declarations for each constructor of the term langauge, in order to pass them to the

theory.

The codeLift and stage functions interplay together as follows:
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case exprArity expr of

0 -> App [mkArg "Now",mkArg $ n ^. name]

1 -> stageH "stage1" "codeLift1"

2 -> stageH "stage2" "codeLift2"

_ -> error "Cannot stage term, provide a staging function"

9.3.5.6 Representation types

Inspied by the tagless language embedding technique [Carette et al., 2009], we use

representation types to abstract over stages. Consider the following type based on

the term language of Monoid

record StagedRepr (A : Set) (Repr : Set → Set) : Set where

constructor repr

field

opT : Repr A → Repr A → Repr A

eT : Repr A

By instantiating Repr type with Staged, we can get the staged type for the terms

of Monoid as

taglsMon : StagedRepr MonoidTerm Staged

taglsMon = record {eT = Now e ; opT = stage2 op (codeLift2 op)}

The type Repr is defined internally as:

Bind [mkArg reprTypeName] $ Fun (App [mkArg "Set"]) (App [mkArg "Set"])]

The fields of the record are all generated by the following expression
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map (liftConstr reprTypeName) fdecls

where liftConstr would lift a type A into Repr A.

9.4 Discussion

Knowledge representation is a key part of a generation framework. Our representa-

tion of EqTheory follows from the axiomatic representation of algebraic structures as

presented in universal algebra. The definitions of FType and DType corresponds to

the representation of functions and datatype, respectively, in Tog. Less obvious was

the representations of instances EqInstance and DTInstance and function applica-

tion. Once the knowledge capture and utility functions presented in Section 9.2 are

in place, generating new constructions becomes a straight forward task.

Another useful lesson we learn here is about the importance of having a strong

and small core language for manipulating structures. Many things were easy to do in

Tog because it is a small system. But we also faced difficulties due to the immaturity

of some features in Tog. For example, the generated definition of induction is not

accepted by Tog’s type checker if the hidden argument {p} is not passed explicitly.

Most feature-rich systems, like Agda and Lean, will not need to have this argument

defined. Another needed feature is treating constructors as functions, where they

can be passed to higher order functions. Tog does not support that, although many

systems do.

Using this framework we are able to generate a library of 32459 lines of code

from the representation of 227 theories. Appendix B shows the generated defini-

tion for Monoid theory. All the generated files are present on github under https://
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github.com/ysharoda/Deriving-Definitions/tree/115462d85389/Library/generated.
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Chapter 10

The Exporter

Generated constructions to proof assistants

Generating the definitions of constructions from a theory presentation saves a lot

of library development time, but having these definitions in a feature-rich language

makes it even more useful. In this chapter we implement an automatic translator of

the library theories and their related constructions to Agda and Lean. This part is

related to the third research question from Section 1.1.

We study how different Agda and Lean are from Tog in Section 10.1. We discuss

our design of an exporter in Section 10.2. The implementation in Haskell, the meta-

language for Tog is disucssed in Section 10.3. We compare our generated Agda code

to the one in the Agda standard library [Agda Library, 2020] and discuss how close

we can get to the standard library presentation in Section 10.4. Similarly, we compare

the generated Lean code with Lean’s Mathlib library in Section 10.5. We end by a

discussion in Section 10.6.
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10.1 Beyond Tog

As an experimental small language, Tog lacks some features that are usually found

in main stream ones. In this section we discuss these features

10.1.1 Universes

Tog provides only one kind Set. It does not support a universe hierarchy, and so

in Tog Set : Set. On the other hand, Agda and Lean have an infinite number

of universes. This is expressed in Agda as Setn: Setn+1 for any natural number

n.1 All the constructions we generate belong to the same level, except for relational

interpretations, which describe a structure-preserving relation between two instances

of the theory; see Section 9.3.4. In Tog, relational interpretations are records and the

relation is a field of the record represented as

interp : A1 -> A2 -> Set

for types A1 and A2, which are carriers of the two instances. A record with this field

in Tog has a type Set and therefore belong to universe level zero. When exported to

Agda or Lean, its definition needs to have the type universe level 1.

10.1.2 Prelude Definitions

The constructions we generate from theory presentations depend on the Tog defini-

tions of Nat, Fin, Vec, and lookup. Tog does not support indexed types and defines

Fin as follows:

1In Lean, the hierarchy is expressed as Type n : Type (n+1) for any natural number n.
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data Fin (n : Nat) : Set where

fzero : (m : Nat) (p : n == suc m) -> Fin n

fsuc : (m : Nat) (p : n == suc m) (i : Fin m) -> Fin n

This leads to a rather complicated definition of the lookup function.

On the other hand, Agda supports indexed types, has a simpler definition of Fin

and lookup, and has these definitions in its standard library. Similarly, Lean has

types and functions for the same purposes, but with different names.

10.1.3 Equality Check in Pattern Matching

One of the things we generate is a simplifier that uses axioms like e * x ≡ x to

simplify expressions; see Section 9.3.5.2. In a theory that has a binary operation with

an inverse and a unit, like Group, a possible axiom is

op x (inv x) ≡ e

which would give rise to a simplification rule. To perform this simplification, one

needs to compare the two occurrences of x for equality. Non-linear pattern matching

is the case when the same variable name can occur more than once in patterns, in

which case the value referred to at these occurrences are considered equal. While Tog

accepts non-linear patterns, Agda and Lean are restricted to linear pattern matching

and would not accept that code. Therefore, to perform the simplification, we need to

compare them using decidable equality.
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10.1.4 Functions as Constructors

In Section 9.3.5.5 we discussed automatically annotating term languages to produce

staged expressions. We discussed a problem related to how Tog represents construc-

tors of a datatype. Tog does not allow passing constructors to higher order functions.

Instead, we had to define a function corresponding to these constructors and pass it

to the functions that lifts them to their staged versions. When exporting to Agda or

Lean, we do not need to keep this trick.

10.2 Exporter Design

The Tog definitions have all the information needed to mathematically present the

concepts they are describing. The process of exporting these definitions from Tog

to Agda or Lean can be seen as presenting them in a way that the target language

understands (type checks).

In the previous section, we discussed some of the misalignments between the

presentations of concepts in Tog versus Agda or Lean. The preprocessing manipulates

the syntax tree to resolve these issues. Afterwards, the exporter traverses the syntax

tree and prints the output in the format accepted by the target language. Language

specific keywords and options are specified using a configuration type. The design of

the exporter is illustrated in Figure 10.1.

10.3 Implementation

We now discuss our implementation of the design in Section 10.2. We start by dis-

cussing the preprocessing functions in Section 10.3.1 showing how they solve the
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Figure 10.1: The design of the exporter.

problems highlighted in Section 10.1. In Section 10.3.2 we introduce the Export

type class that performs that translation from the modified Tog syntax tree to the

definitions of the target language.

10.3.1 The Preprocessor

The first stage of the exporter is to preprocess the Tog syntax tree to account for

the issues discussed in Section 10.1. In this section, we discuss the manipulations

performed by the preprocessor.

10.3.1.1 Universes

To solve the universes problem, we provide the function universeLevel which checks

the fields of a record for a Set type. If it finds one, it sets the type of the record to

universe level 1, where the representation of the level is read from the config file.
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universeLevel :: Config -> Fields -> Doc

universeLevel conf flds =

text $

if elem "Set" $ everything (++) (mkQ [] (\ (Name (_,x)) → [x])) flds

then (level1 conf) else (level0 conf)

The function universeLevel is called every time a record header is printed.

10.3.1.2 The Prelude

Exporting the prelude definitions is done differently than exporting the generated

code. The configuration type includes information about how they are processed,

via the field prelude_includes :: Either FilePath ([ImportDecl],[String]).

If the value has the type FilePath, then the provided file includes the definitions of

the prelude. Otherwise, the configuration provides a list of import declarations, to be

added at the beginning of the prelude module, and a list of the names of definitions

to be exported. For example, the prelude_includes of the Agda configuration is:

Right (["open import Agda.Builtin.Equality",

"open import Agda.Builtin.Nat",

"open import Data.Fin",

"open import Data.Vec"]

,["Prod","Wrap","Stage","CodeRep","uncode","code","run",

"Choice","Comp","Staged","expr","const",

"stage0","stage1","stage2","codeLift1","codeLift2"])

The imports for modules other than prelude is defined using the imports config
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declaration.

The function mkImport creates import declarations for all modules based on the

information retrieved from the configuration. import_, open_, and openimport are

the keywords to import, open, or open-import a module in the target language. The

function reads the names of these modules and creates instances of Decl using the

corresponding constructors.

mkImports :: Config -> [String] -> [Decl]

mkImports conf imprts =

let getNames prefix =

if prefix == "" then []

else removePrefix conf $ filter (isPrefixOf prefix) imprts

createImport x = ImportNoArgs $ mkQName x

in (map (Import . createImport) $

(getNames $ import_ conf) \\ (getNames $ openimport conf))

++ (map (OpenImport . createImport) $ getNames (openimport conf))

++ (map (Open . mkQName) $

(getNames $ open_ conf) \\ (getNames $ openimport conf))

When importing functions, the order of their inputs may be different than that

used when calling the same function in Tog. This is the case with the definition of

lookup in Agda versus Tog where the two arguments are flipped. In Lean the function

name is nth and the arguments are also flipped with respect to the Tog definition.

To solve this problem, every target exporter has a function callFunc that adjusts

the call to the function. The one for Agda is:
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callFunc :: Expr -> Expr

callFunc a@(App [nm,_,a2,a3]) =

if (getArgName nm == "lookup") then App [nm,a3,a2] else a

callFunc e = e

callFunc is called before every function application is exported. Therefore, it can be

easily extended to adjust calls to any function.

10.3.1.3 Simplifier

One of the constructions that can be generated is decidable equality. In case it is

generated, it can be used to check for equality of variables. Since we do not generate

it, we remove simplification rules that includes two occurrences of the same variable

name in the pattern.

10.3.1.4 Functions as Constructors

Not allowing constructors to be passed to higher order functions resulted in creating

a function declaration for every constructor of term languages during the generation

phase of the interpreter. The function constructorsAsFunctions removes these

generated functions, as they are not needed for Agda or Lean. The function is defined

as follows:
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constructorsAsFunctionsHelper :: Config -> [Constr] -> [Decl] -> [Decl]

constructorsAsFunctionsHelper conf cs decls =

let cnames = map getConstrName cs

toFindNames = map opDeclToFuncName cnames

mapping = zip toFindNames cnames

in if(constructors_as_functions conf) then decls

else foldrenConstrs mapping $

filter (\d -> not $ elem (declName d) toFindNames) decls

cnames is a list of the names of the constructors and toFindNames is a list of their

corresponding functions. filter is used to remove these definitions from the list of

declarations of the module. foldrenConstrs is then used to substitute their names

with the names of the corresponding constructors.

10.3.1.5 Field Names

Another misalignment between Tog, Agda, and Lean is what names can be used for

fields. Agda does not allow them to be numbers. Lean does not accept numbers or

symbols like +, *, |>, <|. We provide a function replace that is called before any

Name is printed. The replace function for Agda is:
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replace :: String -> String

replace nm =

let pieces = splitOn "_" nm

cond = \x -> if (x == "0" || x == "1") then x ++ i else x

postProcess lst = (head lst) : (map ("_"++) $ tail lst)

in concat $ postProcess $ map cond pieces

A name which is just 0 or 1 is concatenated with a suffix i. The suffix is also

added if the 0 or 1 is part of a name, but is separated by _. This accounts for the

naming convention of the MathScheme library for axioms.

10.3.2 The Exporter

The type class, Export, prints the Tog definitions in a form accepted by the target

language, whose type checker is then called on them.

class Export a where

export :: Config -> a -> Doc

The Config type is used to describe the configuration of each language. It contains

details about language specific properties or pieces of syntax. For every type in the

Tog AST, we create an instance for the Export class. We use the Haskell pretty

printer provided by Text.PrettyPrint.Leijen, which is an implementation of the

pretty printer described in [Wadler, 2003].
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10.3.2.1 The Pretty Printer

In [Wadler, 2003], an algebra for defining pretty printers is introduced, based on 6

primitives:

(<>) :: Doc -> Doc -> Doc

empty :: Doc

text :: String -> Doc

line :: Doc

nest :: Int -> Doc -> Doc

layout :: Doc -> String

where Doc is the type of a document. The (<>) operation concatenates two doc-

uments. It is an associative operation with empty2 being its right and left unit.

On top of these primitives, we have used the following functions provided by the

Text.PrettyPrint.Leijen.

• (<+>) : concatenates two Doc instances with a space between them.

• (<$$>) : concatenates two Doc instances with a line in between them.

10.3.2.2 The Exporter Type Class

We present here some of the interesting instances of the Export type class3. Our

generator defines every theory along with its generated constructions in a Module.

Exporting a Module is described by the following instance:

2[Wadler, 2003] refers to empty as nil.
3The full code is available at: https://github.com/ysharoda/Deriving-Definitions/blob/

7e19c3c7d624/src/Tog/Exporting/export.hs.
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instance Export Module where

export conf (Module nm params decls) =

export conf imprts <$$>

text (m1 conf) <+> export conf nm <+> text (m2 conf) <+>

export conf params <+> text (m3 conf (isEmpty decls)) <$$>

(indent 2 $ export conf defs) <$$>

moduleEnd conf nm

where (imprts,defs) = split conf decls

isEmpty (Decl_ []) = True

isEmpty _ = False

In order to write one exporter with two target languages, we need to investigate

the commonalities and differences between them. The first obvious difference is the

keywords used. The exporter reads the keywords of the target language from its

configuration. On the level of modules, we use the configuration fields m1, ..., m4

as follows

m1 nm m2 params m3

...

m4

All configuration fields are printed using the text function.

Another difference between our two target languages is the structure of their

module system. The general structure of modules in Agda and Lean is
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module nm params where

import ...

...

import ...

section nm

...

end nm

The configuration of each language specifies the position of the import declara-

tions. The function split checks the configuration for this information and accord-

ingly splits the module declarations into those to be printed before its header (if any),

and those who are part of the module.

The moduleEnd function checks if the module needs to be closed with any key-

words, and whether the name of the module needs to be included as in Lean. The

export function is called on the components of the module, which are the name (nm),

the parameters (params) and the declarations within the module (decls).

The parameters of a module are represented as [Binding], which can be hidden

or explicit. Exporting the binding is done by calling export on its arguments and

type expression.
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instance Export Binding where

export conf binds =

let arguments as = hsep $ map (export conf) as

binding x =

arguments (getBindingArgs x) <+> text (bind_of_type conf)

<+> export conf (getBindingExpr x)

in case binds of

Bind _ _ -> parens $ binding binds

HBind _ _ -> braces $ binding binds

Every Binding consists of a set of arguments of type Arg that defines the variables

of the binding. The function getBindingExpr returns the type of those binding

arguments.

The body of the module consists of declarations of type [Decl]. Exporting each

of these declarations is straight forward by calling the export function on its compo-

nents. Function definitions in Agda are declared by writing the function names for

every pattern, while in Lean guards are used to declare the different patterns.

f : binds − list→ type − expr

f x0 .. xn = ...

...

def f binds − list ∶ type − expr

| x0 ... xn = ...

...

If the function name is part of the definition, then the configuration would have the

field fname set to True. The function funcHeader takes care of this case.

The instance of Export for Decl is:
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instance Export Decl where

export conf (TypeSig sig) = export conf sig

export conf (FunDef nm ps body) =

funcHeader (f5 conf) nm <+> (hsep $ map (export conf) ps)

<+> text (f6 conf) <+> export conf body <+> text (f7 conf)

where funcHeader flag fname =

if flag =="fname" then export conf fname else text flag

export conf (Data nm ps body) =

text (d1 conf) <+> export conf nm <+> text (d2 conf)

<+> export conf ps <+> text (d3 conf) <+> export conf body

<+> openDatatype conf nm

export conf (Record nm ps body) =

text (s1 conf) <+> export conf nm <+> text (s2 conf)

<+> export conf ps <+> text (s3 conf) <+> export conf body

export conf (Open imp) = text (open_ conf) <+> export conf imp

export conf (Import imp) = text (import_ conf) <+> export conf imp

export conf (OpenImport imp) =

text (openimport conf) <+> export conf imp

export conf (Module_ m) =

linebreak <+> export conf m <+> linebreak

export _ _ = empty

With instances of export for every type in the Tog abstract syntax, a single call

to export on the top level module of the tog library generates the equivalent Agda
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definitions4.

10.4 Comparison With Agda Standard Library

We compare the the definitions that we generate in Agda to those in its standard

library, highlighting how close we can get to them.

Algebraic structures in Agda are unparameterized records. For example, Monoid

is defined as5:

4The generated files available at: https://github.com/ysharoda/Deriving-Definitions/
tree/2a61c1ee190a/Library/generated/mathscheme-agda.

5source:https://github.com/agda/agda-stdlib/blob/84dcc85a8c6e/src/Algebra/
Bundles.agda.
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1 record Monoid c ` : Set (suc (c ⊔ `)) where

2 infixl 7 _●_

3 infix 4 _≈_

4 field

5 Carrier : Set c

6 _≈_ : Rel Carrier `

7 _●_ : Op2 Carrier

8 ε : Carrier

9 isMonoid : IsMonoid _≈_ _●_ ε

10

11 open IsMonoid isMonoid public

12

13 semigroup : Semigroup _ _

14 semigroup = record { isSemigroup = isSemigroup }

15

16 open Semigroup semigroup public using (rawMagma; magma)

17

18 rawMonoid : RawMonoid _ _

19 rawMonoid = record { _≈_ = _≈_; _●_ = _●_; ε = ε}

The definition of Monoid is universe polymorphic, c and ` refer to the universe lev-

els of the carrier and the equality relation. Lines 2 and 3 define notation for infix

binary symbols, specifying their precedence. Line 5 defines the carrier of the Monoid

structure. The carrier belongs to universe level c. Line 6 defines the equality used to

compare terms of Monoid. Since the algebraic hierarchy in Agda’s standard library is
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based on setoids, equality is explicitly defined for every algebraic structure. Lines 7

and 8 defines the function symbols of Monoid. The axioms of Monoid are defined by

instantiating the IsMonoid record, which can be seen as an unbundled variation of

the definition of Monoid. Given the function symbols of Monoid, the IsMonoid record

declares the axioms they need to satisfy. IsMonoid is defined as:

record IsMonoid (● : Op2) (ε : A) : Set (a ⊔ `) where

field

isSemiring : IsSemiring ●

identity : Identity ε

open IsSemigroup isSemigroup public

identityl : LeftIdentity ε ●

identityl = proj1 identity

identityr : Rightdentity ε ●

identityr = proj2 identity

The instance of IsMonoid, in the Monoid definition, is opened in line 11 so its dec-

larations can be accessed without qualifying their names. Lines 13 and 14 defines a

backward morphism from Monoid to Semigroup. This semigroup function defines a

Semigroup instance for every Monoid one. Lines 18 and 19 extracts an instance of

type RawMonoid for every instance of type Monoid.

The flattener described in Chapter 7 computes flat theories parametrized over the

carrier. By comparing the two representations we find that they mainly differ in three

aspects that we detail in the following sections.
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10.4.1 Predicate Style Presentations

A predicate style presentation for a theory Γ = (S,F ,E) splits its declarations into

two records. The isΓ record has the sort and function symbols as parameters, while

having the axioms as record fields. The second record, Γ, is an unparametrized record.

Starting from flattened theories, the following function generates isΓ:

isX :: GTheory -> GTheory

isX (GTheory constrs _) =

let newWaist = length (notAxiom constrs)

in GTheory (notAxiom constrs ++ axiom constrs) newWaist

The waist of a theory reflects the number of its parameters. The newWaist is set to

be the number of declarations that are not axioms.

The definition of the theory Γ is changed to include an isΓ instance.

adjustTheory :: Name_ -> GTheory -> GTheory

adjustTheory thryName (GTheory constrs wst) =

let isXName = "Is"++thryName

fsyms = notAxiom constrs

fsymNames = map (\ (Constr (Name (_,nm)) _) -> nm) fsyms

processName n = if elem n ["+","-","*"] then "("++n++")" else n

callIsX = [Constr (mkName $ "is"++thryName)

(App $ (mkArg isXName)

: (map (mkArg . processName) fsymNames))]

in GTheory (fsyms ++ callIsX) wst

These functions produce the following definitions for Monoid:
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record IsMonoid (A : Set ) (op : (A → (A → A ))) (e : A )

: Set where

constructor IsMonoidC

field

lunit_e : ({x : A } → (op e x ) ≡ x )

runit_e : ({x : A } → (op x e ) ≡ x )

associative_op : ({x y z : A } →

(op (op x y ) z ) ≡ (op x (op y z ) ))

record Monoid (A : Set ) : Set where

constructor MonoidC

field

op : (A → (A → A ))

e : A

isMonoid : (IsMonoid A op e )

There are three main differences between the IsMonoid in the Agda standard

library and the one generated here:

• The definition provided by the standard library does not have the carrier as a

parameter. The carrier is still part of the context, but is declared as an implicit

argument to the parent module.

• The standard library represents axioms as instances of records, like IsSemiring

and Identity. Automating this introduces a layer of complexity that we discuss

in Section 10.4.3.
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• Library definitions are universe polymorphic. Tog does not have universes and

all our generated records have the type Set.

10.4.2 Setoids Based Presentations

The algebraic hierarchy in Agda are defined over setoids, i.e. every carrier set is

equipped with its own equality. The theory of setoid can be obtained from the

Carrier theory using the extension combinator

Setoid = extend Carrier {eq : A -> A -> Set}

In our development, the equality used to represent the equations is Tog’s under-

lying propositional equality. It is part of the meta theory and is not reflected in the

theories or the morphisms of the graph. Therefore, switching to a different equality

would require doing that at the meta theory level.

On the other hand, if we start with a graph developed with equality at the theory

level, using setoids, one can switch to built-in equality by substitution.

10.4.3 Backwards Morphisms

The definition of Monoid in the Agda standard library includes backward morphisms

to semigroup definition that given a specific monoid would extract the semigroup

structure of it. Our theory presentation does not have this reference. The information

to generate these model morphisms is present in the theory graph. The graph has

a theory presentation morphism between Semigroup and Monoid, which triggers a

backwards morphism from Monoid to Semigroup. It is worth mentioning that a

mechanism to generate these morphisms in our setup will not, in all cases, produce
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the same model morphisms as the one in the Agda standard library. In this case,

we are depending on the structure of the graph which is different than the one in

Agda’s library. We leave the presentation of morphism information in Agda or Lean

as future work.

10.5 Comparison With Lean’s Mathlib

Monoid is defined in Mathlib as follows6:

@[ancestor semigroup has_one]

class monoid (M : Type u) extends semigroup M, has_one M :=

(one_mul : ∀ a : M, 1 * a = a) (mul_one : ∀ a : M, a * 1 = a)

while the definition provided by the exporter is:

structure monoid (a : Type) : Type :=

(op : a → a → a)

(e : a)

(lunit_e : ∀ {x : a}, op e x = x)

(runit_e : ∀ {x : a}, op x e = x)

(associative_op : ∀ {x y z : a}, op (op x y) z = op x (op y z))

There are two differences between the two definitions. First, monoid is defined as

an extension of both semigroup and has_one. In a theory graph model, this means

that identity morphisms exist between each of them and monoid. The has_one class

is the representation of a class with one point, which we have referred to as Pointed.

6source:https://github.com/leanprover-community/mathlib/blob/bc94d0524271/src/
algebra/group/defs.lean.
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Similar to the discussion we provided in Section 10.4.3, the information about the

hierarchy is available in the graph we construct. Note how the information provided

by the ancestor attribute is a repitition of the one provided by the extends keyword.

The only documentaion we could find for the ancestor attribute is a zulip thread

which explains that it is neded by some tactics like the one that computes the additive

version of a class.

The second difference is that monoid here is defined as a class, while the monoid

provided by our exporter is defined as a structure. To change the exported definition

to be a class we only need to change one keyword, which can be done easily. Yet, the

Lean elaborator deal with classes in a way different than structures. classes have one

instance for every carrier type, which enables the elaborator to infer this instance.

Therefore, accepting a qualified projection of a monoid field is more complicated.

For example, the expression for projecting the binary operation op of a monoid class

instance m : monoid a with a carrier a : Type is @monoid_class.op a m x y. The

Tog syntax tree does not keep track of whether the projected field belongs to a class or

a structure, which means we will need to keep track of this information in a separate

data structure and consult it whenever a field is being projected.

10.6 Discussion

The idea of exporting from one language to another has been discussed various times,

as we show in Section 11.2. Our work takes advantage from the fact that we export

from a small language, and therefore the source syntax tree is small and can be

manipulated easily.

As in Section 9.4, we noted here that some missing features in Tog, like universes
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and indexed types, makes the exporting process a bit harder. It is hard to decide

which features are needed for a core language that fits our purpose. This is one

way our work can be extended. We suggest studying theorem provers as a program

family, capturing their commonalities and variabilities via techniques like feature

models [Czarnecki and Eisenecker, 2000]. If we have this model, one can write a

staged exporter to different languages in the model, similar to what is explained

in [Czarnecki et al., 2005].
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Chapter 11

Related Work

Theorem provers have developed different techniques for developing the algebraic hi-

erarchy. We discuss them in Section 11.1. In 11.2 we present the current support for

automation provided by theorem provers. A language with strong reflection mech-

anisms can be extended to support the generative approach we discuss here. We

discuss reflection mechanisms in theorem provers in Section 11.3.

11.1 Formalizing the algebraic hierarchy

The algebraic hierarchy is a main part of the libraries of theorem provers. Several

efforts has been dedicated to organize them in a way that reflects their mathematical

structure.

Many formalizations depends on the unification algorithm to figure out the con-

nections between the different theories in the hierarchy. The simplest way is to use

inclusions to describe inheritance between two structures. This is used in [Geuvers

et al., 2002] where algebraic structures are presented as dependent records and user
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provided coercions are used to guide the unification algorithm. The hierarchy devel-

oped using this approach has been used to prove the fundamental theorem of algebra.

As has been noted by the authors, this technique does not support multiple inher-

itance, so there is no way to describe that a ring is both a monoid and an abelian

group. Canonical structures [Mahboubi and Tassi, 2013] is a mechanism for program-

ming the type inference, originally introduced to handle overloading of symbols. It

has been used to enable multiple inheritance in the development of the mathematical

components library [Mahboubi and Tassi, 2020] which has been used in the proof of

the odd order (Feit-Thompson) theorem [Gonthier et al., 2013]. Another approach

to building the algebraic hierarchy in Coq is using packed classes [Garillot et al.,

2009] which mainly solves the problem of multiple inheritance. This approach has

been extended in [Cohen et al., 2020] and [Sakaguchi, 2020] to overcome the com-

plexity of using it to build and maintain the hierarchy. [Cohen et al., 2020] creates

an ELPI [Dunchev et al., 2015; Tassi, 2018] plugin to Coq introducing a language for

building the algebraic hierarchy whose expressions are elaborated into packed classes.

One of the merits of this language is that the hierarchy can change without breaking

users’ code, i.e. it makes it possible to add new structures and connections between

them, while keeping the older ones. [Sakaguchi, 2020] provides invariants and algo-

rithms to validate the structure of the library. Type classes has been used to build the

algebraic hierarchy in Coq and Lean. In Coq [Spitters and Van der Weegen, 2011],

type class A extends type class B by having B become a field of A. The unification

algorithm is guided by using :> symbol instead of : when declaring the type. Multi-

ple inheritance is therefore possible. Lean [Team, 2019], on the other hand, provide

an extends operation through which one can state all the predecessors of a class.
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Lean also provide attributes that enables describing other ways in which structure

connect to each other. For example, the to_additive attribute describes that one

class is the additive version of another.

Depending on unification to infer connections between theories restricts the ways

in which they can be connected. Therefore, some systems allow general morphisms,

as explained in Section 2.3, which are capable of describing more complex relations

between theories. Many specification systems [Burstall and Goguen, 1980; Mosses,

2004; Smith, 1999; Durán and Meseguer, 2007] allow user provided general morphisms.

They mostly refer to them as views. It is common for these systems to provide com-

binators to build new theories by reusing older ones. In the theorem proving world,

Isabelle provides locale interpretations [Ballarin, 2006], IMPS provides theory inter-

pretations [Farmer et al., 1993], and MMT provides morphisms [Rabe and Kohlhase,

2013a]. Neither IMPS nor MMT provides combinators, which makes it hard to build

libraries of hundreds of theories, as the library developer needs to provide all theories

and morphisms manually. Isabelle provide locale expressions [Ballarin, 2003], which

are combinators to build locales and locale intepretations. However its combine op-

erator is based on same-name-same-thing principle, which has limitations that we

discussed in Section 7.1.

11.2 Automation in Theorem Provers

Automatic Generation of Information Although universal algebra construc-

tions have been formalized in type theory [Capretta, 1999; Gunther et al., 2018], we

did not encounter any big efforts to automate the generations of its constructions,

like we do in this work. In this section we discuss the limited efforts for generating
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information that we encountered in the literature.

Coq generates the induction principle for inductive types. Equality functions can

also be generated using Scheme Equality command. Coq’s approach for generat-

ing them is criticized in [Tassi, 2019]. In the cases when the inductive type uses a

container, the generated principle does not require that the predicate holds for ele-

ments of the container. Equality cannot be generated in these cases. [Tassi, 2019]

presents a Coq-ELPI plugin that generates equality tests and proofs for inductive

types. In [Liesnikov et al., 2020], MetaCoq is used to define equality and subterm

relations. [Cornes and Terrasse, 1996] suggests the inversion principle can also be

generated for inductive types.

A common form of automation in theorem provers is using hammers for proving

lemmas. The idea is to search a library for premises that are useful to prove the

given lemma and construct the proof accordingly. It is reported that hammers can

automatically find proofs for 40% of the Mizar library and close results in HOL sys-

tems [Blanchette et al., 2016]. The hammer technique is extended to Coq in [Czajka

and Kaliszyk, 2018].

Automatic Exporting between Theorem Provers Several translations be-

tween libraries of formal proofs has been done [Betzendahl and Kohlhase, 2018;

Kaliszyk and Pąk, 2018; Iancu et al., 2013]. In [Kaliszyk and Pak, 2019], declarative

proof outlines are exported from Mizar to Isabelle/Isar. The work in [Müller et al.,

2017] share our motivation of contributing to building large libraries of mathematics.

The idea is to provide concept alignment between different theorem provers. We can

see this approach useful as we expand our exporter to support different systems with

different underlying foundations.
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Code generation from theorem provers into one or more programming languages

has also been discussed in the literature. Both Coq [Letouzey, 2003; Cruz-Filipe and

Spitters, 2003] and Isabelle [Haftmann and Nipkow, 2010] provides code extraction

mechanisms from their theories and proofs into functional programs.

Logipedia [Dowek and Thiré, 2019] exports proofs written in the logical framework

Dedukti to multiple theorem provers. The supported targets are Coq, Lean, Matita,

OpenTheory, HOL-Light, and PVS. Lem [Mulligan et al., 2014] exports specifica-

tions to a programming language (OCaml), multiple theorem provers (Coq, HOL4,

Isabelle/HOL), Latex and HTML.

Another interesting work is the interface between Lean, a theorem prover, and

Mathematica, a computer algebra system [Lewis, 2017] which allows exchange of

information between the two systems in both directions.

Automation in Programming Languages (PL) Eliminating boilerplate is a

main field of research in the PL community, either by providing abstractions that

eliminates the need for the boilerplate code as in the scrap your boilerplate ap-

proach [Lämmel and Jones, 2003] or by generating this boilerplate for the users.

We have already mentioned deriving and its extensions [Magalhães et al., 2010;

Blöndal et al., 2018], and lenses [Lens Library, 2020]. Those techniques are pervasively

used in Haskell projects. OCaml provides the PPX preprocessor that manipulates the

OCaml AST corresponding to an input program [Rebours, 2019]. One form in which

PPX transforms OCaml programs is using derivers that allow writing a deriving defi-

nition as in Haskell. Macros, which are provided by multiple programming languages

can also be seen as a form of code generation with one application being removing

boilerplate. The work in [Ganz et al., 2001] presents a typed macro system that can
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be used to develop domain specific languages.

11.3 Reflection Mechanisms in Theorem Provers

Both Idris [Christiansen and Brady, 2016] and Lean [Ebner et al., 2017] provides meta

programming facilities that are very similar. In case of Idris, the meta programming

API provides tactics to query and manipulate proof states in the core language TT.

Lean uses the same philosophy, but instead of a core language, the tactics are based

on C++ procedures. In both cases, declarations in the environment can be queried

and the environment can be extended by adding new definitions. This makes them

convenient to generating definitions as we do in this work. Despite that, we find

that all discussions and examples are dedicated to constructing proof terms. The

realization that they can be used to provide definitions does not seem dominant, with

the exception of using Idris reflection to provide instances of Idris type classes Eq and

Show. Another problem is that the generated definitions are part of the environment,

but are not reflected back in the language of Idris or Lean. This makes it hard to

consider them part of a library.

Agda also has a reflection mechanism [van der Walt, 2012]. A serious limitation

is that the only top level declaration that can be generated are functions [Ede, 2019].

Coq’s Mtac is a meta language for constructing tactics that generate proof terms.

MetaCoq [Anand et al., 2018] is a more general way for supporting meta program-

ming in Coq by reflecting its kernel. Similar to Idris and Lean, the meta programming

facilities in Coq has not been applied to the problem of eliminating boilerplate, al-

though it’s been hinted at as a possible application area in [Anand et al., 2018].
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Chapter 12

Conclusion and Future Work

The main aim of this work is to reduce the labour needed to create libraries of formal

mathematics. We have introduced a 3-phase interpreter of declarative definitions

that uses combinators to define theories and morphisms of a library. Starting with

227 declarations of theories in the algebraic hierarchy, we generated 5,902 library

definitions spanning over 32459 lines of Tog code. This huge saving of human effort

proves how useful and promising a generative approach to library building can be.

In Section 12.1 we summarize the contributions of this work referring to how they

solve the research questions introduced in Section 1.1. In Section 12.2 we discuss

several extensions of this work.

A note on runtime. The user of our framework would encounter a big wait time

when running the interpreter described in Chapter 5 on a large library like the one

we develop here. It is worth mentioning that the main source of overhead is the type

checker, and not any of the operations we use to process the theory presentations. We

performed a simple runtime experiment in which we measure the runtime for every
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Stage Average Standard Deviation
Flattener 5.17s 0.18s
Generator 2.7s 0.06s
Exporter 9.1us 1.23us

Table 12.1: The average and standard deviation of the runtime of different stages of
the interpreter over 10 runs.

stage of the interpreter. In table 12.1 we report the average and standard deviation

over 10 runs. On the other hand, the type checker spent an average of 1686.81s

(approximately 28 minutes) over 3 runs with standard deviation 20.96s.

12.1 Summary of contributions

Universal algebra is a well-established abstraction over the details of the axiomatic

representation of algebraic structures. In Chapter 9 we present a framework that given

a theory presentation that has the structure defined by universal algebra, generates

many of its related constructions. Our framework generated 10 constructions for each

theory, but can be extended to support more structures. Specifically, we believe all

structures presented in the list in Section 3.2 can be generated within this framework.

The development of this framework answers the first research question positively that

universal algebra constructions can be automatically generated.

This leads us to the second research question about the preconditions for devel-

oping a generation platform. To generate the universal algebra constructions, one

needs to introspect the contents of a theory in the object language, and be able to

generate definitions in the same language. The introspection capabilities should be
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able to retrieve the names and types of every declaration in the theory and informa-

tion about which ones are parameters. The presence of these features are sufficient

for developing generation platform like the one we present here.

Generating information needs to start with a theory presentation to be manip-

ulated. We have shown in Figure 1.1 how theory presentations look different in

different formal systems and how they strongly reflect the design decisions of the

library builders, leading to a usability problem for projects that do not employ the

same decisions. In this work, we abstracted over two design decisions. The first is the

hierarchy used to develop the theory. To build our library we use the combinators

in [Carette et al., 2019] which are designed such that every theory can be flattened.

By providing the flattened representation for every theory in our library. The theories

are still connected in the underlying graph structure. The second design decision we

abstract over is the bundling of the declarations of the theory. We follow the approach

presented in [Al-hassy et al., 2019]. By adding a declaration to the type representing

theories reflecting how many of its components are parameters, one does not have to

fix specific elements as parameters. In both cases, the information being abstracted

over can be reintroduced, which answers the third research question.

Our approach saves huge human effort needed to build libraries by generating the

standard information that can be derived from given data. Writing these definitions

by hand is boring and error-prone. By using a generative approach to library develop-

ment, we can save the effort of writing thousands of definitions and make maintaining

these definitions easier, as changes would then amount to writing meta programs that

process the data in a different way. We answer research question 4 in more details in

future work.
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12.2 Future Work

Our work can be extended in different ways. The most immediate is adding more

definitions to be generated, as shown in the list in Section 3.2. Here we suggest more

ways of extending this work

Exporting to multiple front ends. Theory presentations look different from one

system to another. Even within the same system, they might look different between

the different projects. We believe that developers and users of formal systems should

not be writing the different presentations of the same information. Instead, they need

to describe how the presentation that fits their purpose looks like and a meta-program

should produce it for them. This can be done by investigating how different language

features interact and how they affect the theory presentations. This can be done

using a feature model [Czarnecki and Eisenecker, 2000]. The information captured

by the feature model can be used to generate a staged multiple front end exporter as

in [Czarnecki et al., 2005].

DSL for library development. If we have a feature model studying design deci-

sions and multiple front end exporter, and we use the combinators from [Carette et al.,

2019] as we did in Chapter 7, then we have the components to develop a domain-

specific language for building libraries. We envision expressions in this language being

like:
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Monoid = combine Unital and Semigroup over Magma

generate homomorphism, OpenTerms, Simplifier

using (waist=1,eq=Agda.Builtin.Equality)

export_to agda

or even referring to a whole graph and specifying the generation and exportation pa-

rameters the same way. The same expression can also be used to generate knowledge

“on demand" for user-provided theories, similar to Haskell’s derivings.

Generalized Algebraic Theories (GAT). GATs consist of a set of sorts, a set

of function symbols, and a set of axioms, each being the identity [Cartmell, 1986].

This definition is similar to that of algebraic theories that we presented in Section 2.2.

The generalization in GATs is that its sorts can interpret sets of functions or sets of

sets. A useful extension of our work is to use our meta programs to derive the same

information from GATs.
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Appendix A

Library Definitions

Theory Empty = {}

Carrier = extend Empty {A : Set}

Pointed = extend Carrier {e : A}

PointedZero = rename Pointed zero

PointedOne = rename Pointed one

TwoPointed = combine Pointed {e to e1} Pointed {e to e2} over Carrier

TwoPointed01 = rename TwoPointed {e to zero ; e to one}

UnaryOperation = extend Carrier {prim : A -> A}

PointedUnarySystem = combine UnaryOperation {} Pointed {} over Carrier

FixedPoint = extend PointedUnarySystem {fixes_prim_e : prim e == e}

Magma = extend Carrier {op : A -> A -> A}

AdditiveMagma = rename Magma plus

MultMagma = rename Magma times

PointedMagma = combine Pointed {} Magma {} over Carrier

InvolutiveMagmaSig =

combine UnaryOperation {} Magma {} over Carrier
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InvolutiveAddMagmaSig =

combine InvolutiveMagmaSig plus AdditiveMagma {} over Magma

InvolutiveMultMagmaSig =

combine InvolutiveMagmaSig times MultMagma {} over Magma

InvolutivePointedMagmaSig =

combine UnaryOperation {} PointedMagma {} over Carrier

Involution =

extend UnaryOperation {involutive_prim : {x : A} -> prim (prim x) == x}

UnaryDistributes =

extend InvolutiveMagmaSig

{distribute_prim_op : {x y : A} ->

prim (op x y) == op (prim x) (prim y) }

UnaryAntiDistribution =

extend InvolutiveMagmaSig

{antidis_prim_op : {x y : A} ->

prim (op x y) == op (prim y) (prim x) }

AdditiveUnaryAntiDistribution =

combine InvolutiveAddMagmaSig {} UnaryAntiDistribution plus

over InvolutiveMagmaSig

MultUnaryAntiDistribution =

combine InvolutiveMultMagmaSig {} UnaryAntiDistribution times

over InvolutiveMagmaSig

IdempotentUnary =

extend UnaryOperation

{idempotent_prim : {x : A} -> prim (prim x) == prim x}

156



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

InvolutiveMagma =

combine Involution {} UnaryAntiDistribution {} over UnaryOperation

LeftInverseMagma = rename Magma linv

RightInverseMagma = rename Magma rinv

IdempotentMagma = extend Magma {idempotent_op : {x : A} -> op x x == x}

IdempotentAdditiveMagma =

combine AdditiveMagma {} IdempotentMagma plus over Magma

IdempotentMultMagma =

combine MultMagma {} IdempotentMagma times over Magma

Pointed0Magma = combine PointedZero {} PointedMagma zero over Pointed

PointedPlusMagma = combine AdditiveMagma {} PointedMagma plus over Magma

AdditivePointedMagma =

combine Pointed0Magma plus PointedPlusMagma zero over PointedMagma

Pointed1Magma = combine PointedOne {} PointedMagma one over Pointed

PointedTimesMagma = combine MultMagma {} PointedMagma times over Magma

MultPointedMagma =

combine Pointed1Magma times PointedTimesMagma one over PointedMagma

CommutativeMagma =

extend Magma {commutative_op : {x y : A} -> op x y == op y x}

CommutativeAdditiveMagma =

combine AdditiveMagma {} CommutativeMagma plus over Magma

CommutativePointedMagma =

combine PointedMagma {} CommutativeMagma {} over Magma

AntiAbsorbent =

extend Magma {antiAbsorbent : {x y : A} -> op x (op x y) == y}
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SteinerMagma = combine CommutativeMagma {} AntiAbsorbent {} over Magma

Squag = combine SteinerMagma {} IdempotentMagma {} over Magma

PointedSteinerMagma = combine PointedMagma {} SteinerMagma {} over Magma

UnipotentPointedMagma =

extend PointedMagma {unipotence : {x : A} -> op x x == e}

Sloop =

combine PointedSteinerMagma {} UnipotentPointedMagma {}

over PointedMagma

LeftDistributiveMagma =

extend Magma

{leftDistributive : {x y z : A} ->

op x (op y z) == op (op x y) (op x z)}

RightDistributiveMagma =

extend Magma

{rightDistributive : {x y z : A} ->

op (op y z) x == op (op y x) (op z x)}

LeftCancellativeMagma =

extend Magma

{leftCancellative : {x y z : A} -> op z x == op z y -> x == y }

RightCancellativeMagma =

extend Magma

{rightCancellative : {x y z : A} -> op x z == op y z -> x == y }

CancellativeMagma =

combine LeftCancellativeMagma {} RightCancellativeMagma {}

over Magma
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LeftUnital = extend PointedMagma {lunit_e : {x : A} -> op e x == x}

RightUnital = extend PointedMagma {runit_e : {x : A} -> op x e == x}

Unital = combine LeftUnital {} RightUnital {} over PointedMagma

LeftBiMagma = combine Magma {} LeftInverseMagma {} over Carrier

RightBiMagma = rename LeftBiMagma {linv to rinv}

LeftCancellative =

extend LeftBiMagma {leftCancel : {x y : A} -> op x (linv x y) == y}

LeftCancellativeOp =

extend LeftBiMagma {lefCancelOp : {x y : A} -> linv x (op x y) == y}

LeftQuasiGroup =

combine LeftCancellative {} LeftCancellativeOp {} over LeftBiMagma

RightCancellative =

extend RightBiMagma {rightCancel : {x y : A} -> op (rinv y x) x == y}

RightCancellativeOp =

extend RightBiMagma {rightCancelOp : {x y : A} -> rinv (op y x) x == y}

RightQuasiGroup =

combine RightCancellative {} RightCancellativeOp {} over RightBiMagma

QuasiGroup = combine LeftQuasiGroup {} RightQuasiGroup {} over Magma

MedialMagma =

extend Magma {mediates : {w x y z : A} ->

op (op x y) (op z w) == op (op x z) (op y w)}

MedialQuasiGroup = combine QuasiGroup {} MedialMagma {} over Magma

MoufangLaw = extend Magma

{moufangLaw : {e x y z : A} -> (op y e) == y ->

op (op (op x y) z) x == op x (op y (op (op e z) x))}
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MoufangQuasiGroup = combine QuasiGroup {} MoufangLaw {} over Magma

LeftLoop = combine RightUnital {} LeftQuasiGroup {} over Magma

Loop = combine Unital {} QuasiGroup {} over Magma

MoufangIdentity = extend Magma {moufangId : {x y z : A} ->

op (op z x) (op y z) == op (op z (op x y)) z}

MoufangLoop = combine Loop {} MoufangIdentity {} over Magma

LeftShelfSig = rename Magma lshelf

LeftShelf =

combine LeftShelfSig {} LeftDistributiveMagma lshelf over Magma

RightShelfSig = rename Magma rshelf

RightShelf =

combine RightShelfSig {} RightDistributiveMagma rshelf over Magma

ShelfSig = combine LeftShelfSig {} RightShelfSig {} over Carrier

LeftRack = combine ShelfSig {} LeftShelf {} over LeftShelfSig

RightRack = combine ShelfSig {} RightShelf {} over RightShelfSig

Shelf = combine LeftRack {} RightRack {} over ShelfSig

LeftBinaryInverse =

extend ShelfSig {leftInverse : {x y : A} -> <| (|> x y) x == y}

RightBinaryInverse =

extend ShelfSig {rightInverse : {x y : A} -> |> x (<| y x) == y}

BinaryInverse =

combine LeftBinaryInverse {} RightBinaryInverse {} over ShelfSig

Rack = combine Shelf {} BinaryInverse {} over ShelfSig

LeftIdempotence =

combine IdempotentMagma lshelf LeftShelfSig {} over Magma
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RightIdempotence =

combine IdempotentMagma rshelf RightShelfSig {} over Magma

LeftSpindle =

combine LeftShelf {} LeftIdempotence {} over LeftShelfSig

RightSpindle =

combine RightShelf {} RightIdempotence {} over RightShelfSig

LeftSpindle_ShelfSig =

combine LeftSpindle {} ShelfSig {} over LeftShelfSig

RightSpindle_ShelfSig =

combine RightSpindle {} ShelfSig {} over RightShelfSig

LeftSpindle_Shelf =

combine LeftSpindle {} Shelf {} over LeftShelf

RightSpindle_Shelf =

combine RightSpindle {} Shelf {} over RightShelf

Spindle =

combine LeftSpindle_Shelf {} RightSpindle_Shelf {} over Shelf

Quandle =

combine Rack {} Spindle {} over Shelf

RightSelfInverse = extend LeftShelfSig

{rightSelfInverse_|> : {x y : A} -> (|> (|> x y) y) == x}

Kei = combine LeftSpindle {} RightSelfInverse {} over LeftShelfSig

Semigroup = extend Magma

{associative_op : {x y z : A} -> op (op x y) z == op x (op y z)}

AdditiveSemigroup = combine AdditiveMagma {} Semigroup plus over Magma

MultSemigroup = combine MultMagma {} Semigroup times over Magma
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CommutativeSemigroup =

combine CommutativeMagma {} Semigroup {} over Magma

AdditiveCommutativeSemigroup =

combine AdditiveMagma {} CommutativeSemigroup plus over Magma

MultCommutativeSemigroup =

combine MultMagma {} CommutativeSemigroup times over Magma

LeftCancellativeSemigroup =

combine Semigroup {} LeftCancellativeMagma {} over Magma

RightCancellativeSemigroup =

combine Semigroup {} RightCancellativeMagma {} over Magma

CancellativeSemigroup =

combine Semigroup {} CancellativeMagma {} over Magma

CancellativeCommutativeSemigroup =

combine CommutativeSemigroup {} CancellativeSemigroup {}

over Semigroup

InvolutiveSemigroup =

combine Semigroup {} InvolutiveMagma {} over Magma

InvolutivePointedSemigroup =

combine PointedMagma{} InvolutiveSemigroup {} over Magma

Band = combine Semigroup {} IdempotentMagma {} over Magma

MiddleAbsorption =

extend Magma {middleAbsorb_* : {x y z : A} -> op (op x y) z == op x z}

MiddleCommute =

extend Magma {middleCommute_* : {x y z : A} ->

op (op (op x y) z) x == op (op (op x z) y) x}
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RectangularBand = combine Band {} MiddleCommute {} over Magma

NormalBand = combine Band {} MiddleCommute {} over Magma

RightMonoid = combine RightUnital {} Semigroup {} over Magma

LeftMonoid = combine LeftUnital {} Semigroup {} over Magma

PointedSemigroup = combine Semigroup {} PointedMagma {} over Magma

AdditivePointedSemigroup =

combine PointedSemigroup plus-zero AdditivePointedMagma {}

over PointedMagma

AdditiveUnital =

combine AdditivePointedMagma {} Unital plus-zero over PointedMagma

MultPointedSemigroup =

combine PointedSemigroup times-one MultPointedMagma {}

over PointedMagma

MultUnital =

combine MultPointedMagma {} Unital times-one over PointedMagma

Monoid = combine Unital {} Semigroup {} over Magma

AdditiveMonoid = combine AdditiveUnital {} Monoid plus-zero over Unital

MultMonoid = combine MultUnital {} Monoid times-one over Unital

id3 = id from MultSemigroup to MultMonoid

DoubleMonoid = combine AdditiveMonoid {} MultMonoid {} over Carrier

Monoid1 = combine PointedOne {} Monoid one over Pointed

CommutativeMonoid =

combine Monoid {} CommutativeSemigroup {} over Semigroup

CancellativeMonoid = combine Monoid {} CancellativeMagma {} over Magma

CancellativeCommutativeMonoid =

combine CancellativeMonoid {} CommutativeMonoid {} over Monoid163
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LeftZero = extend PointedMagma {leftZero_op_e : {x : A} -> op e x == e}

RightZero = extend PointedMagma {rightZero_op_e : {x : A} -> op x e == e}

Zero = combine LeftZero {} RightZero {} over PointedMagma

Left0 = combine LeftZero zero PointedZero {} over Pointed

Right0 = combine RightZero zero PointedZero {} over Pointed

ComplementSig = rename UnaryOperation {prim to compl}

CommutativeMonoid1 = combine CommutativeMonoid one Monoid1 {} over Monoid

AdditiveCommutativeMonoid =

combine AdditiveMonoid {} CommutativeMonoid plus-zero over Monoid

MultCommutativeMonoid =

combine MultMonoid {} CommutativeMonoid times-one over Monoid

BooleanGroup = combine Monoid {} UnipotentPointedMagma {} over PointedMagma

InverseUnaryOperation = rename UnaryOperation inv

InverseSig =

combine InverseUnaryOperation {} InvolutivePointedMagmaSig inv

over UnaryOperation

LeftInverse =

extend InverseSig

{leftInverse_inv_op_e : {x : A} -> op x (inv x) == e}

RightInverse =

extend InverseSig

{rightInverse_inv_op_e : {x : A} -> op (inv x) x == e}

Inverse = combine LeftInverse {} RightInverse {} over InverseSig

PseudoInverseSig =

combine InvolutiveMagmaSig inv InverseUnaryOperation inv
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PseudoInverse =

extend PseudoInverseSig {quasiInverse_inv_op_e : {x : A} ->

op (op x (inv x)) x == x}

PseudoInvolution = extend PseudoInverseSig

{quasiRightInverse_inv_op_e : {x : A} ->

op (op (inv x) x) (inv x) == inv x}

RegularSemigroup = combine Semigroup {} PseudoInverse {} over Magma

QuasiInverse =

combine PseudoInverse {} PseudoInvolution {}

over PseudoInverseSig

Group = combine Monoid {} Inverse {} over PointedMagma

Group1 = combine Group one Monoid1 {} over Monoid

AdditiveGroup =

combine AdditiveMonoid {} Group plus-zero-neg over Monoid

CommutativeGroup = combine Group {} CommutativeMonoid {} over Monoid

MultGroup = combine MultMonoid {} Group times-one over Monoid

AbelianGroup =

combine CommutativeGroup times-one MultGroup {} over Group

AbelianAdditiveGroup =

combine CommutativeGroup plus-zero-neg AdditiveCommutativeMonoid {}

over CommutativeMonoid

RingoidSig = combine MultMagma {} AdditiveMagma {} over Carrier

NonassociativeNondistributiveRing =

combine AbelianGroup {} RingoidSig {} over MultMagma
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LeftRingoid =

extend RingoidSig {leftDistributive_*_+ : {x y z : A} ->

* x (+ y z) == + (* x y) (* x z)}

RightRingoid =

extend RingoidSig {rightDistributive_*_+ : {x y z : A} ->

* (+ y z) x == + (* y x) (* z x)}

Ringoid = combine LeftRingoid {} RightRingoid {} over RingoidSig

NonassociativeRing =

combine NonassociativeNondistributiveRing {} Ringoid {} over RingoidSig

PrimRingoidSig = combine RingoidSig {} UnaryOperation {} over Carrier

AndDeMorgan =

extend PrimRingoidSig {andDeMorgan_*_+_prim : {x y z : A} ->

prim (* x y) == + (prim x) (prim y) }

OrDeMorgran =

extend PrimRingoidSig {orDeMorgan_+_*_prim : {x y z : A} ->

prim (+ x y) == * (prim x) (prim y) }

DualDeMorgan = combine AndDeMorgan {} OrDeMorgran {} over PrimRingoidSig

NonDistributiveAddPreSemiring =

combine AdditiveCommutativeSemigroup {} RingoidSig {} over AdditiveMagma

AssociativeLeftRingoid =

combine MultSemigroup {} LeftRingoid {} over MultMagma

LeftPreSemiring =

combine AssociativeLeftRingoid {} NonDistributiveAddPreSemiring {}

over RingoidSig
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AssociativeRightRingoid =

combine MultSemigroup {} RightRingoid {} over MultMagma

RightPreSemiring =

combine AssociativeRightRingoid {} NonDistributiveAddPreSemiring {}

over RingoidSig

PreSemiring = combine LeftPreSemiring {} RightRingoid {} over RingoidSig

AssocPlusRingoid =

combine RingoidSig {} AdditiveSemigroup {} over AdditiveMagma

AssocTimesRingoid = combine RingoidSig {} MultSemigroup {} over Magma

AssociativeNonDistributiveRingoid =

combine AssocPlusRingoid {} AssocTimesRingoid {} over RingoidSig

NearSemiring =

combine AssociativeNonDistributiveRingoid {} RightRingoid {}

over RingoidSig

AddGroup_RingoidSig =

combine AdditiveGroup {} RingoidSig {} over AdditiveMagma

NearRing =

combine AddGroup_RingoidSig {} AssociativeRightRingoid plus-zero

over RingoidSig

PointedTimesZeroMagma =

combine PointedTimesMagma zero Pointed0Magma times over PointedMagma

Zero0 = combine Zero times-zero PointedTimesZeroMagma {} over PointedMagma

Ringoid0Sig =

combine AdditivePointedMagma {} PointedTimesZeroMagma {}

over PointedZero
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id' = id from RingoidSig to Ringoid0Sig

Ringoid1Sig = combine MultPointedMagma {} RingoidSig {} over MultMagma

Ringoid01Sig = combine Ringoid0Sig {} Ringoid1Sig {} over RingoidSig

AddCommMonWithMultMagma =

combine AdditiveCommutativeMonoid {} Ringoid0Sig {}

over AdditivePointedMagma

AddCommMonWithMultSemigroup =

combine AddCommMonWithMultMagma {} MultSemigroup {} over MultMagma

SemiRng =

combine AddCommMonWithMultSemigroup {} Ringoid {} over RingoidSig

Rng =

combine AbelianAdditiveGroup {} SemiRng {} over AdditiveCommutativeMonoid

SemiRngWithUnit = combine MultMonoid {} SemiRng {} over MultSemigroup

Zero_Ringoid0Sig =

combine Zero0 {} Ringoid0Sig {} over PointedTimesZeroMagma

Semiring = combine SemiRngWithUnit {} Zero_Ringoid0Sig {} over Ringoid0Sig

Ring = combine Rng {} Semiring {} over SemiRng

CommutativeRing = combine MultCommutativeMonoid {} Ring {} over MultMonoid

PrimAdditiveGroup =

rename AbelianGroup {U to S ; * to *_ ; inv to inv_ ; 1 to 0_}

BooleanRing =

combine CommutativeRing {} IdempotentMultMagma {} over MultMagma

IdempotentSemiRng =

combine SemiRng {} IdempotentAdditiveMagma {} over AdditiveMagma

168



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

IdempotentSemiring =

combine Semiring {} IdempotentAdditiveMagma {} over AdditiveMagma

InvolutiveFixes = combine FixedPoint one PointedOne {} over Pointed

InvolutiveRingoidSig =

combine InvolutiveMultMagmaSig {} InvolutiveAddMagmaSig {}

over UnaryOperation

id2 = id from RingoidSig to InvolutiveRingoidSig

RingoidWithInvolution =

combine Ringoid {} InvolutiveRingoidSig {} over RingoidSig

InvolutiveFixedPoint =

combine InvolutiveFixes {} Involution {} over UnaryOperation

RingoidWithMultAntiDistrib =

combine MultUnaryAntiDistribution {} RingoidWithInvolution {}

over InvolutiveMultMagmaSig

RingoidWithAddAntiDistrib =

combine AdditiveUnaryAntiDistribution {} RingoidWithInvolution {}

over InvolutiveAddMagmaSig

InvolutiveRingoidWithAntiDistrib =

combine RingoidWithAddAntiDistrib {} RingoidWithMultAntiDistrib {}

over RingoidWithInvolution

InvolutiveRingoid =

combine InvolutiveFixedPoint {} InvolutiveRingoidWithAntiDistrib {}

over UnaryOperation

Ringoid1 = combine Ringoid1Sig {} Ringoid {} over RingoidSig

Ringoid1ToSemiring = id from Ringoid1 to Semiring
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Ringoid1ToInvolutiveRingoid = id from Ringoid1 to InvolutiveRingoid

InvolutiveRing = combine InvolutiveRingoid {} Ring {} over Ringoid1

JacobianIdentity = extend Ringoid0Sig

{jacobian_*_+ : {x y z : A} ->

(+ (+ (* x (* y z)) (* y (* z x))) (* z (* x y))) == 0}

AntiCommutativeRing =

extend Ring {antiCommutative : {x y : A} -> (* x y) == neg (* y x)}

LieRing =

combine JacobianIdentity {} AntiCommutativeRing {} over Ringoid0Sig

MeetSemilattice = combine Band {} CommutativeSemigroup {} over Semigroup

MultMeetSemilattice =

combine MeetSemilattice times MultCommutativeSemigroup {}

over CommutativeSemigroup

BoundedMeetSemilattice =

combine MultCommutativeMonoid {} MultMeetSemilattice {}

over CommutativeSemigroup

JoinSemilattice =

combine MeetSemilattice plus AdditiveCommutativeSemigroup {}

over CommutativeSemigroup

BoundedJoinSemilattice =

combine AdditiveCommutativeMonoid {} JoinSemilattice {}

over CommutativeSemigroup

MultSemilattice_RingoidSig =

combine MultMeetSemilattice {} RingoidSig {} over MultMagma
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JoinSemilattice_RingoidSig =

combine JoinSemilattice {} RingoidSig {} over AdditiveMagma

DualSemilattices =

combine MultSemilattice_RingoidSig {} JoinSemilattice_RingoidSig {}

over RingoidSig

LeftAbsorption =

extend RingoidSig {leftAbsorp_*_+ : {x y : A} -> * x (+ x y) == x}

LeftAbsorptionOp =

extend RingoidSig {leftAbsorp_+_* : {x y : A} -> + x (* x y) == x}

Absorption =

combine LeftAbsorption {} LeftAbsorptionOp {} over RingoidSig

Lattice = combine DualSemilattices {} Absorption {} over RingoidSig

Modularity =

extend RingoidSig { leftModular_*_+ : {x y z : A} ->

(+ (* x y) (* x z)) == (* x (+ y (* x z))) }

ModularLattice = combine Lattice {} Modularity {} over RingoidSig

DistributiveLattice =

combine ModularLattice {} LeftRingoid {} over RingoidSig

BoundedJoinLattice =

combine BoundedJoinSemilattice {} Lattice {} over JoinSemilattice

BoundedMeetLattice =

combine BoundedMeetSemilattice {} Lattice {} over MeetSemilattice

BoundedLattice =

combine BoundedJoinLattice {} BoundedMeetLattice {} over Lattice
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BoundedModularLattice =

combine BoundedLattice {} ModularLattice {} over Lattice

BoundedDistributiveLattice =

combine BoundedModularLattice {} DistributiveLattice {}

over ModularLattice

PointedInvolutiveMagma0Sig =

combine InvolutiveMultMagmaSig {} PointedZero {} over Carrier
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Appendix B

Tog Generated Code

module Monoid where

record Monoid (A : Set) : Set where

constructor MonoidC

field

e : A

op : A -> A -> A

lunit_e : (x : A) -> op e x == x

runit_e : (x : A) -> op x e == x

associative_op : {x y z : A} -> op (op x y) z == op x (op y z)
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record Sig (AS : Set) : Set where

constructor SigSigC

field

eS : AS

opS : AS -> AS -> AS

record Product (A : Set) : Set where

constructor ProductC

field

eP : Prod A A

opP : Prod A A -> Prod A A -> Prod A A

lunit_eP : (xP : Prod A A) -> opP eP xP == xP

runit_eP : (xP : Prod A A) -> opP xP eP == xP

associative_opP : {xP yP zP : (Prod A A)} ->

opP (opP xP yP) zP == opP xP (opP yP zP)
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record Hom {A1 : Set} {A2 : Set}

(Mo1 : Monoid A1) (Mo2 : Monoid A2) : Set where

constructor HomC

field

hom : (A1 -> A2)

pres-e : (hom (e Mo1)) == e Mo2

pres-op : {x1 x2 : A1} ->

hom (op Mo1 x1 x2) == op Mo2 (hom x1) (hom x2)

record RelInterp {A1 : Set} {A2 : Set}

(Mo1 : (Monoid A1)) (Mo2 : (Monoid A2)) : Set where

constructor RelInterpC

field

interp : (A1 -> (A2 -> Set))

interp-e : (interp (e Mo1) (e Mo2))

interp-op : {x1 x2 : A1} {y1 y2 : A2} ->

((interp x1 y1) -> ((interp x2 y2) ->

(interp ((op Mo1) x1 x2) ((op Mo2) y1 y2))))
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data MonoidTerm : Set where

eL : MonoidTerm

opL : MonoidTerm -> MonoidTerm -> MonoidTerm

data ClMonoidTerm (A : Set) : Set where

sing : A -> ClMonoidTerm A

eCl : ClMonoidTerm A

opCl : ClMonoidTerm A -> ClMonoidTerm A -> ClMonoidTerm A

data OpMonoidTerm (n : Nat) : Set where

v : Fin n -> OpMonoidTerm n

eOL : OpMonoidTerm n

opOL : OpMonoidTerm n -> OpMonoidTerm n -> OpMonoidTerm n

data OpMonoidTerm2 (n : Nat) (A : Set) : Set where

v2 : Fin n -> OpMonoidTerm2 n A

sing2 : A -> OpMonoidTerm2 n A

eOL2 : OpMonoidTerm2 n A

opOL2 : OpMonoidTerm2 n A -> OpMonoidTerm2 n A -> OpMonoidTerm2 n A
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simplifyCl : {A : Set} -> ((ClMonoidTerm A) -> (ClMonoidTerm A))

simplifyCl (opCl eCl x) = x

simplifyCl (opCl x eCl) = x

simplifyCl (opCl x1 x2) = (opCl (simplifyCl x1) (simplifyCl x2))

simplifyCl eCl = eCl

simplifyCl (sing x1) = (sing x1)

simplifyOpB : {n : Nat} -> ((OpMonoidTerm n) -> (OpMonoidTerm n))

simplifyOpB (opOL eOL x) = x

simplifyOpB (opOL x eOL) = x

simplifyOpB (opOL x1 x2) = (opOL (simplifyOpB x1) (simplifyOpB x2))

simplifyOpB eOL = eOL

simplifyOpB (v x1) = (v x1)

simplifyOp : {n : Nat} {A : Set} ->

((OpMonoidTerm2 n A) -> (OpMonoidTerm2 n A))

simplifyOp (opOL2 eOL2 x) = x

simplifyOp (opOL2 x eOL2) = x

simplifyOp (opOL2 x1 x2) = (opOL2 (simplifyOp x1) (simplifyOp x2))

simplifyOp eOL2 = eOL2

simplifyOp (v2 x1) = (v2 x1)

simplifyOp (sing2 x1) = (sing2 x1)
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evalB : {A : Set} -> ((Monoid A) -> (MonoidTerm -> A))

evalB Mo (opL x1 x2) = ((op Mo) (evalB Mo x1) (evalB Mo x2))

evalB Mo eL = (e Mo)

evalCl : {A : Set} -> ((Monoid A) -> ((ClMonoidTerm A) -> A))

evalCl Mo (sing x1) = x1

evalCl Mo (opCl x1 x2) = ((op Mo) (evalCl Mo x1) (evalCl Mo x2))

evalCl Mo eCl = (e Mo)

evalOpB : {A : Set} {n : Nat} ->

((Monoid A) -> ((Vec A n) -> ((OpMonoidTerm n) -> A)))

evalOpB Mo vars (v x1) = (lookup _ x1 vars)

evalOpB Mo vars (opOL x1 x2) =

((op Mo) (evalOpB Mo vars x1) (evalOpB Mo vars x2))

evalOpB Mo vars eOL = (e Mo)

evalOp : {A : Set} {n : Nat} ->

((Monoid A) -> ((Vec A n) -> ((OpMonoidTerm2 n A) -> A)))

evalOp Mo vars (v2 x1) = (lookup _ x1 vars)

evalOp Mo vars (sing2 x1) = x1

evalOp Mo vars (opOL2 x1 x2) =

((op Mo) (evalOp Mo vars x1) (evalOp Mo vars x2))

evalOp Mo vars eOL2 = (e Mo)
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inductionB : {P : (MonoidTerm -> Set)} ->

(((x1 x2 : MonoidTerm) -> ((P x1) -> ((P x2) -> (P (opL x1 x2))))) ->

((P eL) -> ((x : MonoidTerm) -> (P x))))

inductionB {p} popl pel (opL x1 x2) =

(popl _ _ (inductionB {p} popl pel x1) (inductionB {p} popl pel x2))

inductionB {p} popl pel eL = pel

inductionCl : {A : Set} {P : ((ClMonoidTerm A) -> Set)} ->

(((x1 : A) -> (P (sing x1))) ->

(((x1 x2 : (ClMonoidTerm A)) ->

((P x1) -> ((P x2) -> (P (opCl x1 x2))))) ->

((P eCl) -> ((x : (ClMonoidTerm A)) -> (P x)))))

inductionCl {_} {p} psing popcl pecl (sing x1) = (psing x1)

inductionCl {_} {p} psing popcl pecl (opCl x1 x2) =

(popcl _ _ (inductionCl {_} {p} psing popcl pecl x1)

(inductionCl {_} {p} psing popcl pecl x2))

inductionCl {_} {p} psing popcl pecl eCl = pecl
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inductionOpB : {n : Nat} {P : ((OpMonoidTerm n) -> Set)} ->

(((fin : (Fin n)) -> (P (v fin))) ->

(((x1 x2 : (OpMonoidTerm n)) ->

((P x1) -> ((P x2) -> (P (opOL x1 x2))))) ->

((P eOL) -> ((x : (OpMonoidTerm n)) -> (P x)))))

inductionOpB {_} {p} pv popol peol (v x1) = (pv x1)

inductionOpB {_} {p} pv popol peol (opOL x1 x2) =

(popol _ _ (inductionOpB {_} {p} pv popol peol x1)

(inductionOpB {_} {p} pv popol peol x2))

inductionOpB {_} {p} pv popol peol eOL = peol

inductionOp : {n : Nat} {A : Set} {P : ((OpMonoidTerm2 n A) -> Set)} ->

(((fin : (Fin n)) -> (P (v2 fin))) ->

(((x1 : A) -> (P (sing2 x1))) ->

(((x1 x2 : (OpMonoidTerm2 n A)) ->

((P x1) -> ((P x2) -> (P (opOL2 x1 x2))))) ->

((P eOL2) -> ((x : (OpMonoidTerm2 n A)) -> (P x))))))

inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 (v2 x1) = (pv2 x1)

inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 (sing2 x1) = (psing2 x1)

inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 (opOL2 x1 x2) =

(popol2 _ _ (inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 x1)

(inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 x2))

inductionOp {_} {_} {p} pv2 psing2 popol2 peol2 eOL2 = peol2
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opL' : (MonoidTerm -> (MonoidTerm -> MonoidTerm))

opL' x1 x2 = (opL x1 x2)

eL' : MonoidTerm

eL' = eL

stageB : (MonoidTerm -> (Staged MonoidTerm))

stageB (opL x1 x2) =

(stage2 opL' (codeLift2 opL') (stageB x1) (stageB x2))

stageB eL = (Now eL)

opCl' : {A : Set} ->

((ClMonoidTerm A) -> ((ClMonoidTerm A) -> (ClMonoidTerm A)))

opCl' x1 x2 = (opCl x1 x2)

eCl' : {A : Set} -> (ClMonoidTerm A)

eCl' = eCl

stageCl : {A : Set} -> ((ClMonoidTerm A) -> (Staged (ClMonoidTerm A)))

stageCl (sing x1) = (Now (sing x1))

stageCl (opCl x1 x2) =

(stage2 opCl' (codeLift2 opCl') (stageCl x1) (stageCl x2))

stageCl eCl = (Now eCl)
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opOL' : {n : Nat} ->

((OpMonoidTerm n) -> ((OpMonoidTerm n) -> (OpMonoidTerm n)))

opOL' x1 x2 = (opOL x1 x2)

eOL' : {n : Nat} -> (OpMonoidTerm n)

eOL' = eOL

stageOpB : {n : Nat} -> ((OpMonoidTerm n) -> (Staged (OpMonoidTerm n)))

stageOpB (v x1) = (const (code (v x1)))

stageOpB (opOL x1 x2) =

(stage2 opOL' (codeLift2 opOL') (stageOpB x1) (stageOpB x2))

stageOpB eOL = (Now eOL)

opOL2' : {n : Nat} {A : Set} ->

((OpMonoidTerm2 n A) -> ((OpMonoidTerm2 n A) -> (OpMonoidTerm2 n A)))

opOL2' x1 x2 = (opOL2 x1 x2)

eOL2' : {n : Nat} {A : Set} -> (OpMonoidTerm2 n A)

eOL2' = eOL2

stageOp : {n : Nat} {A : Set} ->

((OpMonoidTerm2 n A) -> (Staged (OpMonoidTerm2 n A)))

stageOp (sing2 x1) = (Now (sing2 x1))

stageOp (v2 x1) = (const (code (v2 x1)))

stageOp (opOL2 x1 x2) =

(stage2 opOL2' (codeLift2 opOL2') (stageOp x1) (stageOp x2))

stageOp eOL2 = (Now eOL2)
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record StagedRepr (A : Set) (Repr : (Set -> Set)) : Set where

constructor repr

field

opT : ((Repr A) -> ((Repr A) -> (Repr A)))

eT : (Repr A)

183



Bibliography

Abel, A., Allais, G., Hameer, A., Pientka, B., Momigliano, A., Schäfer, S., and Stark,

K. (2019). Poplmark reloaded: Mechanizing proofs by logical relations. Journal of

Functional Programming, 29.

Agda Library (2020). Agda Standard Library. https://github.com/agda/agda-

stdlib. Version 1.4.

Al-hassy, M. (2019). Making Modules with Meta-Programmed Meta-Primitives.

https://alhassy.github.io/next-700-module-systems/prototype/package-

former.html#hundreds-of-theories. Accessed: 2019-11-20.

Al-hassy, M., Carette, J., and Kahl, W. (2019). A Language Feature to Unbundle Data

at Will (Short Paper). In Proceedings of the 18th ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences, GPCE 2019,

pages 14 – 19, New York, NY, USA. ACM.

Algehed, M., Bernardy, J.-P., and Hritcu, C. (2020). Dynamic IFC theorems for free!

arXiv:2005.04722. https://arxiv.org/abs/2005.04722.

Anand, A., Boulier, S., Cohen, C., Sozeau, M., and Tabareau, N. (2018). Towards

184

https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://alhassy.github.io/next-700-module-systems/prototype/package-former.html#hundreds-of-theories
https://alhassy.github.io/next-700-module-systems/prototype/package-former.html#hundreds-of-theories
https://arxiv.org/abs/2005.04722


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Certified Meta-Programming with Typed Template-Coq. In ITP 2018 - 9th Confer-

ence on Interactive Theorem Proving, volume 10895 of LNCS, pages 20–39, Oxford,

United Kingdom. Springer.

Aspinall, D. and Hofmann, M. (2005). Dependent types. In B. C. Pierce, editor,

Advanced Topics in Types and Programming Languages, pages 45–86. MIT press.

Autexier, S., Hutter, D., Mantel, H., and Schairer, A. (2000). Towards an Evolution-

ary Formal Software-Development Using CASL. In D. Bert, C. Choppy, and P. D.

Mosses, editors, Recent Trends in Algebraic Development Techniques, pages 73–88,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Ballarin, C. (2003). Locales and Locale Expressions in Isabelle/Isar. In International

Workshop on Types for Proofs and Programs, pages 34–50. Springer.

Ballarin, C. (2006). Interpretation of Locales in Isabelle: Managing Dependencies

between Locales. Technical report, Technische Universität München (TUM).

Bauer, A. (2020). What makes dependent type theory more suitable than set theory

for proof assistants? posted at: https://mathoverflow.net/questions/376839/

what-makes-dependent-type-theory-more-suitable-than-set-theory-for-

proof-assista.

Bercic, K., Carette, J., Farmer, W. M., Kohlhase, M., Müller, D., Rabe, F., and

Sharoda, Y. (2020). The Space of Mathematical Software Systems – A Survey of

Paradigmatic Systems. arXiv:2002.04955.

Betzendahl, J. and Kohlhase, M. (2018). Translating the IMPS Theory Library to

185

https://mathoverflow.net/questions/376839/what-makes-dependent-type-theory-more-suitable-than-set-theory-for-proof-assista
https://mathoverflow.net/questions/376839/what-makes-dependent-type-theory-more-suitable-than-set-theory-for-proof-assista
https://mathoverflow.net/questions/376839/what-makes-dependent-type-theory-more-suitable-than-set-theory-for-proof-assista


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

MMT/OMDoc. In F. Rabe, W. M. Farmer, G. O. Passmore, and A. Youssef, edi-

tors, Intelligent Computer Mathematics, pages 7–22, Cham. Springer International

Publishing.

Bidoit, M. and Mosses, P. D. (2003). CASL User Manual: Introduction to Using the

Common Algebraic Specification Language, volume 2900. Springer.

Blanchette, J. C., Kaliszyk, C., Paulson, L. C., and Urban, J. (2016). Hammering

towards QED. Journal of Formalized Reasoning, 9(1), 101–148.

Blöndal, B., Löh, A., and Scott, R. (2018). Deriving Via: Or, How to Turn Hand-

Written Instances into an Anti-Pattern. In Proceedings of the 11th ACM SIGPLAN

International Symposium on Haskell, Haskell 2018, page 55–67, New York, NY,

USA. Association for Computing Machinery.

Boyer, R. et al. (1994). The QED manifesto. Automated Deduction–CADE, 12,

238–251.

Bracha, G. (1992). The Programming Language Jigsaw: Mixins, Modularity and

Multiple Inheritance. Ph.D. thesis, The University of Utah.

Burstall, R. M. and Goguen, J. A. (1980). The Semantics of Clear, a Specification

Language. In D. Bjøorner, editor, Abstract Software Specifications, pages 292 –

332, Berlin, Heidelberg. Springer Berlin Heidelberg.

Capretta, V. (1999). Universal Algebra in Type Theory. In Theorem Proving in Higher

Order Logics, pages 131 – 148, Berlin, Heidelberg. Springer Berlin Heidelberg.

Carette, J. and Kiselyov, O. (2005). Multi-stage Programming with Functors and

Monads: Eliminating Abstraction Overhead from Generic Code. In R. Glück and

186



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

M. Lowry, editors, Generative Programming and Component Engineering, pages

256–274, Berlin, Heidelberg. Springer Berlin Heidelberg.

Carette, J. and O’Connor, R. (2011a). MathScheme Library Declarations.

GitHub repository https://github.com/JacquesCarette/MathScheme/blob/

7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype/src/Algebra/

Base.msl.

Carette, J. and O’Connor, R. (2011b). Prototype of MathScheme Combina-

tors. GitHub repository https://github.com/JacquesCarette/MathScheme/

tree/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype.

Carette, J. and O’Connor, R. (2012). Theory Presentation Combinators. In Intelligent

Computer Mathematics, volume 7362 of Lecture Notes in Computer Science, pages

202–215. Springer Berlin Heidelberg.

Carette, J., Kiselyov, O., and Shan, C.-c. (2009). Finally Tagless, Partially Evaluated:

Tagless Staged Interpreters for Simpler Typed Languages. Journal of Functional

Programming, 19(5), 509 – 543.

Carette, J., Elsheikh, M., and Smith, S. (2011a). A Generative Geometric Kernel.

In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation, pages 53 – 62. ACM.

Carette, J., Farmer, W. M., Jeremic, F., Maccio, V., O’Connor, R., and

Tran, Q. (2011b). The MathScheme Library: Some Preliminary Experiments.

arXiv:1106.1862.

187

https://github.com/JacquesCarette/MathScheme/blob/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype/src/Algebra/Base.msl
https://github.com/JacquesCarette/MathScheme/blob/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype/src/Algebra/Base.msl
https://github.com/JacquesCarette/MathScheme/blob/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype/src/Algebra/Base.msl
https://github.com/JacquesCarette/MathScheme/tree/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype
https://github.com/JacquesCarette/MathScheme/tree/7f24a911790d67f5ab28db425bda1200bc0d5a45/prototype


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Carette, J., Farmer, W. M., and Sharoda, Y. (2018). Biform Theories: Project

Description. In F. Rabe, W. M. Farmer, G. O. Passmore, and A. Youssef, edi-

tors, Intelligent Computer Mathematics, pages 76–86, Cham. Springer International

Publishing.

Carette, J., O’Connor, R., and Sharoda, Y. (2019). Building on the Diamonds be-

tween Theories: Theory Presentation Combinators. arXiv:1812.08079. Submitted

to Journal of Automated Reasoning.

Carette, J., Farmer, W. M., Kohlhase, M., and Rabe, F. (2020a). Big Math and the

One-Brain Barrier – The Tetrapod Model of Mathematical Knowledge. Mathemat-

ical Intelligencer.

Carette, J., Farmer, W. M., and Sharoda, Y. (2020b). Leveraging the Information

Contained in Theory Presentations. In C. Benzmüller and B. Miller, editors, In-

telligent Computer Mathematics, pages 55–70, Cham. Springer International Pub-

lishing.

Cartmell, J. (1986). Generalised Algebraic Theories and Contextual Categories. An-

nals of Pure and Applied Logic, 32, 209 – 243.

Christiansen, D. and Brady, E. (2016). Elaborator Reflection: Extending Idris in Idris.

In Proceedings of the 21st ACM SIGPLAN International Conference on Functional

Programming, ICFP 2016, page 284–297, New York, NY, USA. Association for

Computing Machinery.

Cohen, C., Sakaguchi, K., and Tassi, E. (2020). Hierarchy Builder: Algebraic hierar-

chies Made Easy in Coq with Elpi (System Description). In Z. M. Ariola, editor,

188



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

5th International Conference on Formal Structures for Computation and Deduc-

tion (FSCD 2020), volume 167 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 34:1–34:21, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum

für Informatik.

Cornes, C. and Terrasse, D. (1996). Automating Inversion of Inductive Predicates in

Coq. In S. Berardi and M. Coppo, editors, Types for Proofs and Programs, pages

85–104, Berlin, Heidelberg. Springer Berlin Heidelberg.

Crary, K. (2005). Logical relations and a case study in equivalence checking. In

B. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 6,

pages 223–244. MIT Press, Cambridge, MA.

Cruz-Filipe, L. and Spitters, B. (2003). Program Extraction from Large Proof Devel-

opments. In International Conference on Theorem Proving in Higher Order Logics,

pages 205–220. Springer.

Czajka, Ł. and Kaliszyk, C. (2018). Hammer for Coq: Automation for dependent

type theory. Journal of Automated Reasoning, 61(1-4), 423–453.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools,

and Applications. Addison Wesley.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Staged Configuration through

Specialization and Multilevel Configuration of Feature Models. Software Process:

Improvement and Practice, 10(2), 143–169.

Dowek, G. and Thiré, F. (2019). Logipedia: a multi-system encyclopedia of formal

proofs. http://www.lsv.fr/~dowek/Publi/logipedia.pdf.

189

http://www.lsv.fr/~dowek/Publi/logipedia.pdf


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. P. (2006). Traits:

A Mechanism for Fine-grained Reuse. ACM Trans. Program. Lang. Syst., 28(2),

331–388.

Dunchev, C., Guidi, F., Sacerdoti Coen, C., and Tassi, E. (2015). ELPI: Fast, Embed-

dable, λProlog Interpreter. In M. Davis, A. Fehnker, A. McIver, and A. Voronkov,

editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages 460–

468, Berlin, Heidelberg. Springer Berlin Heidelberg.

Durán, F. and Meseguer, J. (2007). Maude’s Module Algebra. Science of Computer

Programming, 66(2), 125–153.

Ebner, G., Ullrich, S., Roesch, J., Avigad, J., and de Moura, L. (2017). A Metapro-

gramming Framework for Formal Verification. Proceedings of the ACM on Pro-

gramming Languages, 1(ICFP), 1–29.

Ede, D. (2019). Allow metaprogramming to generate top level definitions other than

functions. Github issue 3699: https://github.com/agda/agda/issues/3699. Ac-

cessed: December 2,2020.

Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specification 1: Equations

and Initial Semantics. Monographs in Theoretical Computer Science. An EATCS

Series. Springer Berlin Heidelberg.

Enderton, H. B. (1972). A Mathematical Introduction to Logic. Academic Press.

Farmer, W. M. (1994). Theory Interpretation in Simple Type Theory. In J. Heering,

K. Meinke, B. Möller, and T. Nipkow, editors, Higher-Order Algebra, Logic, and

Term Rewriting, pages 96–123, Berlin, Heidelberg. Springer Berlin Heidelberg.

190

https://github.com/agda/agda/issues/3699


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Farmer, W. M. (2004). MKM: A New Interdisciplinary Field of Research. ACM

SIGSAM Bulletin, 38(2), 47 – 52.

Farmer, W. M. (2013). The Formalization of Syntax-Based Mathematical Algorithms

Using Quotation and Evaluation. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and

W. Windsteiger, editors, Intelligent Computer Mathematics, pages 35–50, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Farmer, W. M., Guttman, J. D., and Thayer, F. J. (1992). Little Theories. In CADE-

11: Proceedings of the 11th International Conference on Automated Deduction,

pages 567 – 581, London, UK. Springer-Verlag.

Farmer, W. M., Guttman, J. D., and Thayer, F. J. (1993). IMPS: An Interactive

Mathematical Proof System. Journal of Automated Reasoning, 11(2), 213–248.

Ganz, S. E., Sabry, A., and Taha, W. (2001). Macros as Multi-Stage Computations:

Type-Safe, Generative, Binding Macros in MacroML. ACM SIGPLAN Notices,

36(10), 74–85.

Garillot, F., Gonthier, G., Mahboubi, A., and Rideau, L. (2009). Packaging Mathe-

matical Structures. In Theorem Proving in Higher Order Logics, pages 327 – 342,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Geuvers, H., Pollack, R., Wiedijk, F., and Zwanenburg, J. (2002). A Constructive

Algebraic Hierarchy in Coq. Journal of Symbolic Computation, 34(4), 271 – 286.

Goguen, J. A., Winkler, T., Meseguer, J., Futatsugi, K., and Jouannaud, J.-P. (2000).

Introducing obj. In Software Engineering with OBJ: Algebraic Specification in

Action, pages 3–167. Springer US, Boston, MA.

191



Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,

S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,

A., Tassi, E., and Théry, L. (2013). A machine-checked proof of the odd order

theorem. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive

Theorem Proving, pages 163–179, Berlin, Heidelberg. Springer Berlin Heidelberg.

Grabowski, A., Korniłowicz, A., and Schwarzweller, C. (2015). Equality in Com-

puter Proof-Assistants. In 2015 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 45–54.

Gries, D. and Schneider, F. B. (1993). Propositional Calculus. In A Logical Approach

to Discrete Math, pages 41–61. Springer New York, New York, NY.

Gross, J., Kubota, K., Mechveliani, S. D., et al. (2020). Why dependent type theory?

https://coq.discourse.group/t/why-dependent-type-theory/657.

Gunther, E., Gadea, A., and Pagano, M. (2018). Formalization of Universal Algebra

in Agda. Electronic Notes in Theoretical Computer Science, 338, 147 – 166. The

12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA

2017).

Haftmann, F. and Nipkow, T. (2010). Code Generation via Higher-Order Rewrite

Systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic

Programming, pages 103–117, Berlin, Heidelberg. Springer Berlin Heidelberg.

Haskell Wiki (2015). Functor-Applicative-Monad Proposal. [Online; accessed 14-

November-2019].

192

https://coq.discourse.group/t/why-dependent-type-theory/657


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Iancu, M., Kohlhase, M., Rabe, F., and Urban, J. (2013). The Mizar Mathematical

Library in OMDoc: Translation and Applications. Journal of Automated Reason-

ing, 50(2), 191–202.

Jacobson, N. (1985). Basic Algebra I. W. H. Freeman and Company.

Jipsen, P. (2019). List of Mathematical Structures. http://math.chapman.edu/

~jipsen/structures/doku.php. Accessed: March 20, 2020.

Kaliszyk, C. and Pąk, K. (2018). Isabelle Import Infrastructure for the Mizar Math-

ematical Library. In F. Rabe, W. M. Farmer, G. O. Passmore, and A. Youssef,

editors, Intelligent Computer Mathematics, pages 131–146, Cham. Springer Inter-

national Publishing.

Kaliszyk, C. and Pak, K. (2019). Declarative Proof Translation (Short Paper). In

J. Harrison, J. O’Leary, and A. Tolmach, editors, 10th International Conference

on Interactive Theorem Proving (ITP 2019), volume 141 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 35:1–35:7, Dagstuhl, Germany. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

Kohlhase, M. and Rabe, F. (2016). QED Reloaded: Towards a Pluralistic Formal

Library of Mathematical Knowledge. Journal of Formalized Reasoning, 9(1), 201–

234.

Kohlhase, M., Rabe, F., and Zholudev, V. (2010). Towards MKM in the Large: Modu-

lar Representationand Scalable Software Architecture. In International Conference

on Intelligent Computer Mathematics, pages 370–384. Springer.

193

http://math.chapman.edu/~jipsen/structures/doku.php
http://math.chapman.edu/~jipsen/structures/doku.php


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Lämmel, R. and Jones, S. P. (2003). Scrap Your Boilerplate: A Practical Design

Pattern for Generic Programming. ACM SIGPLAN Notices, 38(3), 26–37.

Lens Library (2020). Haskell Lens Library. https://hackage.haskell.org/package/

lens. version 4.19.1; Accessed: 2020-03-22.

Letouzey, P. (2003). A New Extraction for Coq. In H. Geuvers and F. Wiedijk, editors,

Types for Proofs and Programs, pages 200–219, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Lewis, R. Y. (2017). An Extensible Ad Hoc Interface between Lean and Mathematica.

Electronic Proceedings in Theoretical Computer Science, 262, 23–37.

Liesnikov, B., Ullrich, M., and Forster, Y. (2020). Generating induction principles

and subterm relations for inductive types using MetaCoq. arXiv:2006.15135.

Lilis, Y. and Savidis, A. (2019). A survey of metaprogramming languages. ACM

Comput. Surv., 52(6).

Magalhães, J. P., Dijkstra, A., Jeuring, J., and Löh, A. (2010). A Generic Deriving

Mechanism for Haskell. ACM SIGPLAN Notices, 45(11), 37–48.

Mahboubi, A. and Tassi, E. (2013). Canonical Structures for the Working Coq User.

In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive Theorem

Proving, pages 19–34, Berlin, Heidelberg. Springer Berlin Heidelberg.

Mahboubi, A. and Tassi, E. (2020). Mathematical Components. Zenodo.

Mazur, B. (2008). When is One Thing Equal to Some Other Thing? Proof and other

dilemmas: Mathematics and philosophy, 59, 221.

194

https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Mazzoli, F. and Abel, A. (2016). Type Checking through Unification.

arXiv:1609.09709.

Mazzoli, F., Danielsson, N. A., Norell, U., Vezzosi, A., and Abel, A. (2017). Tog,

a prototypical implementation of dependent types. GitHub Repository https:

//github.com/bitonic/tog.

McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987). Algebras, Lattices,

Varieties, volume 1. American Mathematical Soc.

Meinke, K. and Tucker, J. V. (1993). Universal Algebra. In S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science

(Vol. 1): Background: Mathematical Structures, page 189–368. Oxford University

Press, Inc., USA.

Mosses, P. D. (2004). CASL Reference Manual: The Complete Documentation of

the Common Algebraic Specification Language, volume 2960 of Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg.

Mulligan, D. P., Owens, S., Gray, K. E., Ridge, T., and Sewell, P. (2014). Lem:

Reusable Engineering of Real-world Semantics. ACM SIGPLAN Notices, 49(9),

175–188.

Müller, D., Rothgang, C., Liu, Y., and Rabe, F. (2017). Alignment-based Transla-

tions Across Formal Systems Using Interface Theories. Electronic Proceedings in

Theoretical Computer Science, 262, 77–93.

nLab authors (2020a). colimit. http://ncatlab.org/nlab/show/colimit. Revision

17.

195

https://github.com/bitonic/tog
https://github.com/bitonic/tog
http://ncatlab.org/nlab/show/colimit
http://ncatlab.org/nlab/revision/colimit/17
http://ncatlab.org/nlab/revision/colimit/17


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

nLab authors (2020b). pushout. http://ncatlab.org/nlab/show/pushout. Revision

22.

Pierce, B. C. (1990). A Taste of Category Theory for Computer Scientists. Carnegie

Mellon University.

Pitts, A. M. (2001). Categorical Logic. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science (Vol. 5): Logic and

algebraic methods, page 39–123. Oxford University Press, Inc., USA.

Plotkin, G. and Abadi, M. (1993). A logic for parametric polymorphism. In M. Bezem

and J. F. Groote, editors, Typed Lambda Calculi and Applications, pages 361–375,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Pollack, R. (2002). Dependently Typed Records in Type Theory. Formal Aspects of

Computing, 13(3-5), 386–402.

Pottier, L. (2019). Coq User Contributions - Algebra Library. GitHub Repository

https://github.com/coq-contribs/algebra v8.10.0.

Rabe, F. and Kohlhase, M. (2013a). A Scalable Module System. Information and

Computation, 230, 1–54.

Rabe, F. and Kohlhase, M. (2013b). A scalable module system. Inf. Comput., 230,

1–54.

Rabe, F. and Sharoda, Y. (2019). Diagram Combinators in MMT. In C. Kaliszyk,

E. Brady, A. Kohlhase, and C. Sacerdoti Coen, editors, Intelligent Computer Math-

ematics, pages 211–226, Cham. Springer International Publishing.

196

http://ncatlab.org/nlab/show/pushout
http://ncatlab.org/nlab/revision/pushout/22
http://ncatlab.org/nlab/revision/pushout/22
https://github.com/coq-contribs/algebra


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Rebours, N. (2019). An Introduction to OCaml PPX Ecosystem. Tu-

torial: https://tarides.com/blog/2019-05-09-an-introduction-to-ocaml-

ppx-ecosystem. Accessed on December 2020.

Reynolds, J. C. (1983). Types, abstraction and parametric polymorphism. In Infor-

mation Processing 83, Proceedings of the IFIP 9th World Computer Congres, pages

513–523.

Sakaguchi, K. (2020). Validating Mathematical Structures. arXiv:2002.00620.

Sakkinen, M. (1989). Disciplined Inheritance. In ECOOP, volume 89, pages 39–56.

Sannella, D. and Tarlecki, A. (2012). Category theory. In Foundations of Algebraic

Specification and Formal Software Development, Monographs in Theoretical Com-

puter Science. An EATCS Series, pages 97 – 153. Springer Berlin Heidelberg.

Scrap Your Boilerplate (2019). Haskell scrap-your-boilerplate package. https://

hackage.haskell.org/package/syb. version 0.7.1; Accessed: 2020-11-18.

Sharoda, Y. (2019). Leveraging Information Contained in Theory Presentations. In

Workshop Papers at 12th Conference on Intelligent Computer Mathematics CICM

2019, volume 2634. CEUR Workshop Proceedings. http://ceur-ws.org/Vol-

2634/DP7.pdf.

Sheard, T. (2001). Accomplishments and research challenges in meta-programming.

In W. Taha, editor, Semantics, Applications, and Implementation of Program Gen-

eration, pages 2–44, Berlin, Heidelberg. Springer Berlin Heidelberg.

Sheard, T. and Jones, S. P. (2002). Template Meta-Programming for Haskell. In

197

https://tarides.com/blog/2019-05-09-an-introduction-to-ocaml-ppx-ecosystem
https://tarides.com/blog/2019-05-09-an-introduction-to-ocaml-ppx-ecosystem
https://hackage.haskell.org/package/syb
https://hackage.haskell.org/package/syb
http://ceur-ws.org/Vol-2634/DP7.pdf
http://ceur-ws.org/Vol-2634/DP7.pdf


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, page

1–16, New York, NY, USA. Association for Computing Machinery.

Sheard, T., Benaissa, Z.-e.-a., and Pasalic, E. (2000). DSL Implementation Using

Staging and Monads. ACM SIGPLAN Notices, 35(1), 81–94.

Shulman, M. (2010). In Praise of Dependent Types. The n-

Category Café blog. https://golem.ph.utexas.edu/category/2010/03/

in_praise_of_dependent_types.html.

Smith, D. R. (1999). Mechanizing the Development of Software. In M. Broy and

R. Steinbrueggen, editors, Calculational System Design, Proceedings of the NATO

Advanced Study Institute, pages 251–292. IOS Press, Amsterdam.

Spitters, B. and van der Weegen, E. (2010). Developing the Algebraic Hierarchy with

Type Classes in Coq. In Interactive Theorem Proving, pages 490 – 493, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Spitters, B. and Van der Weegen, E. (2011). Type Classes for Mathematics in Type

Theory. arXiv preprint arXiv:1102.1323.

Taha, W. (1999). Multi-Stage Programming: Its Theory and Applications. Ph.D.

thesis, Oregon Graduate Institute of Science and Technology.

Tarski, A., Mostowski, A., and Robinson, R. M. (1953). Undecidable Theories, vol-

ume 13. Elsevier.

Tassi, E. (2018). Elpi: an extension language for Coq (Metaprogramming Coq in the

Elpi λProlog dialect). In Fourth International Workshop on Coq for Programming

Languages.

198

https://golem.ph.utexas.edu/category/2010/03/in_praise_of_dependent_types.html
https://golem.ph.utexas.edu/category/2010/03/in_praise_of_dependent_types.html


Ph.D. Thesis – Y. Sharoda McMaster – Computer Science

Tassi, E. (2019). Deriving proved equality tests in Coq-elpi: Stronger induction

principles for containers in Coq. In ITP 2019 - 10th International Conference on

Interactive Theorem Proving, Portland, United States.

Team, T. M. (2019). The Lean Mathematical Library. arXiv: 1910.09336. https:

//arxiv.org/abs/1910.09336.

van der Walt, P. (2012). Reflection in Agda. Master’s thesis, Utrecht University.

Wadler, P. (1989). Theorems for free! In Proceedings of the fourth international

conference on Functional programming languages and computer architecture, pages

347–359.

Wadler, P. (2003). A Prettier Printer. The Fun of Programming, Cornerstones of

Computing, pages 223–243.

Whitehead, A. (1898). A Treatise on Universal Algebra: with Applications. Cornell

University Library historical math monographs. The University Press.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,

W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., and Wagelaar, D. (2011). A

Comparison of Rule Inheritance in Model-to-Model Transformation Languages. In

J. Cabot and E. Visser, editors, Theory and Practice of Model Transformations,

pages 31–46, Berlin, Heidelberg. Springer Berlin Heidelberg.

Yallop, J. (2016). Staging Generic Programming. In Proceedings of the 2016 ACM

SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM ’16,

page 85–96, New York, NY, USA. Association for Computing Machinery.

199

https://arxiv.org/abs/1910.09336
https://arxiv.org/abs/1910.09336

	Abstract
	Acknowledgements
	Introduction
	Research Problem
	Contributions
	Broader Context
	Publications
	Outline

	Background
	Dependent Type Theory
	Theories
	Theory Morphisms
	Theory Graph
	Category Theory
	Relational Interpretation
	Multi-Stage Programming

	Universal Algebra: An Overview
	Equational Theory
	Constructions

	Boilerplate in Libraries
	Agda Standard Library
	Lean MathLib

	Methodology
	Tog: Language and Type Checker
	A Library of Algebraic Structures
	Theory Graph Development
	MathScheme Combinators
	Library Building
	Discussion

	The Flattener Theory expressions to theory graph
	Referring to Morphisms
	Theory Expressions
	Implementation

	The Generator Graph theories to generated constructions
	Generation Framework
	Tog Infrastructure
	Constructions For Free!
	Discussion

	The Exporter Generated constructions to proof assistants
	Beyond Tog
	Exporter Design
	Implementation
	Comparison With Agda Standard Library
	Comparison With Lean's Mathlib
	Discussion

	Related Work
	Formalizing the algebraic hierarchy
	Automation in Theorem Provers
	Reflection Mechanisms in Theorem Provers

	Conclusion and Future Work
	Summary of contributions
	Future Work

	Library Definitions
	Tog Generated Code

