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Abstract. Recently, Swarm Intelligence Based (SIB) method, a nature-
inspired metaheuristic optimization method, has been widely used in
many problems that their solutions fall in discrete and continuous
domains. SIB 1.0 is efficient to converge to optimal solution but its parti-
cle size is fixed and pre-defined, while SIB 2.0 allows particle size changes
during the procedure but it takes longer time to converge. This paper
introduces a two-step SIB method that combines the advantages of two
SIB methods. The first step via SIB 2.0 serves as a preliminary study
to determine the optimal particle size and the second step via SIB 1.0
serves as a follow-up study to obtain the optimal solution. This method
is applied to the search of optimal minimum energy design and the result
outperforms the results from both SIB 1.0 and SIB 2.0.
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1 Introduction

Optimization problems in the real world are sometimes too complex and very
challenging to solve within a reasonable amount of time. In order to obtain ade-
quately good results, metaheuristics becomes a powerful method for this manner.
Nature-inspired metaheuristic algorithms have been derived from the behavior
of biological systems, physical or chemistry systems in nature [1]. A major class
of metaheuristic is swarm intelligence (SI) [2], which is the collective intelli-
gence behavior of self-organized and decentralized systems, including Genetic
Algorithms (GA) [3], Artificial Bee Colony [4], Particle Swarm Optimization
(PSO) [5] and many others listed in [6]. Among them, PSO is commonly used in
solving many different types of high-dimensional optimization problems due to
its simple form for implementation, its relatively small number of tuning param-
eters and a fast convergence towards optimum. However, the standard PSO
method was not suitable for problems with the solutions in discrete domains.
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[7] proposed a new nature-inspired metaheuristic optimization method called
the Swarm Intelligence Based (SIB) method. This algorithm works well in a wide
range of discrete optimization problems, such as searching for circulant partial
Hadamard matrices with maximum number of columns [8], E(s2)-optimal super-
saturated designs [9], and optimal designs of computer experiments under multi-
ple objectives [10]. In addition, SIB also performed well in optimization problems
for continuous domains, like efficient construction of confidence sets and the con-
fidence bands for target localization [11]. Besides, the computational efficiency
of the SIB method can be improved via a smart initialization procedure [12].
Recently, [14] modified the standard framework of the SIB method by allowing
the particle size to be changed during the search. The details of this augmented
framework will be briefly reviewed in the next section.

Notice that the standard framework of the SIB method is limited to be
applied due to the pre-defined particle sizes, but when the particle size is allowed
to be changed, the SIB 2.0 suffers from high algorithmic complexity. The purpose
of this paper is to provide a two-step approach that combines the standard
framework and the augmented version of the SIB method, so that the particle
size is allowed to be changed while the algorithm can be executed efficiently. We
demonstrate our proposed method in the search of optimal Minimum Energy
Design. The rest of the paper is organized as follows. We reviewed the essential
components of the SIB method and the basic knowledge of the Minimum Energy
Design in the second section. We introduce the proposed two-step method in the
third section. In Sect. 4, we show a performance check via simulation studies,
and we summarize the contribution and concluded remarks in the last section.

2 The Swarm Intelligence Based Method: A Review

2.1 The Swarm Intelligence Based (SIB) Method

A pseudo-code of the SIB method is given below.

S0: Randomly generate a set of initial particles, each with different number
of entries.
S1: Evaluate objective function values of all particles.
S2: Initialize the local best (LB) for each particle and the global best (GB).
S3: For each particle, perform the MIX and MOVE operation.
S4: If NO UPDATE in the previous MOVE operation: Perform the VARY
and MOVE operation.
S5: If NO UPDATE in the previous MOVE operation: Perform the random
jump.
S6: Update the LB for each particle and the GB among all particles.
S7: If NOT CONVERGE or the stopping criterion is NOT REACHED, repeat
(S3) to (S6).

The SIB method starts with a set of initialization steps. It includes the ini-
tialization of a user-defined (N) number of particles (S0), the evaluation of these
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particles under an objective function of interest (S1), the definition of the LB
for each particle, and the selection of the GB among all particles (S2). Addi-
tional parameters are being set before the end of the initialization, including
the number of components being exchanged with the LB (qLB), the number of
components being exchanged with the GB (qGB), and the maximum number
of iteration allowed. The details on the setting of these parameters are referred
to [7]. After the initialization steps, it enters the iteration steps for optimization.

The standard framework of the SIB method, abbreviated as SIB 1.0 there-
after, consists of all above step except S4. For each particle in S3, every itera-
tion step starts with an exchange procedure called the MIX operation. It is an
exchange procedure between the current particle and the best particles, both the
particle’s LB and the GB. In brief, q (qLB when exchanged with the particle’s
LB and qGB when exchanged with the GB) components are first selected in the
best particle and add to the current particle, then q components among all com-
ponents in the current particles are deleted. After the MIX operation, two new
particles, namely mixwLB and mixwGB, are formed and they are compared to
the current particle under the objective function in the MOVE operation. If one
of the new particles has the best objective function value, the current particle
will be updated to that new particle, otherwise, the random jump procedure that
some components in the current particle are exchanged to the randomly selected
components is performed in S5. When the exchange procedures of all particles
are completed, the updates of the LBs of all particles are performed followed by
the update of the GB among all LBs (S6). If the GB does not converge to the
optimal value of the objective function (if known), or the number of iteration
has not reached its maximum number yet, the iteration will repeat. Readers who
were interested in the details of the SIB 1.0 are referred to [7].

The wide use of the SIB 1.0 is hindered by its limitation of the fixed particle
size. Note that the MIX operation adds and deletes exactly q number of compo-
nents in the current particle, so the size is always fixed. It is sometimes a require-
ment in some applications, like the application in experimental designs [9], but
in most cases, it becomes inefficient when one applies the SIB 1.0 multiple times
for different particle sizes. Thus, it is desired to develop an enhanced framework
of the SIB method, abbreviated as SIB 2.0, for problems with flexible run sizes
during the optimization.

The key addition of the SIB 2.0 (S4) appears after the MIX and MOVE
operations in S3. If the current particle is still the best among all three parti-
cles in MOVE operation in S3, or in other words, both best particles cannot
further improve the current particle in this iteration, we make the size change
on the current particle in S4 via the VARY operation first before considering
the random jump. The VARY operation consists of unit shortening and unit
expansion, and it results in a particle with reduced number of component and a
particle with additional number of component respectively. Then we perform the
MOVE operation to compare the objective function values among the current
particle, the shortened particle and the expanded particle. Similar judgement is
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used to determine whether particle is updated or the random jump is performed.
Readers who were interested in the details of the SIB 2.0 are referred to [14].

3 The Two-Step Swarm Intelligence Based Method

As discussed in [14], the goal of developing SIB 2.0 is to avoid a multiple imple-
mentation of the SIB 1.0 for various particle sizes when the optimal particle
size is unknown in prior. This greatly reduces the computational time as only
one SIB algorithm is required to search for optimal solution together with the
particle’s optimal size. However, it is also true that if the optimal particle size is
known in prior, SIB 1.0 performs better than SIB 2.0 under the same amount of
searching time because of the much larger particle choices in SIB 2.0. Therefore,
an ideal strategy of efficient use of the SIB method is to find the optimal particle
size followed by the application of SIB 1.0 at that specific particle size. Thus,
we propose our two-step SIB method as follows.

Input user-defined parameters: number of seeds N , number of iterations L,
numbers of unit exchanges, and other parameters for specific problems.
Step 1: Perform SIB 2.0 to detect optimal particle size (L iterations).
Result: A suggested value of particle size k.
Part 2: Perform SIB 1.0 at particle size k to obtain the optimal solution (0.2L
iterations).
Result: GB particle as the optimal particle suggested in this method.

Here are some details on this two-step SIB method. The first step is basically
a standard SIB 2.0 with a slightly different goal. Instead of finding the optimal
solution via the objective function, it simply needs to detect the best choice of
particle size that leads to good objective function values. Therefore, even though
it is known that the solution of SIB 2.0 may not be as good as SIB 1.0 (known
particle size in prior) at the same computational time, it is still good enough
to detect a good particle size only. Next, the second step is a standard SIB 1.0
that the particle size is obtained from the first step. We suggest to use only
1/5 number of iterations because we have inserted the best particle obtained
from the first step into the initial particle set. This implies that the GB in the
very first step has already been as good as all searches in the first step, so it is
reasonable to save some iterations in the second step.

In fact, the idea of the second step in our proposed method is equivalent to
the follow-up procedure in many industrial experiments. Thus, when compared
to the SIB 2.0, our proposed method spends slightly more resources (20% more)
to efficiently optimize the results based on the findings of the SIB 2.0 (the first
step). On the other hands, our proposed method still saves a tremendous amount
of computational time when compared to multiple implementation of SIB 1.0 at
various particle sizes.
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4 Demonstration: A Search of Minimum Energy Designs

4.1 A Brief Introduction to Minimum Energy Design (MED)

Computer experiment has become a new trend for many industrial experiments
and scientific testings, especially for those with astronomical costs or infeasible
procedures. Traditionally, Latin hypercube designs and uniform designs are two
classical types of designs for computer experiments. The former design, con-
structed systematically via algebra, is particularly useful in grid-type domain
while the latter design, obtained via computer search, enjoys an uniform distri-
bution of particles over continuous domain. However, both designs are desired
under an important assumption that there is its domain gradient is a uniform
function, meaning that every single position in the domain is evenly important.

It is obvious that most domains do not have a uniform gradient in the real
world, because some parts are more important than others when prior knowledge
from experts are given. [13] proposed the minimum energy design (MED) for
the computer experiments when the domain gradient follows a given function
known in prior. When a defined number of particles are assigned to the domain,
they suggest to put more particles in more important regions instead of evenly
distributed all particles. This suggestion is reasonable because an important
domain region deserves to spend extra particles to detect its value of interest.

[13] provides examples that the MEDs are obtained via computer searches.
When the domain is in grid forms and the grid size is not large, it is certainly
desired to search over all possible combinations to obtain the best particle ori-
entation. However, when the grid size is too large that becomes infeasible to
search over all possible combinations, or the grid size is continuous in nature,
we need an efficient approach to obtain the adequately good MED, even if it is
not optimal. Thus, we suggest to use our proposed two-step SIB method.

We recall some basic terminologies in MED below. Based on an analogy of
the physical system, MED treated every design points as charged particles. The
key idea (objective function) was to minimize the total potential energy of the
system. In specific, an MED with its design points {x1, ..., xn} was optimal if it
satisfied the criterion maxD mini,j

d(xi,xj)
q(xi)q(xj)

and the charge function was defined
as q(x) = 1

f(x)1/(2p)
, where p is the dimension and f(x) is a desired density. In

general, a good MED tried to place its design points as apart as possible under
a modified distance weighted by the charge function f(x).

4.2 Implementation of the Two-Step SIB Method

Instead of the computer search in [13], a recent work by [12] applied the SIB 1.0
method to obtain an improved result on the search of MEDs, and the search effi-
ciency is also improved. Their results are under an assumption that the particle
size is given, and they argued that it was normal because the experimental budget
was usually fixed in prior. However, this argument fails to consider the possibil-
ity that less amount of resources sometimes can achieve similar performance, or
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in other words, it is still able to save experimental resources by conducting an
expriment via MED below the maximum possible budget.

In specific, our experimental domain is a three-dimensional cube that dif-
ferent locations (points) have different temperatures shown in Fig. 1. This tem-
perature gradient is arbitrary for demonstration purpose. Each pair of points is
apart from 0.2 units, so there were 4096 points in the cube. Our goal is to cre-
ate a MED with unknown number of points in this experimental region. Notice
that a evenly-distributed point allocation will obviously not satisfy the minimum
energy criterion. For the initialization, we set the number of iteration in the first
step as L = 500, the number of iteration in the second step as 100 (0.2L), and
the number of MED sets N = 204 (about 5% of maximum number of points).
We also initialize these particles with different sizes ranging from 3 to 20 (about
10% of N), and all exchange parameters are set as qLB = qGB = qs = qe = 1.

Fig. 1. Experimental region

4.3 Result

After 500 iterations of 204 particles, the GB particle resulted in the first step sug-
gests that the optimal particle size is 7 and this particle has energy −11.831543.
Then we set k = 7 in the second step and an extra 100 iterations are run.
Table 1 lists the coordinates of the seven points in the domain and the dots in
Fig. 2 visually shows their locations in the domain. This GB particle has the
minimum energy −12.856852. The whole procedure can be done within 5 min
using a standard personal computer.

In order to check if the MED suggested in this method is good, we conduct 18
SIB 1.0, each with different particle size ranging from 3 to 20 and the maximum
number of iteration is 500. The energies of their GB particles are shown in
Fig. 3. Although this figure suggests that k = 8 may have the lowest energy
among all 18 k, the difference between the results of k = 7 (−12.33198) and
k = 8 (−12.38761) is very small. Notice that an additional point may imply an
increase in the experimental cost, the marginal improvement by adding one point
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Table 1. Coordinates of positions with temperatures

Node1 Node2 Node3 Node4 Node5 Node6 Node7

X 2.8 0.2 3.0 0.4 3.0 0.2 0.4

Y 2.6 0.4 2.8 3.0 0.0 2.8 0.2

Z 2.8 0.2 0.2 0.0 0.0 2.6 3.0

Temperature 24.9267 24.8709 24.6702 24.34 25.3 24.2576 24.1448

Fig. 2. SIB 2.0 simulation scatter plot

from k = 7 and k = 8 is small. In addition, our result is better than all results
in Fig. 3 including those of k = 7 and k = 8. It is the advantage of inserting the
best particle from the first step to the initial stage of the second step.

Fig. 3. SIB 1.0 simulation result plot
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5 Discussion and Conclusion

SIB 1.0 is widely known as an efficient nature-inspired metaheuristic method for
optimization problems in discrete and continuous domain, but its use is hindered
by its pre-defined particle size. SIB 2.0 allows particle size to be changed during
the optimization procedure, but it also greatly expands the number of possible
outcomes. Thus it needs to spend longer time to obtain the results as good as
the results obtained by SIB 1.0 when the particle size is known. Therefore, the
main contribution of this paper is to propose a two-step method that combines
SIB 1.0 and SIB 2.0 and takes their advantages into account. We treat SIB
2.0 as a preliminary study to obtain the optimal particle size, then we treat
SIB 1.0 as a follow-up experiment and conduct it under that optimal particle
size. We deonstrate the use of this two-step method in the search of optimal
minimum energy design. The result outperforms both results from SIB 1.0 and
SIB 2.0 and the method is comparably efficient to conducting multiple SIB 1.0
at various sizes.

There are many potential applications to this two-step methods. For exam-
ple, it can be used to determine the sensor allocations in a given space to monitor
environmental factors (temperature, humidity, gas concentration, etc.). It is bet-
ter to achieve the same performance by using small number of sensors to reduce
costs. Another example is to determine a set of biomarkers that have significant
impact to the response. The exact number of biomarker in this significant set
is not known in prior, but the fewer the biomarkers, the lower the experimental
costs to detect the quantities of these biomarkers from the instruments.
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