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Abstract. Bacterial foraging optimization (BFO), a novel bio-inspired heuris-
tic optimization algorithm, has been attracted widespread attention and widely
applied to various practical optimization problems. However, the standard BFO
algorithm exists some potential deficiencies, such as the weakness of convergence
accuracy and a lack of swarm communication. Owing to the improvement of these
issues, an improvedBFO algorithmwith comprehensive swarm learning strategies
(LPCBFO) is proposed. As for the LPCBFO algorithm, each bacterium keeps on
moving with stochastic run lengths based on linear-decreasing Lévy flight strat-
egy. Moreover, illuminated by the social learning mechanism of PSO and CSO
algorithm, the paper incorporates cooperative communication with the current
global best individual and competitive learning into the original BFO algorithm.
To examine the optimization capability of the proposed algorithm, six benchmark
functions with 30 dimensions are chosen. Finally, experimental results demon-
strate that the performance of the LPCBFO algorithm is superior to the other five
algorithms.

Keywords: Bacterial foraging optimization · Lévy flight · Comprehensive
swarm learning strategies · Function optimization

1 Introduction

Bacterial foraging optimization (BFO) [1], a novel nature-oriented algorithm proposed
by Passino, mainly simulates the behaviors of Escherichia coli in the process of search-
ing for nutrients. During the foraging context, bacteria generally take four significant
actions involved in chemotaxis, reproduction, elimination, and dispersal. Besides that,
as for function optimization, the position of one bacterium can be regarded as a feasible
solution in the search region. Bacteria adjust their own positions by tumbling based
on random directions and swimming with certain step sizes to constantly find out the
optimal location. Because of many advantages like the strong robustness and good per-
formance in local search, the BFO algorithm has gradually become popular and until
now, it has been applied to sorts of practical fields such as facility layout [2], feature
selection [3], training kernel extreme learning machine [4] and so on.
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At present, relevant theoretical researches about the BFO algorithm are still in the
initial stage. In other words, compared with the other traditional swarm intelligent algo-
rithms such as particle swarm optimization (PSO) [5] and genetic algorithm (GA) [6],
the development of the BFO algorithm is not enough mature. Moreover, researches have
consistently shown that the BFO algorithm has poor capability both in convergence
rate and optimization accuracy, especially for high-dimensional function problems. To
elevate the performance of the original algorithm, plenty of improved methods and
distinguished hybrid mechanisms [7–11] have been brought up. On the one hand, as
the significance of the process of chemotaxis, numerous strategies were proposed to
enhance it. Niu et al. [7, 8] improved the chemotactic step size through linear and non-
linear decreasing strategies. Experimental results verified the improved algorithm had
better performance than the standard BFO. In [9], Wang et al. proposed the other BFO
variant (BFO-DX) that incorporates a novel mechanism of progressive exploitation into
the chemotaxis operator for improving the ability of local exploration. Another part of
the improvement is for the hybridization of the BFO algorithm with other algorithms.
Biswas et al. [10] demonstrated an efficient optimization technique including BFO with
PSO operator to enhance swarm learning and the global search ability of the original
BFO algorithm.With the purpose to tackle with optimization problems more effectively,
Zhao et al. [11] combined the gravitational search method with the BFO algorithm and
then applied the proposed algorithm (EBFO) into optimizing the Lorenz system.

Although the above-proposed strategies have made great progress, there might have
some potential demerits like poor performance of the convergence rate. As for the BFO
algorithm, the chemotactic step size is set as a constant number regardless of what the
condition of each bacterium is in. Aiming at coping with these disadvantages effectively,
the paper introduces a linear-decreasing Lévy flight strategy to randomly generate the
length of themotion route for each bacterium,which helps to balance the local and global
search. More importantly, comprehensive swarm learning consisting of the cooperative
communication with the current global best bacterium and the competitive learning
mechanisms are adopted in the paper so as to improve the convergence accuracy of
the BFO algorithm and furtherly increase the diversity of the general community to
effectively alleviate the premature matter.

The rest of this paper is structured as follows: Sect. 2 briefly introduces relevant
principles of the standard BFO algorithm. Section 3 details the proposed LPCBFO
algorithm. Experimental results are described in Sect. 4. The final section draws the
conclusion and future work.

2 The Standard Bacterial Foraging Optimization Algorithm

As a new heuristic optimization technique, the BFO algorithm [1] properly imitates the
crucial actions of E. coli generating in the process of obtaining food, mainly including
chemotaxis, reproduction, elimination, and dispersal.

2.1 Chemotaxis

Owing to far away from harmful materials efficiently and obtain nutrients in a faster way,
each bacteriumgraduallymoves towards the objectives through tumbling and swimming.
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On the one hand, during choosing one direction randomly in the search space, bacteria
continuously move on with fixed run lengths. After tumbling, bacteria could not insist
on swimming along the same search direction until the updated position gets worse or
the number of practicable movements is up to the limitation Ns. The new position of the
bacterium i in j + 1th chemotaxis, kth reproduction and lth elimination and dispersal
θ i(j + 1, k, l) is shown as the Eq. (1) where θ i(j, k, l) represents the last position of the
bacterium i; C(i) is the step size and �(i) means a random direction vector whose all
elements range from −1 to 1.

θ i(j + 1, k, l) = θ i(j, k, l) + C(i) × �(i)
√

�T (i)�(i)
. (1)

2.2 Reproduction

Abiding by the main idea about “Survival of the Fittest” of Darwin’s Evolutionary
Theory, the process of reproduction in the BFO algorithm mirrors that the healthier
bacteria are more likely to have the remarkable capability of reproduction to maintain
the whole of swarm population while poor-nourished individual will be eliminated in
the end. In the BFO algorithm, the health degree of the bacterium i is noted as fi,health
that can be measured by the sum of fitness value among its lifecycle. Relatively, the
corresponding mathematical expression can be presented as (2).

fi,health =
∑Nc

j=1
J (i, j, k, l). (2)

where Nc represents the total number of chemotaxis as the lifecycle of the bacterium i;
J (i, j, k, l) is the fitness value of the bacterium i in jth chemotaxis, kth reproduction,
lth elimination and dispersal. Then through ascending order for the health value of all
bacterium, half of healthier bacteria (Sr = SS/2) are able to split into two bacteria whose
both of them have the same position while the rest of bacteria are given up.

2.3 Elimination and Dispersal

In reality, due to the dramatic change of its living environment all the time, bacteriamight
be confronted with lots of unpredicted risks including dynamic temperature change
in the local region or invasion of kinds of detrimental substances. Therefore, when
suffering from these adverse and unexpected conditions, a part of bacteria needs to
disperse to another favorable location as soon as possible. Based on it, after the process
of reproduction, the bacterium i randomly migrates to another new position θ ′ with a
certain probability Ped , otherwise it remains in the current location.

3 LPCBFO Algorithm

3.1 Linear-Decreasing Lévy Flight Strategy

Lévy flight strategy [12] sheds light on a stochastic motion process of certain objects in
the search environment where the run length C strictly complies with Lévy distribution
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probability. The relatedmathematical equation [13] can be defined as (3) whereμ ranges
from 1 to 3.

f (C) = C−μ. (3)

Up to now, the Lévy flight algorithm has been broadly used for imitating the tra-
jectory of foraging behaviors about many creatures like bumblebees [14], and fruit flies
[15] and so far, some favorable research developments have been achieved. Moreover,
during the process of searching based on the Lévy flight method, objects can move on
with smaller step sizes frequently and larger lengths occasionally, which is to a certain
extent beneficial to balance the local exploration and global exploitation for optimization
problems. According to these advantages of the Lévy flight strategy, the paper tries to
add it to promote C(i) as the Eq. (4) [12]. Furthermore, inspired by [7], we adopt the
linear-decreasing Lévy flight strategy followed as the Eq. (5), seeking to improve the
convergence accuracy of the standard BFO algorithm.

C(i) = u

|v|1/β , βε[0.3, 1.99], u ∼ N (0, σ 2
u ), v ∼ N (0, 1). (4)

σu =
⎧
⎨

⎩

�(1 + β)sin
(

πβ
2

)

�
(
1+β
2

)
× 2

β−1
2 × β

⎫
⎬

⎭

1/β

.

C ′(i) =
(
Cmin + itermax − itercurrent

itermax

)
× C(i). (5)

θ i(j + 1, k, l) = θ i(j, k, l) + C ′(i) × �(i)
√

�T (i)�(i)
. (6)

3.2 Cooperative Learning Strategy

As for the original BFO algorithm, there is a lack of swarm communication in the whole
of the bacterial population, which may have a great negative impact on the convergence
capability and accuracy. By contrast, when having great opportunities to communicate
with other individuals during the process of searching for nutrients, bacteria could obtain
so enough useful information that they could make appropriate adjustments for their
current position in time.Consequently,with illumination by the group learning inPSO [5]
and the hybridization algorithm based on PSO operator [10], the paper also incorporates
corresponding cooperative learningmechanisms into the BFO algorithm. After tumbling
and swimming of each bacterium, they have a chance to learn from the global best particle
θbest to adjust their current positions. Additionally, the linear-decreasing inertia weight
[16] is conducted tomodulate the velocity v′(i) of each individual. The updating position
of bacterium i θ i(j + 1, k, l) is as follows:

v′(i) =
[
ωmax − itercurrent × (ωmax − ωmin)

itermax

]
× vlasti + c × rand ×

(
θbest − θ i(j + 1, k, l)

)
.

(7)
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θ i(j + 1, k, l) = v′(i) + θ i(j + 1, k, l). (8)

where cmeans the study rate; θbest represents the current global best position; iter means
iterations.

3.3 Competitive Learning Strategy

Although the cooperative swarm learning mechanism can enhance the capability for
global exploitation and the rate of convergence, bacteria are easy to trap into the local
best solution. With regarding in the enhancement of premature problem effectively and
improve the diversity of the whole bacterial population, we are inspired by the main
principle of competitive swarmoptimization (CSO) [17]which is proposed byCheng and
then adopt the pairwise bacterial competitive mechanism into the basic BFO algorithm.
Firstly, when all of the bacteria SS accomplished the process of chemotaxis, they are
randomly divided into SS/2 couples. After pairwise competition in each couple, the
better individual called winner directly go to the next chemotaxis process while the loser
with worse fitness value updates its current position by learning from the winner and
then performs the next chemotaxis step. The competitive learning mechanism can be
represented as:

vloser(j + 1, k, l) = ε{rand1 × vloser(j, k, l) + rand2 × [
θw(j, k, l) − θloser(j, k, l)

]

+ ϕ × rand3 × [
θwcenter (j, k, l) − θloser(j, k, l)

]}. (9)

θ loser(j + 1, k, l) = vloser(j + 1, k, l) + θ loser(j + 1, k, l). (10)

where ε = 2
2−c−√

c2−4c
[18], ϕ = ϕmin + (ϕmax − ϕmin) × rand , ε, ϕ are constraint

factors; θw(j, k, l) is the position of the more competitive bacterium; θwcenter (j, k, l) is
the average position vector of total winners (Table 1).

4 Experimental Results and Discussion

To testify the optimization efficiency of the proposed LPCBFO algorithm, the conver-
gency results of the LPCBFO algorithm are assessed by comparing with the original
bacterial foraging optimization(BFO) [1] and other BFO variants involved the basic
BFO algorithm with linear-decreasing strategy(BFO-LDC) [7], the algorithm improved
by nonlinear-decreasing chemotactic step size(BFO-NDC) [8], the algorithm based on
linear-decreasing Lévy flight strategy(LBFO) as well as the hybrid algorithm with PSO
operator(BSO) [10]. In this paper, the population of bacteria SS for all involved algo-
rithms is set in 50 and the total number of the process of chemotaxis NC , reproduction
Nre, elimination and dispersal Ned respectively are 1000, 5 and 2. Thus, the total iter-
ation in the experiment is NC × Nre× Ned = 10000. Besides, we also set Ns = 4,
Ped = 0.25. As for specified parameters settings in the LPCBFO algorithm, we set
Cmin = 0.01, β = 1.99, ωmax = 0.9, ωmin = 0.4, ϕmin = 0.01, ϕmax = 0.2, c = 1.5.
In addition, other relevant parameters in the above improved BFO algorithms are as
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Table 1. The pseudo code of the proposed LPCBFO algorithm

Initialize parameters and swarm of bacteria 
Evaluate the fitness value , the global best position and 
the global best fitness value 
For

For 
For 

For 
Update 
The bacterium updates its position with the equation (6) 
Calculate the fitness value 
Let (initialize counter for swim length)
While 

IF the updated fitness value gets better
The bacterium preforms swimming using the equation (6)

End 
End 
Perform the cooperative swarm learning using equations (7), (8) 
Update and 

End 
Divide all bacterium into couples ( is an even number)
Compare bacteria’ fitness value of each couple respectively
Perform pairwise competitive learning mechanism using equations (9), (10) 

End
Calculate the health value for each bacterium using the equation (2) 
Sort out the bacteria in ascending order and perform reproduction
End

The bacterium is randomly located on a new position with probability
End

follows. BFO-LDC settings: Cmin = 0.01, Cmax = 1.5; BFO-NDC: Cmin = 0.01,
Cmax = 1.5, λ = 4; LBFO: Cmin = 0.01, β = 1.99; BSO: the step length of each bac-
terium iC(i) = 0.1, ω = 0.8, c = 1.5. According to the above parameter settings in each
algorithm, six common benchmark functions in 30 dimensions are chosen to adequately
identify the performance of the above six algorithms, involving four unimodal functions
(Sphere, Rosenbrock, Schwefel’s Problem and Sum of different powers) as well as two
multimodal functions (Rastrigin, Ackley function). With regarding to the improvement
of the results’ reliability and availability, each algorithm is fully operated in 10 times for
six benchmark functions.

After 10 runtimes in 30 dimensions, relevant experimental data results are illustrated
inTable 2. InTable 2, theremainly contain four necessarymeasurementmetrics including
the minimum solution (‘Best’), the worst fitness value (‘Worst’), the average value
(‘Mean’), and standard deviation (‘Std’). Additionally, the convergence results about six
test functionswith 30 dimensions are respectively shown inFig. 1.Generally, in the initial
iteration of some benchmark functions like Rosenbrock and Sum of different powers,
the LPCBFO algorithm has slower convergence speed than others. This phenomenon
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might be contributed by the reason that bacteria with longer movement length in the
early iteration stage are more committed to the global exploitation while they are poor in
local search. However, we can observe that during the latter search period, the LPCBFO
algorithmhas greater capability to escape from the local best solution and its convergence
accuracy is obviously more excellent than other algorithms’. It is likely to be accounted
for comprehensive learning mechanisms and the enhancement of the diversity of the
bacterial population.

Table 2. Comparison between LPCBFO and other algorithms with 30 dimensions

BFO BFO-LDC BFO-NDC LBFO BSO LPCBFO

Sphere 3.68e−01 6.26e−02 3.21e−03 5.88e−03 5.10e−06 1.39e−92

5.62e−01 1.03e−01 4.72e−03 2.95e−02 2.47e−04 3.83e−78

4.91e−01 8.57e−02 3.96e−03 1.74e−02 7.06e−05 3.83e−79

7.07e−02 1.38e−02 5.01e−04 7.77e−03 7.84e−05 1.21e−78

Rosenbrock 6.09e+01 4.18e+01 1.43e+01 2.55e+01 2.29e+01 5.99e−02

7.79e+01 7.22e+01 2.47e+01 2.81e+01 1.28e+02 4.08e+00

7.10e+01 5.22e+01 2.12e+01 2.68e+01 3.69e+01 1.71e+00

5.27e+00 8.10e+00 3.34e+00 1.10e+00 3.19e+01 1.99e+00

Schwefel 3.32e+00 2.42e+02 1.01e+02 1.25e+02 9.18e−02 6.30e−35

5.14e+00 3.49e+04 2.65e+05 8.36e+02 2.52e−01 8.28e−28

3.95e+00 1.04e+04 4.31e+04 3.00e+02 1.37e−01 1.01e−28

5.03e−01 1.09e+04 8.73e+04 2.51e+02 5.36e−02 2.61e−28

Sum 1.58e−04 1.76e+03 1.21e+04 1.24e−07 1.49e−09 1.73e−96

6.63e−04 5.48e+04 6.33e+06 3.20e−07 1.45e−07 8.38e−61

3.91e−04 1.82e+04 9.32e+05 2.29e−07 2.22e−08 8.38e−62

1.72e−04 1.82e+04 1.95e+06 5.96e−08 4.38e−08 2.65e−61

Rastrigin 1.07e+02 2.65e+02 1.48e+02 1.56e+02 2.99e+01 1.49e+01

1.51e+02 3.50e+02 2.35e+02 1.86e+02 4.59e+01 2.49e+01

1.36e+02 3.11e+02 1.84e+02 1.74e+02 3.73e+01 1.92e+01

1.39e+01 2.74e+01 2.73e+01 9.71e+00 5.00e+00 3.22e+00

Ackley 1.68e+01 1.06e+01 1.83e+01 1.80e+01 6.18e+00 1.16e+00

1.77e+01 1.96e+01 1.91e+01 1.806e+01 1.16e+01 4.30e+00

1.74e+01 1.84e+01 1.89e+01 1.803e+01 9.49e+00 2.407e+00

2.96e−01 2.77e+00 2.79e−01 1.48e−02 1.77e+00 8.26e−01
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(a) Sphere (b) Rosenbrock

(c) Schwefel’s Problem 2.22 (d) Sum of different powers

(e) Rastrigin (f) Ackley

Fig. 1. Convergence results of six different algorithms with 30 dimensions
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5 Conclusion and Future Work

In the paper, the improved bacterial foraging optimization with comprehensive swarm
learning mechanisms (LPCBFO) is proposed. Compared with the standard BFO algo-
rithm, the paper incorporates the linear-decreasing Lévy flight method to randomly gen-
erate the run length of each bacterium,which is in favor of balancing the local exploration
and global exploitation. Depending on improving the convergence speed and solution
accuracy of the algorithm, the cooperative swarm strategy during learning with the cur-
rent optimal individual is fully considered. To avoid the premature issue effectively
and promote the diversity of the overall population, each bacterium can be pairwise
allocated randomly to conduct competitive learning. Finally, six benchmark functions
with 30 dimensions are chosen to measure the performance of the proposed LPCBFO
algorithm compared with the BFO algorithm and the other four variants. Experimental
results show that the optimization effectiveness of the LPCBFO algorithm outperforms
others.

In the future,wewill contribute to the improvement of theBFOalgorithmand attempt
to deal with practical problems likes airline scheduling, logistic delivery, and vehicle
routing planning by improved algorithms.
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