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Abstract. In this paper two parameter self-adaptation schemes are proposed for
the MOEA/D-DE algorithm. These schemes use the fitness improvement ration
to change four parameter values for every individual separately, as long as in the
MOEA/D framework every individual solves its own scalar optimization problem.
The first proposed scheme samples new values and replaces old values with new
ones if there is an improvement, while the second one keeps a set of memory cells
and updates the parameter values using the weighted sum. The proposed methods
are testes on two sets of benchmark problems, namely MOEADDE functions and
WEFG functions, IGD and HV metrics are calculated. The results comparison is
performed with statistical tests. The comparison shows that the proposed param-
eter adaptation schemes are capable of delivering significant improvements to
the performance of the MOEA/D-DE algorithm. Also, it is shown that parameter
tuning is better than random sampling of parameter values. The proposed parame-
ter self-adaptation techniques could be used for other multi-objective algorithms,
which use MOEA/D framework.

Keywords: Multi-objective optimization - Differential evolution - Parameter
adaptation - Self-adaptation - MOEA/D

1 Introduction

The multi-objective and many-objective optimization techniques based on evolutionary
algorithms (EA) and swarm intelligence algorithms (SI) have proved to be efficient for
solving complex problems due to their population-based nature. The success of SPEA2
[1], NSGA-II [2], MOEA/D [3] and other methods developed later have shown that
it is possible to find representative sets of points of the true Pareto set even for many
objectives. However, very small attention has been paid to the underlying optimiza-
tion techniques, used in the multi-objective optimization algorithms. In most cases, the
multi-objective evolutionary algorithm relies on problem specific operators, for exam-
ple, simulated binary crossover (SBX) and polynomial mutation [4, 5] form genetic
algorithms (GA) or differential evolution (DE) mutation and crossover operators [6] in
case of numerical optimization.
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The search operators taken from single-objective optimization algorithms have a
set of parameter values, which influence the algorithm efficiency, and for single objec-
tive optimization various self-adaptation schemes have been proposed [7]. However,
applying these techniques to multi-objective optimization is problematic due to diffi-
culties in estimating the parameters influence on the algorithm performance. Moreover,
MOEA aims to find a set of points, each in its own region of search space, while single-
objective algorithms need to find only a single solution. To solve the mentioned problem
some research have been made about adaptive operator selection (AOS) in MOEAs, for
example JADE2 [8], MOSaDE [9], MODE/SN [10] and MOEA/D-FRRMAB [11].

In this study the scheme of operator efficiency estimation proposed in [11] is used to
adaptively tune the search parameters of DE and GA operators, with a set of parameters
kept separately for every point. The MOEA/D-DE algorithm is taken as baseline, and
two approaches are proposed: the self-adaptation (SA) similar to the one used in [12],
and the success-history adaptation, proposed in [13]. The experiments are performed on
DTLZ and WFG sets of problems, the results are compared with statistical tests.

The rest of the paper is organized as follows: Sect. 2 describes the MOEA/D frame-
work and search operators, Sect. 3 proposes the new parameter adaptation schemes,
Sect. 4 contains experimental setup and results, and Sect. 5 concludes the paper.

2 MOEA/D Algorithm and Self-tuning

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) was
originally proposed in [3]. The main idea of this approach was to decompose the initial
problem into a set of scalar problems. The multi-objective optimization problem (MOP)
is formulated as follows:

minimize F(x) = (fi(x), (&), ..., fn(x))

subject tox € Q

(D

where 2 C R™ is the variable space, x is a solution, and F: 2 — R™ is a vector-function
to be optimized.

The MOEA/D framework proposes several methods of problem decomposition,
including weighted sum, Tchebycheff and penalized boundary intersection approaches
[3]. The Tchebycheff approach is one of the commonly used methods, with scalar
optimization problems defined as follows:

b @)

minimize g(x|x, Z*) — lrgi;;);l{xi[ﬁ(x) -z
where \ is a weight vector, z* is a reference point. The MOEA/D algorithm defines a set
of weight vectors M, j =1 ... N, N is the population size. In this manner, the algorithm
optimizes N scalar problems in one run, allowing finding representative distribution of
points in the Pareto front, if the corresponding weight vectors are evenly distributed.

The variation operators, used in MOEA/D, should it be the SBX crossover or DE
mutation operators, use a neighborhood of size T, which is defined based on distances
between the weight vectors A. So, for every individual i = 1...N a set of vectors B(i)
= {iy, ..., iT}, where (L. ATy are T closest vectors to Al In case of SBX crossover
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one of B(i) is chosen, and in case of DE all 3 vectors are chosen from B(i) to perform
mutation.

The implementation of self-tuning in multi-objective framework requires the defini-
tion of improvement rates, i.e. feedback values, which could be used to drive parameters
towards optimal values at every stage of the search. In [14] the fitness improvement rates
(FIR) were proposed to solve this problem, defined as follows:

FiR, = B = s 3)

Pl
where pfj is the fitness of parent, cfj is the fitness of child for individual i at step t. As
long as MOEA/D solves a set of N scalar optimization problems, it is possible to calculate
improvements rates in a similar manner to single-objective optimization algorithms.
Further in this study the DE will be used as the main optimization engine. The main
idea of DE is to use the scaled difference vectors between the members of the population
to produce new solutions. Classical DE uses rand/1 mutation strategy:

vij = X1 + F(x2)—x3), “4)

where rl, r2 and r3 are mutually different indexes chosen from B(i), and F is the scaling

factor, v; is the mutant vector. The crossover is performed with probability Cr:

vijif rand (0,1) < ¢, or j =j rand

ujj = : , )
Xij otherwise

where jrand is the randomly selected index from [1, D], required to make sure that at
least one coordinate is inherited from the mutant vector, u;j is the trial vector.

The polynomial mutation is performed with probability pm and scale parameter 1.
This operator is applied after the crossover step to produce an offspring. Totally, there are
4 numeric parameters to be tuned: scaling factor F, crossover rate Cr, mutation probability
pm and mutation parameter 1.

The next section contains the description of the proposed self-adaptation schemes
for the MOEA/D-DE algorithm.

3 Proposed Parameter Self-adaptation Schemes

Among single-objective EAs, it is well known that adaptation of parameter values to the
problem in hand is an important part of every algorithm. However, for multi-objective
algorithms the typical scenario is to use fixed parameters, or probably use several oper-
ators, as described in [14] to adapt the algorithm to the problem being solved. One more
important difference of MOPs is that each point in the population is a part of the final
solution, and its optimal position is in an area of search space, different from other areas,
so that the properties of fitness functions landscape could vary significantly for every
individual, especially for decomposition-based approaches.

Taking into account these considerations, one may come up with an idea of parametric
adaptation, where every individual has its own set of parameter values, which could be
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considered as suboptimal for the problem in hand. Similar are already known from
literature, where in jDE algorithm [12] pairs of F and Cr parameters were stored for
every individual separately. As the search proceeded, these F and Cr were updated in
pursuit of finding best possible values. Another well-known approach for parameter
adaptation was proposed in the SHADE algorithm [13]. In SHADE algorithm, as well
as those developed based on it, a set of H memory cells (usually H = 5) is maintained
to keep the most suitable parameter values. The memory cells are used to sample new
parameter values, and are updated with respect to the fitness improvement rates.

Based on these ideas, the first parameter self-adaptation method is proposed. For
every individual i = 1, ..., N in the population the a set of parameter values [F;, Cr;j, pm;,
ni] is maintained. Initially all these memory cells set to fixed values, for example [0.5, 1,
1/D, 20]. For every individual, new parameters are sampled using normal distribution:

F!'" = rnorm(F;, 0.2)
Cri®" = rnorm(Cr;, 0.2)
pm®” = rnorm(pm;, 0.2)

me = rmorm(n;, 5)

(6)

If some of the parameters were sampled below 0, then they were sampled again.
However, if F, Cr or pm were above 1, then the value of 1 was kept.

After the application of combination and variation operators, the fitness value of
the child is compared to the parent’s fitness, and if there is an improvement, then the
new parameter values replace the old ones. This approach will be further referred to as
MOEA/D-DE-SA.

The second self-adaptation approach uses the idea of success-history based adapta-
tion, where the parameter values are averaged over several last steps. For every individual
a set of H =5 memory cells is maintained, with MF; ,, MCr; n, Mpm; ;, and Mn; , values,
i=1,...,Nh=1, ..., H Memory cell initialization and sampling is performed in the
same way as in MOEA/D-DE-SA, however, the update scheme is changed. The FIR
values from Eq. 3 are calculated and used as weights w; j, for the update, performed as
follows:

SRy Wik (MF )2
Zf:l W,"kMFI.yjiw
S Wi My
SR Wik

Flnew — %(Fiold +
) (7N
n?ew — %(n;)ld +

where F"*" and F' l."ld are the new and old values of F parameter. The update scheme for Cr
and pm parameters is the same as for F. Note that if there was no improvement, i.e. FIR <
0, the weight was set to zero, and if all weights were zero, there was no parameter update.
The h index responsible for the memory cell index to write the temporary parameter
values is incremented every generation, and if the h value exceeds H = 5, then it is reset
back to 1. This algorithm will be further referred to as MOEA/D-DE-SHA.

In addition to the described algorithm, the approach with random sampling was
used, i.e. the parameters were generated as shown in Eq. 6, but no memory cells update
schemes were applied. This approach will be further referred to as MOEA/D-DE-RS.
The experimental setup and results are presented in the next section.
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4 Experimental Setup and Results

The experiments were performed on a set of benchmark problems proposed in [14] for
the MOEA/D-DE algorithm, as well as on a set of WFG problems [15]. The popula-
tion size was set to 100, actual population size depended on the number of objectives.
The maximum number of function evaluations was set to 10000 for all problems. The
algorithms were implemented using the PIatEMO 2.5 system [16].

Table 1. Comparison of MOEA/D to the proposed approaches, MOEA/D-DE-SHA as baseline,

IGD metric.

Problem MOEA/D-DE MOEA/D-DE-RS | MOEA/D-DE-SA_| MOEA/D-DE-SHA
MOEADDEI | 1.061e-2 (3.59¢-3) + | 1.096e-2 (2.55¢-3) = | 1.162¢-2 (2.88e-3) = | 1.210e-2 (3.72¢-3)
MOEADDE2 | 1.579%¢-1 (3.61e2) - | 1.013e-1 (2.23e-2) - | 9.355¢-2 (1.94e-2)= | 9.309¢-2 (1.48¢-2)
MOEADDE3 | 1.097e-1 (4.32e-2) - | 9.156e-2 (4.22¢-2) - | 6.614e-2 (1.63¢-2) = | 6.631e-2 (2.81e-2)
MOEADDE4 | 1.103e-1 (3.72¢-2) - | 9.483¢-2 (3.18¢-2) = | 8.092¢-2 (2.49¢-2) = | 7.945¢-2 (1.61e-2)
MOEADDES | 7.272e2 (2.41e2) - | 5.975e-2 (L51e-2) = | 6.054e-2 (1.33e-2) = | 6.037¢-2 (1.78¢-2)
MOEADDEG6 | 1.572¢-1 (3.64e-2) - | 1.583¢-1 (4.37¢-2) = | 1.452¢-1 (2.84e-2) = | 1.435e-1 (3.25¢-2)
MOEADDE7 | 3.489¢-1 (L.14e-1) = | 3.762¢-1 (L42¢-1) = | 2.612¢-1 (9.58¢-2) + | 3.122¢-1 (6.91e-2)
MOEADDES | 2.462¢-1 (5.23¢-2) + | 2.831e-1 (6.11e2) = | 2.457e-1 (5.74e-2) + | 3.127¢-1 (5.96¢-2)
MOEADDEY | 1.503e-1 (2.74¢2) - | 1.076e-1 (2.61e-2) - | 9.414e-2 (2.06e-2) = | 9.359¢-2 (2.66€-2)

WFG1 1.546e+0 (3.10e-2) - | 1.452¢+0 (7.00e-2) - | 1.368¢+0 (8.58¢-2) = | 1.338e+0 (8.86e-2)
WFG2 3.593¢-1 (2.96e-2) = | 3.372e-1 (L.61e-2) + | 3.563¢-1 (2.20e-2) = | 3.51de-1 (2.00e-2)
WFG3 2.75%-1 (3.74e-2) - | 2.073¢e-1 (2.55¢-2) - | 1.919¢-1 (2.13e-2)= | 1.837e-1 (1.87e-2)
WFG4 3.962e-1 (1.59¢-2) = | 3.941e-1 (L.06e-2) + | 3.929¢-1 (L43e-2) + | 4.022¢-1 (1.40e-2)
WFG5 | 3.362e-1 (4.97e-3) = | 3.369¢-1 (6.47¢-3) = | 3.363¢-1 (5.43¢-3)= | 3.373¢-1 (6.31¢-3)
WFG6 | 4.385¢-1 (2.14e-2) = | 4.405¢-1 (2.04e-2) = | 4.339e-1 (1.57e-2) + | 4.414e-1 (1.46¢-2)
WFG7 3.839¢-1 (1.25¢-2) - | 3.743¢-1 (9.08¢-3) = | 3.730e-1 (9.69¢-3) = | 3.742¢-1 (1.01e-2)
WFG8 4.878¢-1 (4.08¢-2) - | 4.479%-1 (2.00e-2) - | 4.334e-1 (1.30e-2)= | 4.302e-1 (1.05¢-2)
WFGY | 3.468e-1 (9.42e-3) = | 3.489%¢-1 (2.04e-2) = | 3.613¢-1 (3.18¢-2)= | 3.557e-1 (2.78¢-2)
Total 2+/6=/10- 2+/10=/6- 4+/14=/0-

For every test function 30 independent runs were performed, and the inverted gener-
ational distance (IGD) and hypervolume (HV) metrics were calculated. All WFG func-
tions had m = 3 objectives, while all MOEA/D-DE functions had 2 objectives except
for F6, which had 3 objectives.

To compare the performance of different algorithms, the Wilcoxon rank sum statis-
tical test with significance level p = 0.05 was used. Table 1 shows the IGD values for
all test problems, and Table 2 shows HV values.

The best average values in Tables 1 and 2 are marked. If the MOEA/D-DE-SHA was
significantly better than the other algorithm, then the “+” sign was used, if worse, then
“—" sign, otherwise “=". From Tables 1 and 2 it could be seen that MOEA/D-DE-SA
and MOEA/D-DE-SHA outperform both standard MOEA/D-DE with fixed parameters
and the MOEA-D/DE-RS with random sampling. However, even the random sampling
is most of the times better than fixed parameter values.

Comparing MOEA/D-DE-SA and MOEA/D-DE-SHA, in terms of IGD metric the
former has shown better results, i.e. significantly better on 4 problems out of 18, but for
HV metric the two approaches have similar performance, i.e. 3 wins and 3 losses. But, it



460

S. Akhmedova and V. Stanovov

Table 2. Comparison of MOEA/D to the proposed approaches, MOEA/D-DE-SHA as baseline,

HV metric.

Problem

MOEA/D-DE

MOEA/D-DE-RS

MOEA/D-DE-SA

MOEA/D-DE-SHA

MOEADDEI1

7.0899¢-1 (5.55¢-3) =

7.0944e-1 (3.78¢-3) +

7.0872¢-1 (3.68¢-3) =

7.0805¢-1 (5.07¢-3)

MOEADDE2

5.0146¢-1 (3.85¢-2) -

5.6748¢-1 (3.07¢-2) =

5.7485¢-1 (3.01e-2) =

5.7629¢-1 (2.39¢-2)

MOEADDE3

6.1718¢-1 (2.60¢-2) -

6.2621¢-1 (2.48¢-2) -

6.4138¢-1 (1.22¢-2) =

6.4330e-1 (1.66e-2)

MOEADDE4

6.1748¢-1 (2.52¢-2) -

6.2907¢-1 (1.83¢-2) =

6.3283¢-1 (1.82¢-2) =

6.3679%-1 (1.13e-2)

MOEADDES

6.4418¢-1 (1.38¢-2) =

6.5126e-1 (9.65¢-3) =

6.4800e-1 (1.12¢-2) =

6.5056¢-1 (1.22¢-2)

MOEADDE6

3.8415¢-1 (3.59¢-2) =

3.8533¢-1 (3.73¢-2) =

3.9858¢-1 (2.53¢-2) =

3.9884e-1 (3.00e-2)

MOEADDE7

2.6923¢-1 (8.38¢-2) =

2.6947¢-1 (7.96¢-2) =

3.7552¢-1 (1.17e-1) +

2.9384e-1 (7.79¢-2)

MOEADDES8

3.6255¢-1 (1.55¢-2) +

3.1275¢-1 (8.94¢-2) +

3.7399¢-1 (8.55¢-2) +

2.6100e-1 (8.97¢-2)

MOEADDE9

2.2668¢-1 (3.47¢-2) -

2.7780¢-1 (4.21e-2) -

2.9973¢-1 (3.10e-2) =

3.0060e-1 (3.72¢-2)

WEGI1

2.6741e-1 (1.49¢-2) -

2.9960¢-1 (2.32¢-2) -

3.2444e-1 (2.71e2) =

3.3359¢-1 (2.83¢-2)

WEG2

8.5717¢-1 (1.60e-2) -

8.6870e-1 (9.08e-3) =

8.6731e-1 (8.38¢-3) =

8.6816¢-1 (8.78¢-3)

WFG3

2.8778¢-1 (2.32¢-2) -

3.3166¢-1 (1.32¢-2) -

3.3926¢-1 (9.56¢-3) -

3.4490e-1 (8.68¢-3)

WFG4

4.4927e-1 (7.59¢-3) -

4.6641e-1 (7.35¢-3) -

4.8247¢-1 (5.48¢-3) -

4.8606¢-1 (6.45¢-3)

WEG5

4.5894¢-1 (4.32¢-3) =

4.5837¢-1 (3.81e-3) =

4.6025¢-1 (4.28¢-3) =

4.6048¢-1 (3.84e-3)

WEG6

3.8575¢-1 (2.20e-2) +

3.8426¢-1 (2.68¢-2) =

4.0163e-1 (3.33e-2) +

3.7719¢-1 (2.12¢-2)

WEG7

4.5816e-1 (9.43¢-3) -

4.8504¢-1 (6.75¢-3) -

4.9494¢-1 (6.22¢-3) =

4.9605¢-1 (5.45¢-3)

WEG8

3.4231e-1 (2.05¢-2) -

3.8402¢-1 (L.11e-2) -

3.9655¢-1 (7.70e-3) -

4.0106e-1 (5.33¢-3)

WFG9

4.5905¢-1 (1.13e-2) +

4.6384¢-1 (2.49¢-2) =

4.5031e-1 (4.10e-2) =

4.5777e-1 (3.48¢-2)

Total

3+/5=/10-

2+/9=/7-

3+/12=/3-

60 80
Generation

40 60 100 [ 40

T
40

T T
40 80
Generation

Fig. 1. Change of parameters of the MOEA/D-DE-SHA algorithm during one of the runs, WFG8
problem.

Generation

is important to mention that MOEA/D-DE-SHA has achieved better IGD and HV more
often than other methods.
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Figure 1 shows the change of parameters of the MOEA/D-DE-SHA algorithm during
one of the runs. Cr and pm parameters start from 1 and gradually reduce to around 0.5-
0.7, while for F value the average value, shown by black line, oscillates near 0.5. It is
seen, especially on the n graph, that some of the parameter values gradually increase,
while others decrease, allowing each point to adapt to its own part of the goal function
landscape.

Similar graphs were obtained for other test problems, and the general trend is that the
average values of parameters do not change much. For the MOEA/D-DE-SA algorithm,
the parameter changes are sharper, as the previous parameter value does not influence
the new one directly.

5 Conclusion

The parameter adaptation mechanism is an important part of every single-objective evo-
Iutionary and swarm intelligence search algorithm, which allows significant improve-
ment of efficiency. Likewise, for multi-objective optimization, the parameter adaptation
scheme allows receiving more representative Pareto sets, as demonstrated in this study.
The proposed parameter adaptation schemes, MOEA/D-DE-SA and MOEA/D-DE-SHA
use the improvement ratio, which is relatively easy to calculate for the MOEA/D frame-
work, however, the ideas of these algorithms could be used for other multi-objective
optimization approaches.

This study shows that there is a potential in improvement of MOEAs by develop-
ing new parameter adaptation schemes, as well as new improvement ration estimation
approaches. Further studies in this direction may include testing the proposed SA and
SHA algorithms on algorithms using SBX crossover, or other problem-specific operators,
which have numerical parameters.

Acknowledgments. The is work was supported by the internal grant of Reshetnev Siberian State
University of Science and Technology for the support of young researchers.
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