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Abstract. To solve the problem of load unbalance in the case of few users and
multi-task, a fuzzy inference PSO algorithm (FPSO) crowd sensing single objec-
tive task assignment method is proposed. With task completion time, user load
balancing and perceived cost as the optimization goals, the fuzzy learning algo-
rithm dynamically adjusts the learning factor in the PSO algorithm, so that the
PSO algorithm can perform global search in the scope of the task space, thus
obtaining the optimal task assignment solution set. Finally, the FPSO algorithm is
compared with the PSO, GA and ABC algorithms on the optimization objectives,
such as the algorithm convergence, task completion time, perceived cost and load
balance. The experimental results show that the FPSO algorithm not only has
faster convergence rate than the other algorithms, and shorten the task completion
time, reduce the platform’s perceived cost, improve the user’s load balance, and
have a good application effect in the crowd sensing task assignment.

Keywords: Fuzzy inference · Particle swarm algorithm · Crowd sensing · Task
assignment · Load balancing

1 Introduction

With the widespread use of mobile users, smartphones have become an important bridge
between the physical world and the online world. These advances have driven a new
paradigm for collecting data and sharing data, namely group intelligence perception
[1, 2]. At present, the application of group intelligence perception mainly includes: air
quality monitoring [3], traffic information management [4], public information sharing
[5] and so on. As the task assignment of the key problem of the crowd-sensing system, it
is necessary to meet the optimization objectives under the constraints while completing
the specified tasks, such as the shortest time to complete the task, the least perceived
cost required to complete the task, the maximum benefit from completing the task, etc.
Therefore, themain problem solved by the fuzzy inference PSO algorithm crowd sensing
task assignment method is: how to perform task assignment for the multi-task of less
user participants, which can ensure that the given number of tasks is completed in the
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shortest time, the perceived cost is the lowest, and user load balancing is optimal. For
the problem of poor user load balance in mobile commerce, a fuzzy inference particle
swarm crowd sensing task assignment method is proposed to improve the global search
ability of the algorithm and avoid falling into local optimum. The main contributions of
this paper include:

(1) A single objective task assignment optimization model is constructed, with task
completion time, perceived cost and user load balance as the objective function.

(2) Based on the task assignment optimization model, a fuzzy inference particle swarm
intelligence discernment task assignment method is proposed to solve the task
assignment problem in discrete space.

(3) Through the simulation experiment, the proposed fuzzy inference particle swarm
task assignment method (FPSO) is compared with PSO, GA and ABC algorithms.
The experimental results show that fuzzy inference particle swarm optimization
algorithm can minimize the task completion time, the lowest perceived cost and the
maximum user load balance.

2 Related Works

The paper mainly reviews the literature on single target assignment and dual objective
assignment.

For single-objective task assignment: Xiao et al. [6] considered the independent
perceptual task scheme to minimize the task average completion time as the optimiza-
tion goal, proposed the AOTA algorithm (average time-sensitive online task assignment
algorithm); and considered the cooperative perception. In the task assignment scheme,
the LOTA algorithm (the maximum completion time sensitive online task assignment
algorithm) is proposed to minimize the maximum completion time of the task, and the
important performance of the two algorithms is proved by simulation experiments. Yang
et al. [7] considered the biggest problem of budget information in crowd-sensing, mod-
eled by Gaussian process and proposed an algorithm BIM for quantifying the amount of
information based on common standards based on information. The algorithm is suit-
able for the inability to obtain user cost. Xiao et al. [8] focused on the recruitment of
users who are sensitive to deadlines for probabilistic collaboration.Mobile users perform
crowd-sensing tasks within a certain probability range, and can recruit multiple user sys-
tems to perform common tasks to ensure expected the completion time does not exceed
the deadline, and ag DUR (Criteria for Time-sensitive Greedy User Recruitment Algo-
rithm) is proposed to maximize utility for recruiting users and to minimize perceived
cost expenditures during the deadline. Azzam et al. [9] proposed a user group recruit-
ment model based on genetic algorithm in order to recruit more participants to perform
tasks, considering user interest points, related device perception capabilities and user
basic information. By comparing with the personal recruitment model, the user group
recruitment model based on genetic algorithm can improve the quality of collecting per-
ceived data and ensure the reliability of perceived results. Yang et al. [10] designed the
problem of heterogeneous sensor task assignment, and designed the heuristic algorithm
to combine the genetic algorithm and the greedy algorithm to achieve the optimization
goal of minimizing the total penalty caused by delay.
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For dual-target assignments: Liu et al. [11] mainly studied the multi-task assignment
of dual-objective optimization. For FPMT (less participants multitasking), to maximize
the total number of tasks and minimize the moving distance as the optimization goal, use
the MCMF (minimum cost maximum flow) theory to convert the FPMT problem, and
consider the FPMT problem to build a new MCMF model. Xiong et al. [12] proposed a
task assignment search algorithm based on maximizing space-time coverage and mini-
mizing perceived cost in task assignment. Considering the perceived time and the quality
of task completion.Wang et al. [13] only studied the perceptual task assignment problem
tominimize the overall perceived cost andmaximize the total utility of group intelligence
perception, while meeting various quality of service (QoS) requirements, and proposed
a new hybrid method combines the greedy algorithm with the bee colony algorithm.
Messaoud et al. [14] mainly studied the participatory crowd-sensing user, and under
the condition of satisfying information quality and energy constraints, to optimize the
data perceptual quality and minimize the perceptual time of all participants, the appro-
priate task participants designed a crowd-sensing task assignment mechanism based on
the tabu search algorithm combined with information quality and energy perception.
Dindar Oz [15] proposed a solution to the problem of multi-objective task assignment,
and designed a neighboring function that successfully solved the quadratic assignment
problem for the metaheuristic algorithm, namely the maximum release of greedy allo-
cation. Ziwen Sun et al. [16] proposed an attack location assignment (ALTA) algorithm
based on multi-objective binary PSO optimization algorithm, which models the task as a
multi-objective optimization model. The objective function is total task execution time,
total energy consumption and load balancing. The method of nonlinearly adjusting iner-
tia weight overcomes the shortcomings of binary particle swarm optimization (BPSO)
which is easy to fall into local optimum.

In summary, for the crowd-sensing task assignment problem, most researchers only
consider one or two optimization goals such as perceived cost, task completion time, and
task completion quality, and there are few studies that satisfy both optimization goals.
This paper considers the problem of poor user load balance encountered in the process
of task problems, combines task completion time and perceived cost, establishes single
objective task assignment optimization model, and proposes fuzzy inference particle
swarm task assignment method to solve task assignment problem in discrete space.

3 Problem Description and Model Establishment

3.1 Description of the Problem

There are two main types of task assignments: multi-participant less tasks and fewer
participants multitasking. This topic mainly studies the task assignment of multi-tasks
with fewer participants. How to perform reasonable task assignment makes the user load
balance more, and the user participation enthusiasm can reduce the task completion time
and reduce the perceived cost. In a specific environment, after the cognitive platform
publishes the task, the mobile terminal users who are interested in these tasks will
confirm the tasks to indicate their intentions, and finally confirm the set of end users
U = {u1, u2, . . . , un}, and the set of the published task R = {r1, r2, . . . , rm} (n<m). At
the same time, an end user can complete one or more tasks. Reasonable task assignment
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enables each task target to be assigned to the appropriate user or user community to
perform. Each user is also assigned to a task target that matches its own performance,
using each user’s maximum energy to complete the task, saving costs, improve task
completion rates.

3.2 Single Objective Task Assignment Optimization Model Establishment

3.2.1 Model Assumption

In order to satisfy the establishment of the crowd-sensing task assignment model under
defined conditions, the following assumptions are made:

(1) The task assignment studied in this paper is in a specific time range, and only the
participating users and tasks are allocated during this time.

(2) The matching of the published tasks and the participating users within the coverage
of the specified task area is not a task for all coverage areas. This narrows the scope
of the task space and improves the quality of the task completion.

(3) For the tasks released by the crowd-sensing platform, users who are suitable for
performing the task will be found. There is no case that the appropriate users cannot
be found after the task is released.

(4) All users move from the current position to the task position at the same speed,
regardless of the user’s moving speed.

3.2.2 Notations

(See Table 1).

Table 1. Notations

Symbol Notations

m Number of tasks

n Number of user

T Total execution time of the tasks

tij Time taken by the i user to perform the j task

β Load balancing

C Total perceived cost

ci Single task perceived cost

dij Distance of user and task distance

Ai Number of tasks performed by a single user

Vij Number of times the task was executed by the user

ωjk Tasks are only executed by one user

γ Maximum number of tasks performed by the user
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3.2.3 Model Objective Function

(1) Task completion time
The total time taken by n users to complete m tasks is T:

T =
n∑

i=1

m∑

j=1

tij (1)

Which tij represents the time taken by the i user to perform the j task.
(2) Load balance

Load balancing ismeasured using the ratio of task completion times. The expression
is the ratio of each user’s completion time to the total task completion time.

β = tij
T

, 0 < β < 1 (2)

Which tij represents the completion time of each user on behalf of each user, and
T represents the total task completion time. The closer the task completion time to
the total task completion time, the more balanced the load is. Therefore, the larger
the β, the higher the load balance.

(3) Perceived cost
The perceived cost is related to the distance the user moves to the location of
the task and is proportional to the distance traveled by the perceived user to the
task location. If the position coordinate of the user 1 is (xu1 , yu1), and the position
coordinate of the task 1 is (xr1 , yr1), the distance between the user and the task is
d11 = √

(xu1 − xr1)
2 + (yu1 − yr1)

2, if the ratio coefficient of the perceived cost
and the moving distance is constant α, the perceived cost of the user to the task is
c1 = αd11. Therefore, the single objective task assignment optimization model is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minT =
n∑

i=1

m∑
j=1

tij

minC =
n∑

i=1
ci =

n∑
i=1

m∑
j=1

αdij

maxβ = tij
T

(3)

The constraints are: (1) m tasks are completely assigned to n users;
n∑

i=1
Ai = m

(2) Each sensing task can only be executed once by a certain perceived user;
n∑

i=1
Vij = 1,∀j ∈ R.

(3) The task and the task can only be executed once by a certain user;
m∑

i=1

ωjk = 1,∀k ∈ R

m∑

k=1

ωjk = 1,∀j ∈ R
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(4) The number of tasks assigned by each perceptual user is not more than γ ; 1 ≤ Ai ≤
γ

4 Fuzzy Inference Particle Swarm Intelligence Perception Task
Assignment Method

4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is proposed to be influenced by bird predation
behavior [17, 18]. The PSO algorithm is modeled as follows:

vi(t) = wvi(t) + c1r1(t)(x
(p)
i (t) − xi(t)) + c2r2(t)(x

(g)

i (t) − xi(t)) (4)

xi(t) =
{
1, random < S(vi(t + 1))

0, others
(5)

Which vi(t) represents the velocity of the particle i at the iteration time t, i represents
the number of particles, i ∈ {1, 2, . . . ,N }. w is the weight function, and c1, c2 are the
weight acceleration coefficient; random is a uniformly distributed random variable in
the interval (0,1); xi(t) represents the current position of the particle i at the iteration
time t; x(p)

i (t) represents the individual optimal position of the particle i at the time of

iteration t; x(g)

i (t) represents the global optimal position of the particle i at the time of
iteration t; Sig(x) = 1

1+exp(−x) represents the function.

4.2 PSO Algorithm Based on Fuzzy Inference Technology

In order to improve the overall performance of the swarm intelligence algorithm, fuzzy
inference technology is added to the particle swarm optimization algorithm, and the
learning factor in the PSO algorithm is dynamically adjusted by the fuzzy inference
technology, so that the PSO algorithm can perform global search in the task space to
avoid the algorithm falling into the local optimal area, so as to get the optimal task assign-
ment solution set. In order to verify that the fuzzy inference PSO algorithm improves
the performance of the original algorithm, several typical algorithms are selected for
comparison. As shown in Fig. 1, the FPSO algorithm has a faster convergence rate than
other algorithms.

In this paper, a fuzzy system with two inputs, two outputs and nine rules is designed.
The input is the current optimal performance index (VB), the current iteration number
iter; the output is c1 and c2; the Mamdani type [19] is blurred. The system adjusts c1
and c2.

(1) Fuzzy set: For the input variables V and iter, three fuzzy sets are defined: Low,
Medium, High. For the output variables c1 and c2, five fuzzy sets are defined: Low,
Medium Low, Medium, Medium High, and High, using a triangular membership
function.
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Fig. 1. Comparison of fitness values between different algorithms

(2) Variable range. In order to apply to various optimization problems, the input
variables need to be converted to a normalized form, that is:

NV = VB − VBmin
VBmax − VBmin

(6)

Niter = iter

itermax
(7)

Where VB is the current optimal estimate of the population; VBmin is the optimal esti-
mate of the population; VBmax is the worst estimate of the population; iter is the current
number of iterations; itermax is the maximum number of iterations of the algorithm.
After normalization, the range of NV and Niter is [0, 1].

(3) Fuzzy rules: The overall idea of fuzzy rule setting is that in the early stage of
algorithm iteration, when the evaluation value is poor, it needs strong global search
ability, large shrinkage factor value, and the particle is the most Excellent learning
ability is stronger than the ability of particles to learn from the society, that is
c1 > c2; in the later stage of algorithm iteration, when the evaluation value is good,
it needs less global search ability and shrinkage factor value, and the ability of
particles to learn from society is stronger. The ability of a particle to learn optimally
from itself, that is c1 < c2. Therefore, the following nine fuzzy rules are designed:

If NB is Low and Niter is Low, then c1 is Medium Low and c2 is Low.
If NB is Low and Niter is Medium, then c1 is Medium High and c2 is Medium.
If NB is Low and Niter is High, then c1 is Medium High and c2 is High.
If NB is Medium and Niter is Low, then c1 is Medium Low and c2 is Low.
If NB is Medium and Niter is Medium, then c1 is Medium and c2 is Medium.
If NB is Medium and Niter is High, then c1 is Medium High and c2 is High.
If NB is High and Niter is Low, then c1 is Medium Low and c2 is Low.
If NB is High and Niter is Medium, then c1 is Medium Low and c2 is Medium High.
If NB is High and Niter is High, then c1 is Medium High and c2 is High.
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Therefore, the FPSO algorithm flow chart is shown in Fig. 2:

Fig. 2. FPSO algorithm flow chart

4.3 Fuzzy-Inferred Particle Swarm Crowd-Sensing Task Assignment

The particle swarm optimization algorithm in the swarm intelligence algorithm is used to
map the optimal objective function and constraint conditions of the crowd-sensing task
assignment problem to each element of the fuzzy inference particle swarm optimization
algorithm to complete the task solving.
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Task assignment process:

(1) Analyze the task assignment problem of mobile commerce group in a specific
environment;

(2) Establishing a crowd-sensing single objective task assignment optimization model,
and determining the task assignment constraints and optimization objective func-
tion, and transforming into the evaluation index function of the fuzzy inference
particle swarm optimization algorithm;

(3) Using the FPSO algorithm to optimize the search for decision variables;
(4) Optimized search of decision variables by FPSO algorithm, and evaluate the

optimization results according to the objective function;
(5) When the result satisfies the task assignment requirement, the output result ends

with the FPSO algorithm.

5 Experimental Simulations

5.1 Experimental Environment and Parameter Settings

In the set environment of mobile commerce crowd-sensing, taking the Drip taxi as an
example, the time spent by the passenger to release the taxi task to the vehicle owner
to start executing the task within the specified time is recorded as the task completion
time; The owner of the vehicle arrives at the distance that the passenger user releases the
position of the ride, and the fuel cost, the loss fee, etc. consumed during the period are
recorded as task-aware costs; the load balance is reflected in the number of tasks received
by each vehicle owner. Therefore, the number of simulation tasks is 200, 400, 600, 800,
1000, and the maximum number of iterations of the algorithm is 200. Experiments are
performed on the Matlab R2016b simulation platform. The FPSO algorithm parameter
settings are shown in Table 2.

Table 2. FPSO algorithm parameter setting table

Parameter Value

Population size 100

Learning factor c1 2

Learning factor c2 2

Maximum inertia factor wmax 0.9

Minimum inertia factor wmin 0.4

Maximum particle speed Vmax 4
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5.2 Experimental Process and Results Analysis

The experiment uses three optimization objectives to compare the advantages and disad-
vantages of several algorithms, namely task completion time, task-aware cost and load
balancing. The experimental results and analysis are as follows:

(1) Analysis of task completion time
The task completion time comparison chart is shown in Fig. 3 and Fig. 4. It can be
seen from Fig. 3 that PSO, ABC and GA algorithms have good convergence in the
early iteration compared with the FPSO algorithm. However, with the increase of
the number of iterations, PSO, ABC and GA are easy to fall into local optimum,
and FPSO algorithm can achieve global optimization and enhance global search
ability. Therefore, from Fig. 3 to complete the task total time and Fig. 4 to complete
the task average time can be seen the superiority of the FPSO algorithm, while the
task completion time is minimum.

Fig. 3. Comparison of total tasks completed between different algorithms

Fig. 4. Comparison of average time between tasks completed by different algorithms

(2) Perceived cost analysis
In the task assignment model, task completion time, perceived cost, and load bal-
ance are used as task optimization goals. In the experiment, we mainly consider
the perceived cost of applying different algorithms to complete the comparison of
the same number of tasks. The number of tasks is 200, 400, 600, 800 and 1000
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respectively in FPSO, PSO, ABC and GA algorithms. It can be seen from Fig. 5, as
the number of tasks increases (600, 800, 1000, respectively), the perceived cost of
the FPSO algorithm is significantly lower than the PSO, ABC and GA algorithms.

Fig. 5. Comparison of task-aware costs between different algorithms

(3) Load balance analysis
Load balancing is one of the important optimization goals in the paper. The greater
the load balancing degree, the more reasonable the task assignment is, It can be
seen from Fig. 6 that as the number of iterations increases, the curve of the FPSO
algorithm is always above the PSO, ABC and GA algorithm curves, and finally
tends to 0.92, so the FPSO algorithm is better implemented than the PSO, ABC and
GA algorithms. Load balancing optimization goals make task assignments more
reasonable.

Fig. 6. Comparison of load balancing between different algorithms

Through the above experiments, we know that the FPSO algorithm can shorten the
task completion time, reduce the perceived cost of the task, and balance the user’s task
load. Therefore, in the actual task allocation, it is possible to improve the timeliness
of the task, reduce the operating cost of the platform, and improve the task completion
amount of the user.
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6 Conclusion

This paper proposes a crowd-sensing task assignment method based on fuzzy inference
particle swarmoptimization to solve the problemof load unbalance in task assignment. In
the proposedmethod, the fuzzy inference technology can dynamically adjust the learning
factor in the PSO algorithm, so that the PSO algorithm can perform global search in the
task space to obtain the optimal task assignment solution set. Compared with PSO, ABC
and GA algorithms, it has higher precision and better stability in solving performance.
At the same time, applying FPSO algorithm for task assignment can greatly shorten
task completion time, reduce platform perceived cost and improve user load balance.
In the future research, not only the load balancing problem of task allocation should
be considered, but also the user interest preference problem in the allocation process
is also an important factor to determine whether the user performs the task. The user
must not only consider the cost of executing the task, but also Considering the degree
of interest in the task, a combination of various factors motivates the user to perform
the task. Therefore, in the next study, the user’s interest in the task can be listed as an
important factor in the user’s work, and the task assignment can be further studied.
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