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Abstract. Prediction of photovoltaic (PV) energy is an important task.
It allows grid operators to plan production of energy in order to secure
stability of electrical grid. In this work we focus on improving prediction
of PV energy using nature-inspired algorithms for optimization of Sup-
port Vector Regression (SVR) models. We propose method, which uses
different models optimized for various types of weather in order to achieve
higher overall accuracy compared to single optimized model. Each sample
is classified by Multi-Layer Perceptron (MLP) into some weather class
and then model is trained for each weather class. Our method achieved
slightly better results compared to single optimized model.

Keywords: Firefly Algorithm · Optimization · Support Vector
Regression

1 Introduction

Renewable sources of energy are increasingly involved in total energy production.
One of the most important sources of renewable energy is solar radiation. PV
panels are used in order to obtain energy from solar radiation. However this type
of energy can be unstable, resulting in large fluctuations of energy production
which might cause instability of electrical grid. Therefore, it is necessary to
predict the output of these power plants so that grid operators can plan power
generation or effectively regulate the grid to ensure its stability.

Various approaches to prediction of PV energy are used. According to
[1] there are 3 types of approaches: physical, statistical and hybrid. Physical
approaches use technical parameters of PV power plants and weather forecasts.
Statistical approaches use only data from the past, which contains information
about weather and production of PV power plant. Statistical methods are further
subdivided into regression and artificial intelligence methods, which are able to
use these data to create prediction models. Hybrid approaches combine previous
approaches to the ensembles to improve prediction.
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Artificial intelligence methods are powerful in predicting PV power produc-
tion, but their accuracy is highly dependent on their hyperparameter setting.
The hyperparameter setting can be done in various ways, either manually or
by using algorithms capable of finding and evaluating different hyperparameter
settings. A group of algorithms used for hyperparameter setting is called nature-
inspired algorithms. These algorithms are able to avoid local minima and find
global minimum. Many of these algorithms use large amounts of agents repre-
senting specific solutions. Firefly algorithm (FA), particle swarm optimization
(PSO) and genetic algorithm (GA) are some of nature-inspired algorithms.

In this paper artificial intelligence approach is used. We are using SVR for
predictions. In order to increase prediction accuracy we are using FA to optimize
SVR hyperparameters. We also classify each sample with MLP and we train
multiple SVR models, one for each weather type.

2 Related Work

There are many different approaches to prediction of PV power in the literature.
Multiple SVR models were used for different weather types, which were

obtained with SOM and LVQ, were used in [16]. In [9] comparison of ANN,
kNN, SVM and MLR was done. Simple parameter optimization was performed
for each algorithm. Multiple weather types were also used in [12]. In [6] ten dif-
ferent optimized machine learning algorithms were used for predicting. Various
algorithms were also used in [14], specifically FFNN, SVR and RT. Parame-
ter optimization was done for each algorithm. Classifying weather into weather
types with SOM was used in [2]. For each weather type one model of RBF net-
work was trained. SVR and ensemble of NN were used in [11]. They also used
CFS for feature selection. In [10] they compared accuracy of SVR to accuracy
of physical model. In [13] they used GBDT with Taylor formula for predictions
and compared it to original data and prediction of optimized SVM with RBF
kernel. Different approach was used in [3]. They used v-SVR with parameter
optimization. In order to achieve best results, model was retrained each night.
MARS was used for predictions in [8], where it was compared to multiple differ-
ent algorithms. In [7] ELM, ANN and SVR were used. MLP, LSTM, DBN and
Auto-LSTM neural networks along with physical P-PVFM model were used in
[5] for prediction of PV power production of 21 power plants. In [15] multiple
physical and SVR models were used for various time intervals for 921 power
plants. SVR was optimized using GridSearch to obtain higher accuracy.

3 Firefly Algorithm

Firefly algorithm [17] is a metaheuristic inspired by firefly behaviour in nature.
Idea of this algorithm is that each firefly represents one solution of optimized
problem. All fireflies move towards other fireflies they see according to move-
ment equation. Since fireflies represent solutions, change of position of firefly
also means change of solution.
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We use firefly algorithm to optimize SVR models. In our case firefly represents
model hyperparameters which change when firefly moves. SVR hyperparameters
we optimized using FA are C, ε, γ and tolerance for stopping criterion.

We chose FA because its parameters α, β0 and γ, which are described in fol-
lowing subsection, allow great control over optimization process. Several exper-
iments were performed to find the best setting of those parameters.

3.1 Movement Equation

In our implementation, each firefly moves according to following equation:

xt+1
i = xt

i + β0e
−γr2

ij (xt
j − xt

i) + αεt
iδ

t (1)

where xt+1
i is new position of a firefly, xt

i is actual position of a firefly. Attrac-
tivity coefficient β0 determines how fast fireflies move towards each other. Visi-
bility coefficient γ is used to change perceived attractivity of fireflies. α is ran-
dom movement coefficient, which decreases with every generation, εt

i is vector
of random numbers representing random movement of firefly and δt is vector of
coefficients used for changing range from which random movement is generated.

4 Methods of Prediction

We are using two methods of prediction. Both of our methods are based on SVR
[4], which is regression method based on an idea of Support Vector Machine.
SVR utilizes hyperplane that maximizes margins of tolerance for data points
while tolerating some error. In case data are not linear, SVR also uses kernel
functions to transform them to linear feature space.

First method is single SVR model optimized on entire training data set.
Second method (Fig. 1) is based on multiple models of SVR with each model
optimized on specific weather class. Weather class is a numerical representation
of weather type (sunny, cloudy, etc.). We use combination of clustering and
classification to obtain weather classes.

4.1 Weather Classes Discovery

First step to discover weather classes is obtaining of initial weather class labels
from training data set. We are using agglomerative clustering to obtain labels.
Each cluster that agglomerative clustering discovers is considered a unique
weather class. Before clustering is started, we specify the number of initial classes
it should discover. Initial classes represent the first division of samples according
to weather. After initial weather classes are discovered, we train MLP classifier
so we can use it to classify new samples.

With weather classes discovered, we use FA to optimize one SVR model for
each class. Then accuracy of SVR for each weather class is compared to accuracy
of the first method on that class. After accuracy of models of all weather classes
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Discover weather classes
with agglomerative clustering
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than first method
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Fig. 1. Diagram showing how method based on weather classes works.

is checked, all classes whose SVR performed worse compared to the first method
are merged. Obtained weather class should be more similar to the whole training
data set than any of the classes that were merged together, therefore model
optimized for this new class should perform more similarly to the first method.

After merging, SVR model is optimized for new weather class and MLP
classifier is retrained. Then accuracy of prediction on all classes is checked again.
Because of merging of classes and retraining of classifier, some samples might be
classified into different classes than before. This might cause that models of some
classes, which were better before merging, are now worse that the first method.
Then merging of classes and optimization will happen again. This process of
optimization, accuracy evaluation and merging of classes repeats in a cycle while
there are at least two weather classes to merge. When cycle ends, we have final
weather classes and SVR models, which we can now use for prediction.

4.2 Use of Multiple Weather Classes for Prediction

We use MLP classifier to obtain weather classes. This classifier can predict prob-
ability that sample belongs to a specific weather class. We use these probabilities
to improve accuracy of a prediction according to the following equation:

X =
n∑

i=0

pixi (2)

where X is final prediction, xi is prediction if sample belongs to weather class i, pi

is probability of sample belonging to weather class i and n is a number of weather
classes. When predicting, we first obtain probabilities of sample belonging to
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specific weather classes. Then for each weather class we make prediction with its
SVR model and multiply it by probability of sample belonging to that weather
class. Sum of all augmented predictions is considered as the final prediction.

4.3 Bias Correction

Since machine learning models might be slightly biased if not trained perfectly,
we decided to use simple bias correction for all models in order to decrease
prediction error. To perform bias correction, we first evaluate Mean Bias Error
according to Eq. 8 on validation data set. Then from simple equation:

coef = 1 − MBE

R
(3)

where MBE and R are described in Sect. 6.1, we obtain bias coefficient which we
use to correct bias of prediction. This correction is performed by multiplicating
predicted values with obtained bias coefficient.

5 Data

In our experiments we used data set from University of Queensland1. This data
set has one minute resolution, but we aggregated it to higher resolution depend-
ing on what series of experiments we were performing. Data sets contain follow-
ing attributes: air temperature, humidity, wind speed and direction, insolation,
power production in watts (W) and timestamp.

For the first and second series of experiments we used data from UQ Centre
from 1.1.2014 to 31.12.2017 and aggregated it to hourly resolution. Time interval
of data we used was 5 am to 7 pm. Data from years 2014 and 2015 were used for
training, data from year 2016 were used for validation and data from year 2017
were used for testing.

In order to compare our results to [11], we used the same subset of data,
therefore data were only from years 2013 and 2014 from 7 am to 5 pm and we
aggregated it to 5 min resolution. In case of insolation and power we used addition
to aggregate them. Other attributes were aggregated as mean hourly values.
Training data were from year 2013. As validation data we chose every other day
from year 2014 starting with 2nd January. Test data were chosen in the same
way as validation data, however it started with 1st January.

In all experiments training and validation data were used in optimization
process and test data were used to evaluate accuracy of optimized models.

5.1 Data Preprocessing

We transformed production to kilowatts (kW) and we also extracted minute
(for third series of experiments), hour, day, month and year for each sample

1 https://solar-energy.uq.edu.au/research/open-access-data.

https://solar-energy.uq.edu.au/research/open-access-data
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from timestamp. We also derived weather changes in last hour for the first and
second series of experiments and in last 55 min for third series of experiments.
We also scaled power production and all attributes used for prediction.

For each sample we also used hourly production from last 3 h for the first
and second series of experiments and last 6 h for third series of experiments.
In some experiments we used also production from the most similar sample in
entire data set if the first method was used or only in specific weather class if
second method was used. We checked for similar production only in samples
where absolute hour difference between original and similar sample is not larger
than 1. This difference in case of months was set to 2. We decided to use those
limits because production difference between those limits is not too large.

6 Experiments

We made three series of experiments. In the first series we focused on finding
a good setting of FA. In the second series we used our methods of prediction
to predict hour ahead PV production and in the third series we compared our
approach with existing approach.

6.1 Evaluation Metrics

To evaluate accuracy of both of our methods of prediction, we use Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) and their percentage
transformations: normalized RMSE (nRMSE) and Mean Relative Error (MRE).
Because we are using simple bias correction, we also use Mean Bias Error (MBE)
to obtain bias. Following are formulas used for calculation of errors:

MAE =
1
N

∗
N∑

i=1

|xi − yi| (4)

MRE = 100% ∗ MAE

R
(5)

RMSE =

√√√√ 1
N

∗
N∑

i=1

(xi − yi)2 (6)

nRMSE = 100% ∗ RMSE

R
(7)

MBE =
1
N

∗
N∑

i=1

(xi − yi) (8)

where xi is predicted value, yi is real value, N is number of samples and R
is computed as a difference between maximal and minimal power production
in training data set. In case of predictions for one hour ahead we used largest
value in training data set where R = 21856.645 kW and in case of predictions
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Table 1. Experiments to find good settings of FA.

α β0 γ RMSE MAE Best generation Scattering

0 0.2 0 2229.0 1258.8 1 None

0 0.2 1 2579.3 2230.5 0 Very small

0 0.2 2 1983.5 1382.0 0 Very small

1 0 0 2043.7 1397.7 18 Medium

1 1 0 1920.5 1221.7 19 Very small

1 2 0 1972.1 1258.8 6 Small

1 1 1 1921.9 1223.5 30 Very small

1 1 2 1958.3 1316.8 29 Big

1 2 1 1931.4 1230.5 15 Small

1 2 2 2061.5 1451.5 27 Big

for 55–60 min ahead interval we used largest value in entire dataset (training,
validation and test) R = 1150.27 kW because same approach was used in solution
with which we compare our methods.

In all experiments metrics RMSE and MAE are in kW and metrics nRMSE
and MRE are in %.

6.2 Experiments with Settings of Firefly Algorithm

In this series of experiments we tried various settings of FA to find the most
suitable setting we could use in further experiments. We investigated the impact
of parameters α, β and γ described in Subsect. 3.1 on the speed of finding the best
solution in that run (column Best generation) and how scattered were fireflies
after last generation. This series of experiments were performed on first method
of prediction which used only current weather to forecast hour ahead production.
For each experiment we used 15 fireflies and 30 generations.

We must note that data used in these experiments were later slightly changed
and therefore model performances are slightly different compared to other exper-
iments. However we did not run these experiments again because we could use
the results to decide which setting is most suitable for further experiments.

We can see in Table 1 that when α = 0 firefly algorithm was not able to
find good hyperparameter settings of SVR model, but very small scattering was
achieved. We assume that this is because there was no random movement, there-
fore fireflies moved directly towards each other. We can also see that scattering
is smaller when value of γ is smaller. This happens because smaller values of γ
mean better visibility. When β0 = 0 movement is completely random because
β0 controls attractivity of fireflies. Otherwise there does not seem to be any
significant influence of β0 on optimization.

We chose settings where α = 1, β0 = 1 and γ = 0 for further use because
of the small spread after last generation and also because best solution was not
found too late nor too early.
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Table 2. Results of experiments with first method. In column Used attributes value
1 represents only current weather, value 2 represents weather change in last hour,
value 3 represents measured production in 3 previous hours and value 4 represents
measured production from most similar sample. Last row (in italic) is SVR with default
parameters and best attributes.

Used attributes Single model Single model with bias correction

RMSE (nRMSE) MAE (MRE) RMSE (nRMSE) MAE (MRE)

1 1968.2 (9.01) 1256.7 (5.75) 1954.2 (8.94) 1267.7 (5.80)

1, 2 2043.5 (9.35) 1354.0 (6.19) 2037.9 (9.32) 1379.9 (6.31)

1, 3 1511.1 (6.91) 948.1 (4.34) 1510.1 (6.91) 947.7 (4.34)

1, 4 1916.3 (8.77) 1220.6 (5.58) 1906.6 (8.72) 1237.1 (5.66)

1, 2, 3 1477.2 (6.76) 932.9 (4.27) 1475.0 (6.75) 934.8 (4.28)

1, 2, 4 1959.5 (8.97) 1380.5 (6.31) 1967.6 (9.00) 1403.3 (6.42)

1, 2, 3, 4 1464.0 (6.70) 888.7 (4.07) 1461.9 (6.69) 890.2 (4.07)

1, 2, 3, 4 1498.3 (6.86) 952.9 (4.36) 1496.1 (6.84) 956.9 (4.38)

6.3 Experiments with Hour Ahead Prediction

In this series of experiments we used various features for prediction of hour
ahead production of PV power. We grouped those features into four sets: current
weather, weather change in last hour, power production for last three hours,
power production from most similar sample in the past.

Single Model Experiments. In order to decide which attributes are most
suitable for second method, we evaluated accuracy of the first method on mul-
tiple combinations of attributes. We include prediction with and without bias
correction for comparison. For each experiment we used 15 fireflies and 50 gen-
erations.

Best results in Table 2 were obtained when previous power production was
used. Using weather changes also improved results when it was used along with
current weather and previous production. However, when used only with current
weather, trained model was less accurate. Similar production improved accuracy
in most cases except one, where MAE of trained model was higher compared to
model trained on same attributes but without similar production.

In case of bias correction, we evaluated every model with and without bias
correction. We noticed that when using bias correction, RMSE tends to be
smaller compared to RMSE without bias correction, however MAE tends to
increase slightly. We think this happened because bias correction flattened high
errors, but increased overall error.

We have added SVR with default hyperparameters and best attributes to
show that optimization helped us to improve results. It is best seen when com-
paring the best model (in bold) with default SVR on MAE metric. Other models
were less accurate than default, but it is because of attributes.
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Table 3. The attributes current weather and previous production were used. Initial
number of weather classes was 2. No classes merged.

Method variations RMSE (nRMSE) MAE (MRE)

Basic 1500.8 (6.87) 914.7 (4.19)

Bias correction 1497.1 (6.85) 918.9 (4.20)

Multiclass 1498.9 (6.86) 914.1 (4.18)

Multiclass with bias correction 1495.3 (6.84) 918.3 (4.20)

Table 4. The attributes current weather, weather change and previous production
were used. Initial number of weather classes was 5 and after merging 3.

Method variations RMSE (nRMSE) MAE (MRE)

Basic 1486.0 (6.80) 896.2 (4.10)

Bias correction 1484.6 (6.79) 900.1 (4.12)

Multiclass 1480.5 (6.77) 892.1 (4.08)

Multiclass with bias correction 1479.1 (6.77) 896.0 (4.10)

Multiple Model Experiments. In Tables 3, 4 and 5 are the best results of
the experiments with the second method for each attribute combination. We
used three best attribute combinations from experiments with first method. For
each used combination of attributes we evaluated accuracy without any improve-
ments, with bias correction, with multiclass prediction (Subsect. 4.2) and with
combination of bias correction and multiclass prediction. For each experiment
we used 10 fireflies and 20 generations.

We can see in Tables 4 and 5 that RMSE slightly increased compared to
the single model experiments (Table 2) and in Table 3 that RMSE decreased.
However in all cases MAE decreased.

Increase of RMSE means that some deviations from real values are larger
compared to the first method and decrease of MAE means that overall deviations
are smaller. Increase of RMSE might have happened because optimization of
models for specific weather class did not achieve global optimum. Other reason
might be that model could not be more accurate on given class because samples
in a class were too different due to merging of classes.

Regarding improvement of accuracy of second method, we noticed that both
bias correction and usage of multiple classes for prediction decreased RMSE.
However bias correction increases MAE. Best results for MAE were achieved with
usage of multiple classes, however combination of bias correction and multiple
classes achieved smallest RMSE.

Bias correction has probably flattened high errors, but increased overall error
as in single model experiments. We think multiclass predictions improved accu-
racy because it took into consideration that samples might be misclassified.
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Table 5. The attributes current weather, weather change, previous and similar pro-
duction were used. Initial number of weather classes was 25 and after merging 8.

Method variations RMSE (nRMSE) MAE (MRE)

Basic 1474.4 (6.75) 874.3 (4.00)

Bias correction 1473.1 (6.74) 878.7 (4.02)

Multiclass 1471.5 (6.73) 872.3 (3.99)

Multiclass with bias correction 1470.2 (6.73) 876.5 (4.01)

Table 6. Comparison of our solution with solution from [11]. Values of MAE and MRE
for NN ensemble and SVR are taken from compared article. Single model represents
first method and Multiclass with bias correction represents second method.

Method of prediction MAE MRE

NN ensemble 100.2 8.71

SVR 107.4 9.34

Single model 100.4 8.73

Multiclass with bias correction 102.0 8.87

6.4 Comparison with Existing Solution

In this series of experiments, we compared the best solutions of both our methods
to the best solution from [11]. They also used data from University of Queens-
land, but from years 2013 and 2014 and from multiple buildings.

In order to obtain most accurate results, we tried to replicate data used in the
mentioned solution. However we were not able to fully reproduce data they used
and therefore results might have been slightly different as if data were identical.

They made predictions for every 5-min interval for next hour. We compared
our solutions to theirs only on the last interval (55–60 min ahead). For experi-
ments we used feature sets combinations for both methods where highest accu-
racy was acquired when predicting for one hour ahead. For both methods the
best combination was current weather, weather changes, previous and similar
production. In both experiments we used 10 fireflies and 20 generations.

In Table 6 we can see that first method has performance similar to ensemble
of neural networks, but outperformed their SVR. Difference is that in our method
SVR is optimized using FA and SVR from [11] does not seem to be optimized.
Also we did not use same features. That might have caused better performance.

We can see that second method performed worse than first method. This
probably happened because we had to change the application of second method
due to high computational complexity of SVR. Instead of optimizing for various
numbers of weather classes, models were only trained with optimal parameters
obtained from the first method on the same data. Then we optimized models
for best number of weather classes. As a result the optimal number of weather
classes might not have been used. Another reason might be that models were
not optimized enough to perform better.



Prediction of Photovoltaic Power Using Nature-Inspired Computing 35

7 Conclusion

In this paper, we proposed approach to prediction of PV power based on classi-
fying samples into different weather classes and using FA to optimize model for
each weather class.

We compared this approach to single SVR model optimized on entire training
data set. Experiments show that our approach tends to decrease MAE compared
to single model. We also compared our methods with [11]. We achieved similar
accuracy with both of our methods, however the second method performed worse
than expected. This is probably caused by the fact that we did not utilize FA
optimization fully when comparing with [11]. From this and comparison of opti-
mized and unoptimized single SVR model we conclude that optimization has
visible impact on accuracy of predictions and we recommend using it.

Our approach has proven to have potential, however it still needs improve-
ments. It might be improved by changing merging of weather classes from one
large class into several smaller classes to avoid the problem of merging of two
too different classes. Also optimization of classifier could result in more accurate
assignment to classes and therefore better performance.

In the future we might also try different optimization algorithms to compare
them with FA, however we do not expect any significant improvements from
using different optimization algorithm.
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