®

Check for
updates

A Structural Testing Model Using SDA
Algorithm

Saju Sankar S!®™ and Vinod Chandra S $2®9

1 Department of Computer Engineering, Government Polytechnic College, Punalur, India
tkmce@rediffmail.com
2 Department of Computer Science, University of Kerala, Thiruvananthapuram 695581, India
vinod@keralauniversity.ac.in

Abstract. Path testing is the most needed and useful coverage criterion in struc-
tural testing. Tracing and obtaining the resultant paths is the main problem in path
coverage testing. Evolutionary techniques are adopted in many software product
evaluation methods such as generating and selection of input test data. The priority
of the feasible paths is also to be determined. In this paper, we proposes an opti-
mization algorithm for identifying the effective test data execution paths in control
flow graph for the program module under test and finding the most efficient test
paths using modified smell detection agent based optimization algorithm. New
innovations are being conducted for bio-motivated algorithmic techniques from
the characteristics of animal behavior. Smell detection agent based algorithm helps
to identify most feasible paths and it uses sequential search to obtain all paths in
a graph. The tester achieves the paths to be tested through a number of smell
spot values from the source node to the target node. We will use control flow
graph to produce perfect test paths and cyclomatic complexity number for obtain-
ing the number of feasible test paths. The best feasible paths are prioritized using
smell detection agent algorithm such that all the paths are thoroughly tested which
ensures structural testing. This algorithm generates paths equal to the cyclomatic
complexity. It can be illustrated that the proposed approach guarantees full path
coverage.

Keywords: Structural testing - Path testing - SDA algorithm - CFG

1 Introduction

Testing is considered as one of the most important process in the life cycle of soft-
ware development [1]. There are different software testing techniques like structural,
functional testing and its hybrid model. The most significant structural testing approach
known as Basis Path Testing (BPT) focused into the many ways of evaluating software
source code. The emphasis in this method is to develop test data inputs such that it
produces all feasible efficient test paths connecting all the nodes and edges of the graph.
Path testing has the advantages of thorough testing, more coverage, unit testing, integra-
tion testing, maintenance testing, regression testing etc. The main advantage is that the
testing effort can be estimated in proportional to the logical complexity of the software.

© Springer Nature Switzerland AG 2020
Y. Tan et al. (Eds.): ICSI 2020, LNCS 12145, pp. 405412, 2020.
https://doi.org/10.1007/978-3-030-53956-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53956-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-53956-6_36

406 Saju Sankar S and Vinod Chandra S S

We used Control Flow Graph (CFG) in BPT and calculated cyclomatic complexity. From
that value we will be able to determine all the possible paths from source node to the
destination node [2].

McCabe developed the concept of path coverage based basis path testing in the
period of 1980’s which utilized cyclomatic complexity [3]. In path testing there are
different paths from source to destination. Not all paths are feasible while understanding
the functionality of the software. It varies depending upon the different types of control
statements used in the module and its output boolean values. To prioritize the feasible
and infeasible paths, we need a selection procedure. An algorithm can be designed to
identify all the basis paths and its priority ranking will help effective testing. In most of
the basis path testing techniques, the paths are identified without any prioritizing. An
ant colony optimization algorithmic approach was used in identification of paths with
its priority [4].

In this paper, we propose Smell Detection Agent (SDA) algorithm that selects all
paths and prioritizes the feasible paths. The algorithm is a nature inspired optimization
algorithm suitable for identification of optimal paths with its priority in a graph [, 6].

2 Path Driven Testing

In this approach, the purpose is to test the different paths from the root node to the
destination node by which all combinations of various decision or control statements are
executed at least once. The technique is based on the logical structure of the program.
A graph (CFG) is drawn with all the feasible paths and verified during testing.

Control Flow Graph (CFG): The logical complexity of the program module to be
tested is drawn with a CFG. The CGF contains several nodes and edges. The nodes
denote executable code lines whereas the edges denote the flow of control between the
nodes. All efficient paths are generated with the aid of a CFG diagram.

Cyclomatic Complexity: The maximum number of possible paths in a graph with M
predicate nodes is 2M and if the CFG has any looping statements, then there will be count-
less number of test paths. The factor of cyclomatic complexity number is an important
parameter to minimize the total count of feasible test paths. Cyclomatic complexity num-
ber is necessary for the validation of linearly independent test paths in a graph. There
are two factors associated with a CFG, one is the cyclomatic number denoted by ‘V’ in
graph theory and the other is the complexity value ‘G’ as a function of the graph.

The aim of testers is to evaluate all the feasible paths in the CFG. The major challenge
in testing is to find the optimal and feasible paths. Hence to find the optimal path, a priority
ranking is done for all the feasible paths. The path with highest priority will be initially
selected for testing and it continues until the lowest priority path is tested.

Procedure of Basis Path Testing: A software module contains various independent
paths to be tested. All these paths should be tested at least once in basis path testing.
Following are the various steps of testing process.

1. Develop the CFG of the program module to be evaluated.

A Structural Testing Model Using SDA Algorithm 407

2. Determine the cyclomatic complexity of the CFG, for finding the possible number
of linearly independent test paths.
3. Create sets of basis test paths using the baseline method:

a. Select the first feasible independent path to be tested.
b. Back trace the independent paths by suddenly moving to each predicate node to
create newer paths.

Evaluation of Normal Path Testing: Examine the software program “test” which uses
switch case constructs. A CFG is drawn using join (J1, J2) and the graph is depicted
using entry and exit criteria as shown in Fig. 1.

Program “test”.
1. read(x)
2. 1f (x < 0) then
3. print (“negative”) ;
else
4. print (“positive”)
endif
5. switch(x)
case 1:
6. print (“SUN")
break;
case 2:
7. print (*MON")
case 3:
8. print (*TUE")
break;
default:
9. print (*OTHER")
end switch;

SUN ! MON TUE OTHER

J2

() ()

N
3
®

i

Fig. 1. CFG of program ‘test’.

408 Saju Sankar S and Vinod Chandra S S

Cyclomatic complexity factor, V (G) = Edges—Nodes + 2, V (G) = 16 — 13 + 2
=3.

The test paths generated are

Test Path TP1 Entry - 1 > 2 - 3 — J1 - 5 - 6 — J2 — Exit

Test Path TP2 Entry - 1 -2 -3 —Jl - 5—> 7 - 8 — J2 — Exit

Test Path TP3 Entry - 1 - 2 -3 - J1l - 5 - 8 — J2 — Exit

Test Path TP4 Entry - 1 - 2 -3 - J1l - 5 - 9 — J2 — Exit

Test Path TP5 Entry - 1 - 2 - 4 — J1 - 5 — 6 — J2 — Exit

Test Path TP6 Entry > 1 -2 -4 —J1 - 5 —> 7 - 8 — J2 — Exit

Test Path TP7 Entry - 1 - 2 > 4 — J1 - 5 — 8 — J2 — Exit

Test Path TP Entry - 1 - 2 -4 - J1l - 5 - 9 — J2 — Exit

In the above example, the number of paths identified is 8 (due to usage of switch case
construct) and since the cyclomatic complexity obtained is only 5, we have to weed out
infeasible paths. Saurabh et al. [7] proposed an approach using ant colony optimization
algorithm, which selects only the feasible paths and prioritized the feasible paths. The
algorithm used the factors such as path feasibility, past experience, path visibility and
the visited status of path. The model is featured as a directed graph approach and the
model also denotes the system to be tested and shows the various test paths of the model
during its execution. The best sequence of the path is created automatically after the
implementation of the optimization algorithm. The highest priority path is selected first
and successively all the other linear paths in the control flow graph can be tested.

Jun yan et al. suggested another suitable and efficient method to create feasible paths
for basis path testing [8]. There are two steps in creating feasible paths i) produce a
limited set of feasible paths P which fulfills the coverage criteria, ii) obtain a minimum
subset p of set P such that p fulfills the test coverage. Two conditions should be satisfied
by a path when belonging to a basis path set: a) the test paths should be properly feasible
and b) the test paths should be linearly independent of all other selected paths.

3 SDA Algorithm for Path Testing

Canines are considered as the earliest animal disciplined by human [5]. They helped
men in hunting and its deep odour helped man in finding the exact position of the
animal to be hunted. Now also, canines are used by police personnel for tracing the
route of culprits from the area of crime. Many problems faced by men cannot be solved
conventionally. These problems can be solved with the introduction of new algorithms.
In such contexts, solution to the computational problems can be found by the usage of
natural phenomena like animal habits or actions. It can be suitably used to solve problems
having computational complexity and are asymptotically NP-hard.

Sniffing is used to evaluate priority of different paths which can be implemented by
way of an algorithm in the search space [9]. This search space or domain of the problem
to be remedied is treated as an area with smell trails and agents motivated from canines
are taken to discover all paths, which points to the solution. The concept of canine’s path
tracing nature helps to develop necessary environments to solve problems regarding path
identification. We can draw this nature-motivated technique in co-ordinate geometry. The
search space is formed as a Cartesian rectangular plot with specific values mentioning

A Structural Testing Model Using SDA Algorithm 409

the space and these values may be changed depending upon the specific constraints of
the problem. Every coordinates in the area are not reachable, but some selected arbitrary
points that can be visited by the SDAs. The coordinates are denoted as smell spots that
help in solving the problem to a subset of points. The values of these smell spots are
saved in two parameters. The first is a trailing value of smell from the destination node.
The second is a signature value of the SDA that has been denoted as a smell spot.

We propose a SDA algorithm derived from the natural behavior of canines [5]. SDA
is a multi-agent algorithm that can be used in any optimum path identification. The algo-
rithm is modified to find the number of feasible paths in a CFG. There are two parameters
associated with SDA algorithm i) the assigned signature value that can be used to specify
smell spots and ii) the radius value that specifies their olfactory capability. The two param-
eters are stored in a data structure that is beneficial in the development of the algorithm
—data structure (Dgda) of the SDA and data structure (Dgg) of the smell spot.

Algorithm

Let

N: Count of nodes in the CFG.

N1: Count of SDAs.

N2: Count of smell spots

N3: Count of SDAs that are feasible and reaches the destination

R: radius of the smell spots in the increasing order to the destination
s: the smell value of each node minimum at the source.
P: priority of each path.

1. Assigninitially the SDA’s with integer values as signature indices and radius values
in the increasing direction, thereby the SDA is treated in the progress of traversing
in the nodes having highest radius.

2. Select N2 points (nodes) inside the region of the graph as Cartesian values (plots)
as smell spots(s).

s=1/(x+y=*d)

Where ‘d’ is the Cartesian distance between the smell spots (nodes), the destination
and x, y are proportionality constants.

Initialize each SDA to the source point.

4. For each SDA from 1 to N1

et

4.1 Select the unmarked point (within the radius) from the increasing order of
smell value.

4.2 Move the SDA forward by earmarking the SDA signature (visiting status).

5. Step4isrepeated until all SDA’s reach the destination in a way all independent
paths are traversed at least once.

Path Sequence Generation and Prioritizing Using Modified SDA Algorithm
This algorithm adopted a sequential searching method to obtain test paths in the CFG.
The SDA finds a test path from a collection of smell spot values from the root node

410 Saju Sankar S and Vinod Chandra S S

to the destination node. For ‘n’ agents, there will be ‘n’ paths returned by the algo-
rithm. The feasible paths are prioritized from these ‘n’ paths. Also the final number of
nodes is received. The initial smell value of each node is contained in the node location
coordinates. The values get updated while traversing from source to the destination.
Identification of the next source and destination nodes will provide the best path. For the
calculation of smell value of each node from the destination node, the values of initial
smell, decrement count which is inverse of total and effective distance are considered.
The values of smell are updated; all the SDA’s are initialized with ID value, current node
and length. Based on the smell value of each node, each SDA finds a path.

Identification of the path is done by considering the node, which has the highest smell
value from the current node. This identification results in assigning highest smell node
as current node and this looping process will continue until the destination is reached.
The SDA is assigned with a flag ‘stop’, when the SDA arrives at the destination. The
unique paths are identified from the SDA’s who have arrived the destination with highest
smell value. The optimized path is found by comparing the total number of nodes visited
by each SDA. For CFG, the number of nodes, weight assigned to each node, maximum
smell value and maximum radius are considered. The weight of each edge is proportional
to the maximum number of times; each node is visited by an SDA. The priority is top
for the unique path having maximum smell value and depends on the weight assigned
to each edge.

4 Results

In the CFG of the example program ‘test’, the SDA algorithm works as follows. Initially
count of nodes N = 13, initial smell value, s = 1, count of SDAs, N1 = 1. The count of
smell spots = N2 = N = 13, Radius or distance from source is initially zero. Figure 2
gives the working of our proposed algorithm for the example program ‘test’ discussed
in Sect. 2.

N=13,s=1,R=1

1 v
” s=2,R=2
NG
= g
2 C 5) 2
SUN MON| 2 4 | TUE OTHER
7 8
> J2)« v
s=8, R =8

G

Fig. 2. CFG of program ‘test’ using modified SDA algorithm.

A Structural Testing Model Using SDA Algorithm 411

As per our modified SDA algorithm, the basic paths are traversed by the SDA and
fix the priority. In basis path testing, all paths need to be tested, but one test engineer
cannot be aware of all the important paths. The SDA algorithm proposed in our model
gives all the identified feasible paths in the order of priority. Each edge of the CFG has
a weight which depends on the smell spot value. Also, SDAs identify all the test paths
in a CFG. In the above program ‘test’, our algorithm gives a priority wise list of path
testing.

Test Path 1 Entry - 1 -2 -4 —-J1 - 5 — 8 — J2 — Exit

Test Path2 Enry > 1 -2 >4 —Jl - 5 —> 7 — 8 — J2 — Exit

Test Path3 Entry - 1 -2 >4 —J1 - 5— 6 - J2 — Exit

Test Path4 Entry - 1 -2 >4 - J1 - 5 — 9 — J2 — Exit

Test Path S Entry - 1 -2 -3 > J1 - 5 —> 8 - J2 — Exit

Test Path 6 Entry - 1 -2 -3 —>J1 - 5— 7 - 8§ - J2 — Exit

Test Path 7 Entry - 1 -2 -3 — Jl - 5 —> 6 - J2 — Exit

Test Path 8 Entry - 1 -2 -3 — Jl - 5— 9 — J2 — Exit

In Ant Colony Optimization (ACO) algorithm, the paths are selected randomly for
the path generation from source to destination [10]. In our SDA algorithm, the selection
of optimal paths is based on the maximum weight assigned to each most traversed edge
of the CFG. In ACO algorithm, the routing is done based of decreasing pheromone
value while in SDA algorithm, the olfactory capability is increasing from source to the
destination node thereby time complexity is reduced [11, 12] (Table 1).

Table 1. Comparison of ACO and SDA algorithms employed in structural testing.

Algorithm ACO SDA

Count of independent paths

All independent paths are
identified with some paths
have equal priority

All the 8 independent paths are
identified with priority from 1
to 8

Swarm communication

Ants communicate called
stigmergy

Each Canine or agent has a
territory

Algorithm applicability

ACO is suitable to problems
where source and destination
are predefined

Multiple agents are employed
for a faster solution

Problem representation

A construction graph is used
to mark ACO’s solution space

Cartesian rectangular plot with
specific values mentioning the
area

Time complexity

0(n?)

O(IEl + IVlloglV1)

5 Conclusion

We have demonstrated the test paths creation methods for basis path testing in this
paper and proposed a suitable optimization procedure for feasible test path generation

412 Saju Sankar S and Vinod Chandra S S

in structural testing by using SDA optimization algorithm. After implementation of this
method, the algorithmic process selects the best test path sequence based on its priority.
The highest priority test path is selected first for test execution and in successive steps
all the next priority independent paths in the control flow graph can be tested. The SDA
Algorithm tends to be more beneficial for better path coverage in basis path testing. The
model avoids duplicate paths based on SDA signature and the visited status of the nodes.
The model can be modified by an automated method as a future work. The results shows
that the SDA algorithm based structural testing can be extended for the generation of
optimal and prioritized generation of test paths for multipath software modules.

References

1. Granno, G.: A new dimension of test quality - assessing and generating higher quality unit
test cases. In: ISSTA 2019, China, pp. 15-19. Software Evolution and Architecture Lab,
University of Zurich, Zurich, Switzerland (2019)

2. Wang, X., et al.: An efficient method for automatic generation of linearly independent paths
in white box testing. School of Software and Engineering, University of Electronic Science
and Technology of China (2015)

3. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4) (1976)

4. Alshaheen, H.S.: Finding shortest path in routing problem by using ant colony optimization.
J. Univ. Thi-Qar 8(3) (2013)

5. Vinod Chandra, S.S.: Smell detection agent based optimization algorithm. J. Inst. Eng. (India)
Ser. B 97(4), 431-436 (2016). https://doi.org/10.1007/s40031-014-0182-0

6. Ananthalakshmi Ammal, R., Sajimon, P.C., Vinodchandra, S.S.: Application of smell detec-
tion agent based algorithm for optimal path identification by SDN controllers. In: Tan, Y.,
Takagi, H., Shi, Y., Niu, B. (eds.) ICSI2017. LNCS, vol. 10386, pp. 502-510. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61833-3_53

7. Srivastava, S., Kumar, S., Verma, A.K.: Optimal path sequencing in basis path testing. Int. J.
Adv. Comput. Eng. Netw. (2013)

8. Yan, J., Zhang, J.: An efficient method to generate feasible paths for basis path testing. State
Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
China 2008)

9. Salawudeen, A.T., et al.: From smell phenomenon to smell agent optimization (SAO): a
feasibility study. In: Proceedings of ICGET (2018)

10. Kaur, S.: Shortest path finding algorithm using ant colony optimization. Int. J. Eng. Res.
Technol. (IJERT) 2(6), 317-326 (2013). ISSN 2278-0181

11. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory and exper-
imental evaluation. Math. Program. 73, 129-174 (1996). https://doi.org/10.1007/BF0259
2101

12. Donald, J.: A note on Dijikstra’s shortest path algorithm. J. ACM 20(3), 385-388 (1973)

https://doi.org/10.1007/s40031-014-0182-0
https://doi.org/10.1007/978-3-319-61833-3_53
https://doi.org/10.1007/BF02592101

	A Structural Testing Model Using SDA Algorithm
	1 Introduction
	2 Path Driven Testing
	3 SDA Algorithm for Path Testing
	4 Results
	5 Conclusion
	References

