
A Performance Class-Based Particle
Swarm Optimizer

Chia Emmanuel Tungom1, Maja Gulan2(B), and Ben Niu1(B)

1 College of Management, Shenzhen University, Shenzhen 518060, China
chemago99@yahoo.com, drniuben@gmail.com

2 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
majica.gulan@gmail.com

Abstract. One of the main concerns with Particle Swarm Optimiza-
tion (PSO) is to increase or maintain diversity during search in order
to avoid premature convergence. In this study, a Performance Class-
Based learning PSO (PCB-PSO) algorithm is proposed, that not only
increases and maintains swarm diversity but also improves exploration
and exploitation while speeding up convergence simultaneously. In the
PCB-PSO algorithm, each particle belongs to a class based on its fitness
value and particles might change classes at evolutionary stages or search
step based on their updated position. The particles are divided into an
upper, middle and lower. In the upper class are particles with top fitness
values, the middle are those with average while particles in the bottom
class are the worst performing in the swarm. The number of particles in
each group is predetermined. Each class has a unique learning strategy
designed specifically for a given task. The upper class is designed to con-
verge towards the best solution found, Middle class particles exploit the
search space while lower class particles explore. The algorithm’s strength
is its flexibility and robustness as the population of each class allows us
to prioritize a desired swarm behavior. The Algorithm is tested on a set
of 8 benchmark functions which have generally proven to be difficult to
optimize. The algorithm is able to be on par with some cutting edge PSO
variants and outperforms other swarm and evolutionary algorithms on
a number of functions. On complex multimodal functions, it is able to
outperform other PSO variants showing its ability to escape local optima
solutions.

Keywords: Particle Swarm Optimization · Learning strategy · Swarm
intelligence

1 Introduction

Optimization is one of the key features in obtaining good performance in systems.
In fact optimization problems can be found everywhere in real life from trans-
portation to even dieting. PSO is an intelligent optimization algorithm designed

c© Springer Nature Switzerland AG 2020
Y. Tan et al. (Eds.): ICSI 2020, LNCS 12145, pp. 176–188, 2020.
https://doi.org/10.1007/978-3-030-53956-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53956-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-53956-6_16

A Performance Class-Based Particle Swarm Optimizer 177

in the mid 1990’s by Eberth and Shi [1,2]. The algorithm’s working principle is
based off-of simulating the collective behavior of bird flock and fish school.

The original PSO algorithm has a topology fully connected network where all
particles learn from their personal best historical search position and the global
best particle in the swarm. This learning structure is the main reason why the
original PSO algorithm is inefficient and ca easily be trapped into a local min-
ima as all particles are guided by one global leader. Several other topological
structures have been introduce to enhanced performance e.g. the ring topology,
the von Neumann topology, the pyramid topology [3]. These topologies use dif-
ferent ways to update the velocity and position of particles in the swarm. Fully
Informed PSO (FIPS) determines the velocity of a particle by looking at its
neighborhood topology [4]. Comprehensive learning PSO (CLPSO) tries to solve
the problem of premature convergence by using different learning topologies on
different dimensions to ensure diversity is maintained [5].

Exploration, the ability of the swarm to search its entire environment (global
search) and exploitation, the ability for particles to thoroughly search their
neighborhood (local search) are two important features of any PSO or search
algorithm. To ensure swarm stability, stability based adaptive inertia weight
(SAIW) uses a performance based approach to determine each particles inertia
weight [6]. Mixed Swarm Cooperative PSO (MCPSO) achieves exploration and
exploitation by dividing particles into exploration and exploitation groups [7].
By leveraging comprehensive learning strategy, Heterogeneous Comprehensive
Learning PSO (HCLPSO) enhances its exploration and exploitation [8]. There
are several other balanced Algorithms that are specifically designed to ensure
both exploration and exploitation [8–10].

In this study, a novel PSO algorithm called PCB-PSO is proposed, with a new
learning topology to ensure exploration and exploitation while also ensuring a
high convergence speed therefore avoiding premature convergence. In PCB-PSO,
particles are divided into three groups, upper class, middle class and lower class
based on their fitness values, and a particles’ group might change from itera-
tion to iteration. The upper class consist of particles with superior performance
while the lower class consist of the poorest performing members. The middle
class is made-up of members considered not to be performing poorly and not
having superior performance. Particles in the same group have a common learn-
ing strategy or topology, which is different from those in the other groups. Lower
class particles are designed to enhance exploration while the middle class par-
ticles are designed for exploitation. Upper class particles are designed for fast
convergence. The intuition here is that if a particle is performing poorly, it has
to do more exploration and if its performance is good, it focuses on converging
faster, and if its performing neither poorly nor well, then it should exploit its
neighborhood. The main contributions of this study can be listed as follows:

178 C. E. Tungom et al.

1. Introduces a new paradigm of PSO learning that enhances exploration,
exploitation and convergence speed simultaneously.

2. Deals with the problem of premature convergence by making some particles
continue exploration and exploitation while others converge to a given minima
or optima.

3. The problem of swarm diversity is dealt with by continuous exploration of
the search space by lower class particles.

4. Introduces flexibility by allowing a given behavior to be prioritized by simply
assigning more or all particles to a given class.

The rest of the paper is organized as follows: The original PSO algorithm and
some learning topologies are reviewed in Sect. 2. The proposed PCB-PSO algo-
rithm is discussed in Sect. 3 and in Sect. 4, analysis and comparison of the results
with other PSO variants on several benchmark functions is discussed. Finally,
in Sect. 5 we draw our conclusion from this paper and propose future research
directions.

2 Basic PSO Algorithm

PSO is a population based stochastic swarm and evolutionary computational
algorithm. In PSO, a population of particles, with each having a position and
velocity component, is use to find the solution to an optimization problem. Each
particle is a solution and the search space is the set of all solutions to the
given problem. The particles or solutions are evolved by updating the velocity
and position after every iteration. A particles update is done using its personal
best experience and the best experience of the entire swarm. This update is
designed to guide the particles towards the global best solution and eventually
and eventually towards the optimal solution. The update of velocity and position
of each particle are done using Eqs. 1 and 2 respectively. The particles continue
to evolve until a termination criterion is met usually the maximum iteration
pre-determined before start of search.

V t+1
i = wV t

i + c1r1(Xt
Pb −Xt

i) + c2r2(Xt
Gb −Xt

i) (1)

X
t+1)
i = Xt

i + V t+1
i (2)

where w is the inertia weight and wV t
i the Inertia or momentum component.

The inertia component directs a particles’ trajectory in the search space for both
exploration and exploitation towards unvisited search areas, its choice of value
usually depend on the search dimension and varies in the range [0, 1]. Particles
trajectories are maintained by the inertia component, which forces particles to

A Performance Class-Based Particle Swarm Optimizer 179

navigate through areas independent of previously successful searches. For a given
particle in the swarm, Xi is its current positon, Xt

i its personal best solution
at a given iteration time is Xt

Pb and the best position Xt
Gb of the entire swarm

referred to as global best. The social component c2r2(Xt
Gb −Xt

i) and cognitive
component c1r1(Xt

Pb−Xt
i) guide the particles towards the swarms best solution

and a particles personal best solution respectively.
c1 and c2 are cognitive and social acceleration coefficients respectively usually

set to 2 by default in the basic PSO algorithm. r1 and r2 are uniform random
numbers generated between 0 and 1. w, c1 and c2 play an influential role in
determining the swarm’s behavior. A choice of each value is problem dependent
and determines the convergence speed, exploitation and exploration ability of
the swarm. Therefore, the choice of values should be harmonious. In a simple
PSO algorithm, w can be between 0.4 and 0.9 and c1 and c2 can be set to 2.

3 Proposed PSO Algorithm

In this section, an efficient variant of PSO called PCB-PSO is proposed to simul-
taneously tackle the problems of premature convergence, exploration, exploita-
tion and diversity while also converging faster to the global minima. The algo-
rithm introduces a new learning topology and the major difference from the base
PSO is as follows (1) Particles in the swarm belong to one of three groups based
of their fitness value. (2) Each group has a learning strategy or update mech-
anism unique to it. In PCB-PSO, The best or top performing particles fall in
the Upper Class (UC), average performing in the Middle Class (MC) and poorly
performing particles fall in the Lower Class (LC). The population size of each
class is predetermined and will be discussed in the later section. The intuition
here is that, classifying particles into three groups can allow us to design a learn-
ing strategy for each group of the swarm to simultaneously explore, exploit and
converge while maintaining diversity throughout the search. This is opposed to
the base PSO where all the particles learn from a global leader making them
to move towards one region of the search space. UC particles, which, have good
performance and are most likely to find the optimal solution are designed to
enhance convergence speed. LC particles, which are poorly performing in the
swarm, roam the search area exploring new solutions and maintaining diversity
of the swarm. MC particles, which are performing neither poorly nor well, are
designed for exploitation since they move in areas between UC and MC particles
(Fig. 1).

180 C. E. Tungom et al.

Fig. 1. Shows the sequential search process of the PCB-PSO.

3.1 Swarm Classes

We want to sort the particles into three classes UC, MC and LC with population
sizes Nuc,Nmc and Nlc respectively. The population of each class is determined
in three simple steps. First, a class is chosen and the proportion of the total
population N to belong to that class is assigned to determine the population of
the given class. Secondly, the remaining population is used and a proportion of
it is determined to fall in to the next class. Finally, the last remainder of the
population falls into the last class. Note that we can start with any class. For
convenience sake, in this paper, we will be starting with UC, MC and then LC
in that order. Let us say the proportion of particles we want in UC is 1/3 of
N then Suc = 3 and Let’s assume the proportion of the remaining particles we
want for MC is 1/2, then Smc = 2. N is used to determine Nuc while N −Nuc

is use to determine Nmc as shown in Eqs. 3 and 4 respectively. The remaining
particles after selecting Nuc and Nmc make up Nlc (Fig. 2).

Nuc =
N

Suc
(3)

Nmc =
(N −Nuc)

Smc
(4)

Nlc = |Nuc −Nmc| (5)

A Performance Class-Based Particle Swarm Optimizer 181

Fig. 2. Illustrates the classification of particles based on fitness with their correspond-
ing classes and population sizes search process of the PCB-PSO.

UC and LC particles have probabilities associated to them. This associated
probability is a measure of how likely a particle is chosen to be learned from by
another particle in the learning strategy of a given class, which will be discussed
later. For UC particles, the probability is proportional to the fitness value mean-
ing the higher the value, the higher the probability while for LC particles; the
probability is inversely proportional to the fitness value. MC particles learn from
both UC and LC members and so we want the best particles in UC to be less
likely to learn from and the best particles in LC to be more likely to learn from
so as to keep them exploiting regions between MC and LC. The probability of a
UC particle is calculated using Eq. 6 while that of LC is calculated using Eq. 7.

PUCi
=

f(XUCi
)

∑n
j=1 f(XUCj

)
(6)

PLCi
=

f̃(XLCi
)

∑n
j=1 f̃(XLCj

)
(7)

where UCi is the ith particle of UC and PUCi
is the probability of that

particle.LCi is the ith particle of LC and PLCi
is the probability of that particle.f̃

is calculated such that the appropriate probabilities are derived for LC parti-
cles i.e. the lowest fitness values are flipped for all members with the poorest fit
particle becoming the fittest and vice versa.

3.2 Update Mechanism

In PSO particles are updated by directing them towards the global best solution
of the swarm and the personal best solution of the given particle with a velocity.
This might be problematic if the solution found is not actually the best solution
in the search space then particles will fail to explore other search regions missing
other potentially better solutions. This problem has been solved by introducing
different learning strategies and parameter modification. The simplest way is to
vary the inertia weight and acceleration coefficients throughout the search to
enhance exploration in the early stages and exploitation in the late stages. We
leverage this idea but ensure both exploration and exploitation are carried-out
throughout the search by introducing a new topology structure. This ensures
a thorough search of the solution space making it less likely to miss a global

182 C. E. Tungom et al.

Fig. 3. Illustrates the learning mechanisms of each class with their source of information
indicated by arrows.

best solution. The velocity component is not used in this algorithm because in
higher dimensions, the inertia weight is required to be less than 0.1 to achieve
reasonable results. Instead of using the recommended small value of the inertia
weight, we focus on tuning acceleration of the social and cognitive component,
which further simplifies the position update equation by eliminating the inertia
weight and velocity. Hence, in this algorithm, we do not need to calculate the
velocity component of a particle. In PCB-PSO, the update mechanism of each
class is design for a given property of exploration, exploitation and convergence
of the particles. Three different update mechanisms are designed for the three
classes. Each update strategy is unique to a given class.

UC Update Mechanism. These are the best performing particles in the swarm
and so are close to the best solution found at any period during the search. The
update equation for UC is as shown in Eq. 8

Xt+1
i = Xt

i + c1r1(Xt
Pb −Xt

i) + c2r2(Xt
Gb −Xt

i) (8)

The parameters are same as discussed in Sect. 2 (Fig. 3).

A Performance Class-Based Particle Swarm Optimizer 183

MC Update Mechanism. Particles in this class are designed to exploit the
region outside the best solution found which ensures diversity and thorough
exploitation of the space. The position update of this class is as shown in Eq. 9.

Xt+1
i = wV t

i + c3r3(Xt−1
i −Xt

i) + c4r4(SXt
uc − SXt

lc) (9)

where SXt
uc and SXt

lc are stochastically selected UC and LC particles at time
t respectively. Taking the difference between a UC and LC particle allows the
particle to fall somewhere outside the best solution already found and using the
particles previous position instead of the personal best boosts the stochasticity
of the search.

LC Update Mechanism. The update mechanism here is designed so that
particles will explore the entire search region. The movement of particles in this
class is chaotic which helps them to roam the swarm looking for better solutions.
The position update is as shown in Eq. 10.

Xt+1
i = Xt

i + c5r5(Xt−1
i −Xt

i) + c6r6(Xt−1
R −Xt

i) (10)

where Xt
R is a randomly generated position in the search space at iteration t

aiding with the chaotic movement of particles in this group across the search
space.

To further speed up convergence, at certain short intervals during the search,
the population of the entire swarm is set to Nuc for UC learning as shown in
Algorithm 1.

3.3 Parameter Setting

There are two groups of parameters to be set in this algorithm. The first is the
class populations and the second is the acceleration coefficients for each class.
The recommended settings for the proposed algorithm is outlined in Table 1.
Note that the population size of any group cannot be greater than the entire
swarm and the sum of all class population must be equal to the population of
the entire swarm. At shown in Algorithm one, Such can be varied to push for
quicker convergence at certain periods of the search. A higher swarm popula-
tion will always enhance better results as opposed to other algorithms where
increasing the swarm size after a certain threshold is reached might not help the
performance of the algorithm which is because of the classification and behav-
ioral setting of the particles. In PCB-PSO, the threshold is very high especially
for problems with higher complexity.

184 C. E. Tungom et al.

Table 1. Parameters for proposed algorithm with desired and recommended settings.

Parameter Name Recommended value Desired range

N Population of swarm [D*5, D*10] [D*5, D*10]

Nuc UC Population >N/4 [1, N]

Nmc MC Population >N/4 [1, N]

Nlc LC Population >N/4 [1, N]

t Iteration number >D*3 >0

c1 UC social acceleration coefficient 2.5 [0.0, 4.0]

c2 UC cognitive acceleration coefficient 0.5 [0.0, 4.0]

c3 MC social acceleration coefficient 1.5 [0.0, 4.0]

c4 MC cognitive acceleration coefficient 1.5 [0.0, 4.0]

c5 LC cognitive acceleration coefficient 1 [0.0, 4.0]

c6 LC random acceleration coefficient 2 [0.0, 4.0]

4 Experiment Simulation and Results

To evaluate and ascertain the capability of the proposed algorithm, it is com-
pared with other existing swarm and evolutionary algorithms on a set of bench-
mark functions. The PSO variants we compare with have been adopted for real
world engineering applications and so can be regarded as state of the art. The
algorithms used for this comparison include PSO, Harmony Search (HS), GA,
Artificial Bee Colony (ABC), Cultural Algorithm (CA) and other advanced PSO
variants.

Table 2. Outline of parameter settings for algorithms used for comparison.

Algorithm Parameters

PSO maximum velocity = 0.6, inertia weight=0.9, acceleration constants
c1 = c2 = 2

HS bandwidth= 0.2, harmony memory accepting rate = 0.95,
pitch-adjusting rate = 0.3

GA crossover probability = 0.7, mutation probability = 0.3

ABC limit = 0.6×dimension×population

CA Probability of the knowledge source = 0.35, number of accepted
individuals = probability of the knowledge source× population

BBPSO No parameter setting required

BBPSOV Logistic map used as the search parameter

Proposed PSO Nuc = Nmc = Nlc, c1 = 2.5, c2 = 0.5, c3 = c4 = 1.5,
c5 and c6 are set to 1.0 and 2.0 respectively

A Performance Class-Based Particle Swarm Optimizer 185

4.1 Benchmark Functions

The benchmark functions used for evaluation have widely been used to evaluate
swarm intelligence and evolutionary algorithms [11–13]. They include a set of
8 benchmark unimodal and multimodal functions as shown in Table 3. These
functions have varied difficulty and have proven to be difficult to find optima
solutions in high dimensions (>30). The unimodal functions (F1-F5) have single
optimal solutions while the multimodal functions (F6-F8) have multiple. These
functions are challenging and are often used to evaluate local exploitation and
global exploration ability of a search algorithm.

Table 3. Shows benchmark functions used for performance testing.

Function Range Global minima

F1 Dixon-Price [−10, 10] 0

F2 Sphere [−5.12, 5.12] 0

F3 Rotated hyper-ellipsoid [−65.536, 65.536] 0

F4 Sum squares [−5.12, 5.12] 0

F5 Sum of different powers [−1, 1] 0

F6 Ackley [−32, 32] 0

F7 Griewank [−600, 600] 0

F8 Powell [−4, 5] 0

4.2 Experiment Setup and Results

For each of the Algorithms, swarm size is set to 50 and the search Dimension for
each optimization function is set to 50. The maximum number of iteration is 1000
and each algorithm undertakes 30 independent runs. The parameter settings for
each of the algorithms to be used is as shown in Table 2.

The proposed Algorithm shows superior performance in comparison to the
other variants on the multimodal functions F6–F8. This shows the agility of the
algorithms and its ability to escape the local optima while still managing to push
for faster convergence. On unimodal functions, F1–F5 the performance is on par
with other PSO variants but outperforms the other swarm and evolutionary
algorithms. In unimodal functions, there is only one minima but our algorithm
was still set to continuously explore and exploit other regions. If we set the whole
population to UC, the algorithm will work towards faster convergence and we
will expect achieve better quality results. In all we can see the flexibility and
robustness of the algorithm given its built characteristics and swarm behavior
in mind (Table 4).

186 C. E. Tungom et al.

Table 4. Results of algorithms on benchmark functions.

Function Algorithm Mean Std Min Max

F1 PSO 2.30E+06 7.71E+05 1.28E+06 5.13E+06

HS 7.91E+01 1.87E+01 4.54E+01 1.19E+02

GA 4.12E+05 2.49E+05 1.02E+05 1.01E+06

ABC 3.19E+06 8.10E+05 1.67E+06 4.97E+06

CA 4.96E+03 4.51E+03 5.91E+02 1.86E+04

BBPSO 2.63E+05 3.53E+05 7.86E+01 1.41E+06

BBPSOV 4.77E+00 3.16E+00 6.70E−01 9.82E+00

Proposed PSO 3.15E−06 4.96E−06 3.59E−08 2.05E−05

F2 PSO 1.47E+02 2.59E+01 8.46E+01 1.80E+02

HS 3.91E−01 4.28E−02 3.09E−01 4.61E−01

GA 4.12E+05 2.49E+05 1.02E+05 8.40E+01

ABC 1.54E+02 2.35E+01 1.06E+02 1.94E+02

CA 1.01E+00 1.25E+00 7.09E−02 6.42E+00

BBPSO 2.35E+01 2.57E+01 1.29E−02 1.05E+02

BBPSOV 5.21E−08 1.03E−07 9.30E−10 3.22E−07

Proposed PSO 2.21E−06 7.45E−06 4.11E−09 4.00E−05

F3 PSO 6.03E+05 1.29E+05 3.96E+05 8.79E+05

HS 1.68E+03 4.51E+02 7.65E+02 2.73E+03

GA 2.40E+05 4.88E+04 1.53E+05 3.87E+05

ABC 5.05E+05 7.24E+04 3.88E+05 6.54E+05

CA 4.85E+03 4.89E+03 5.01E+02 2.33E+04

BBPSO 1.21E+05 1.13E+05 4.46E+03 3.48E+05

BBPSOV 1.88E−04 3.94E−04 3.84E−06 1.74E−03

Proposed PSO 1.24E−03, 1.90E−05 4.19E−06 8.40E−04

F4 PSO 1.48E+04 3.97E+03 7.65E+03 2.47E+04

HS 1.52E+01 2.16E+00 1.21E+01 2.27E+01

GA 4.09E+03 1.25E+03 2.44E+03 7.34E+03

ABC 1.18E+04 1.62E+03 8.60E+03 1.43E+04

CA 1.46E+02 1.91E+02 5.08E+00 1.01E+03

BBPSO 2.32E+03 1.53E+03 3.02E+02 5.71E+03

BBPSOV 4.78E−06 8.15E−06 1.41E−07 3.11E−05

Proposed PSO 1.50E−06 2.52E−06 1.12E−05 1.12E−05

F5 PSO 3.43E−01 2.60E−01 2.36E−02 9.53E−01

HS 4.78E−07 6.68E−07 1.08E−08 3.45E−06

GA 2.39E−02 2.15E−02 2.92E−03 8.04E−02

ABC 7.59E−01 3.00E−01 1.87E−01 1.50E+00

CA 6.15E−05 1.38E−04 1.86E−07 6.89E−04

BBPSO 7.92E−10 3.68E−09 1.27E−15 2.01E−08

BBPSOV 3.28E−18 1.01E−17 1.20E−22 5.33E−17

Proposed PSO 9.25E−08 3.23E−07 1.27E−10 1.78E−06

(continued)

A Performance Class-Based Particle Swarm Optimizer 187

Table 4. (continued)

Function Algorithm Mean Std Min Max

F6 PSO 1.95E+01 5.71E−01 1.82E+01 2.05E+01

HS 3.09E+01 3.97E−01 3.02E+01 4.08E+01

GA 1.61E+01 8.56E−01 1.44E+01 1.81E+01

ABC 2.03E+01 2.54E−01 1.98E+01 2.08E+01

CA 1.10E+01 2.36E+00 5.46E+00 1.74E+01

BBPSO 1.85E+01 1.41E+00 1.42E+01 2.01E+01

BBPSOV 3.27E+00 8.23E−01 2.08E+00 5.68E+00

Proposed PSO 6.94E−05 1.17E−05 3.31E−07 5.31E−05

F7 PSO 5.28E+02 9.93E+01 3.09E+02 6.91E+02

HS 3.06E+00 4.47E−01 2.08E+00 3.78E+00

GA 2.56E+02 7.11E+01 1.45E+02 4.39E+02

ABC 5.59E+02 7.47E+01 3.73E+02 7.23E+02

CA 5.77E+00 5.48E+00 1.15E+00 2.83E+01

BBPSO 7.27E+01 8.93E+01 1.04E+00 3.62E+02

BBPSOV 1.78E−02 2.43E−02 1.14E−06 8.50E−02

Proposed PSO 3.27E−04 4.37E−04 2.93E−05 1.70E−03

F8 PSO 1.40E+04 4.03E+03 6.44E+03 2.24E+04

HS 2.25E+01 8.61E+00 8.69E+00 4.77E+01

GA 2.35E+03 1.10E+03 1.02E+03 6.55E+03

ABC 1.56E+04 3.57E+03 1.10E+04 2.35E+04

CA 1.49E+02 1.14E+02 1.99E+01 4.62E+02

BBPSO 2.67E+03 1.97E+03 1.79E+02 6.93E+03

BBPSOV 5.79E−02 4.07E−02 1.85E−02 1.76E−01

Proposed PSO 8.24E−07 9.19E−07 2.35E−08 3.08E−06

5 Conclusion and Future Work

In this study, a novel learning paradigm for PSO is introduce to balance explo-
ration, exploitation and convergence while maintaining diversity of the swarm.
The algorithm uses only the social and cognitive components of PSO for learn-
ing which further simplifies the algorithm. Particles Learn according to the class
they fall in and these gives flexibility and robustness to the algorithm as dif-
ferent learning methods are in cooperated at the same time. The algorithm
further introduces dynamism by varying class population at given intervals dur-
ing the search. The algorithm is tested on a number of benchmark functions,
compared with other swarm and evolutionary optimization algorithms including
other advance PSO techniques, and see the superiority of the proposed algo-
rithm. In future work, this algorithm will be tested on more functions like the
2013 or 2017 CEC suit. It will also be used to solve a real world problem.

188 C. E. Tungom et al.

Acknowledgement. This work is partially supported by Shenzhen Philosophy and
Social Sciences Plan Project (SZ2019D018), Guangdong Provincial Soft Science Project
(2019A101002075)

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

2. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of 6th International Symposium on Micro Machine and Human Science,
pp. 39–43 (1995)

3. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1671–1676
(2002)

4. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

5. Liang, J.J., Qin, A.K., Suganthan, P.N., Baska, S.: Comprehensive learning parti-
cleswarm optimizer for global optimization of multimodal functions. IEEE Trans.
Evol. Comput. 10(3), 281–295 (2006)

6. Taherkhani, M., Safabakhsh, R.: A novel stability-based adaptive inertia weight
for particle swarm optimization. Appl. Soft Comput. 38, 281–295 (2016)

7. Jie, J., Zang, J., Zheng, H., Hou, B.: Formalized model and analysis of mixed
swarm based cooperative particle swarm optimization. Neurocomputing 174, 542–
552 (2016)

8. Zhao, X., Lin, W., Hao, J., Zuo, X., Yuan, J.: Clustering and pattern search
for enhancing particle swarm optimization with Euclidean spatial neighborhood
search. Neurocomputing 171, 966–981 (2016)

9. Meng, A., Li, Z., Yin, H., Chen, S., Guo, Z.: Accelerating particle swarm optimiza-
tion using crisscross search. Inf. Sci. 329, 52–72 (2016)

10. Yu, K., Wang, X., Wang, Z.: Multiple learning particle swarm optimization with
space transformation perturbation and its application in ethylene cracking furnace
optimization. Knowl.-Based Syst. 96, 156–170 (2016)

11. Zhang, L., Srisukkham, W., Neoh, S.C., Lim, C.P., Pandit, D.: Classifier ensemble
reduction using a modified firefly algorithm: an empirical evaluation. Expert Syst.
Appl. 93, 395–422 (2018)

12. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems. Neural Comput.
Appl. 27(4), 1053–1073 (2015). https://doi.org/10.1007/s00521-015-1920-1

13. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

https://doi.org/10.1007/s00521-015-1920-1

	A Performance Class-Based Particle Swarm Optimizer
	1 Introduction
	2 Basic PSO Algorithm
	3 Proposed PSO Algorithm
	3.1 Swarm Classes
	3.2 Update Mechanism
	3.3 Parameter Setting

	4 Experiment Simulation and Results
	4.1 Benchmark Functions
	4.2 Experiment Setup and Results

	5 Conclusion and Future Work
	References

