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Abstract. Pulsars can be detected based on their emitted radio waves.
Machine learning methods can be employed to support automated
screening of a large number of radio signals for pulsars. This is how-
ever a challenging task since training these methods is affected by an
inherent imbalance in the acquired data with signals relating to actual
pulsars being in the minority.

In this paper, we demonstrate that ensemble classification methods
that are dedicated to imbalanced classification problems can be suc-
cessfully employed for pulsar identification. Classifier ensembles combine
several individual classifiers to yield more robust and improved classifi-
cation, while class imbalance can be addressed through careful sampling
or through cost-sensitive classification. Experimental results, based on
HTRU2 data, show that the investigated ensembles outperform meth-
ods that do not consider class balance, and suggest their use for other
applications in astrophysics.
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1 Introduction

Pulsars are rare neutron stars detectable through the radio waves they emit [23].
To allow for automated screening of a large number of radio signals, machine
learning methods can be adopted. However, this is hampered by a considerable
amount of noise as well as radio frequency interference. Interference is so common
that the large majority of signals detected turn out to not stem from pulsars.
This makes the use of common machine learning algorithms challenging since
they are not designed to take into account such a class imbalance.

Class imbalance is a common issue in pattern classification tasks. When col-
lecting data for training, in particular for binary classification (i.e., tasks where
patterns are separated into exactly two classes as in “pulsar” and “not pulsar”),
the ideal scenario is that the split of patterns across the classes will be approx-
imately equal. Unfortunately, when collecting data for pulsar candidates, only
a handful of observations will correspond to true pulsars. Standard classifiers
struggle to learn successfully from such imbalanced datasets and in particular
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to learn well from the minority class, which for our problem here (real pulsars)
is the one of interest.

In this paper, we show that ensemble classification methods, i.e. methods
that combine several individual classifiers, that are dedicated to imbalanced
classification problems can be successfully employed for pulsar identification. Our
results demonstrate that such dedicated ensembles yield better results compared
to methods that do not consider class balance, and suggest their use for other
applications in the field of astrophysics.

2 Background

Searching for pulsars is conducted through collecting pulsar candidates, that
is, sets of statistical information about certain radio emissions captured from
space [18]. Search techniques used to isolate these look for periodic broadband
signals that appear dispersed. The collected signals are analysed to determine
which of them are actual pulsars. Signals that are determined to be likely coming
from pulsars are then passed on for further observation. Traditionally, this anal-
ysis was conducted manually by human experts. Unfortunately, the majority of
captured signals do not come from pulsars, leading to a lot of time dedicated to
discarding noisy candidates. In addition, technological advancements have sig-
nificantly increased the number of candidates being discovered [26], leading to
the manual approach becoming infeasible.

Consequently, various automated approaches have been developed for pul-
sar classification. For example, [12] describes a computer program for candidate
selection as early as 1992. However these methods were not intelligent enough,
since after initial filtering of candidates, the selected samples still needed to be
manually checked. The use of advanced machine learning approaches leads to
more reliable detection. Examples include an artificial neural network for pul-
sar classification [8], PICS, a method which utilises image pattern classification
approaches to recognise pulsars from diagnostic plots [30], and SPINN, a high-
performance solution that is also based on neural networks [19].

While such machine learning approaches have shown potential to greatly
reduce the work needed for identifying pulsars, none of these solutions address
the fundamental problem of data imbalance present in the candidate selection
task with true pulsars being greatly outnumbered by noisy samples. It is this
aspect that we specifically address in this paper.

3 Imbalanced Classification

Many real-life datasets are imbalanced so that patterns of interest (commonly
referred as the positive class) are outnumbered (making it the minority class)
by “other” patterns (referred to as the negative class and majority class). In our
pulsar detection task, there are many more noise samples compared to those that
represent a true pulsar. This is challenging as classification algorithms typically
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try to maximise accuracy over all samples and thus tend to be biased towards
the majority class, leading to poor recognition of minority class samples.

A common approach to address class imbalance is sampling which tries to
“fix” the dataset. The goal here is to create a new training dataset with equal
class distribution. In undersampling approaches, this is achieved by remov-
ing patterns of the majority class, at the cost of discarding potentially useful
data [29]. On the other hand, in oversampling, the number of patterns of the
minority class is increased to match more closely that of the majority class. The
key obstacle here is how to obtain useful new minority class samples.

SMOTE (for Synthetic Minority Over-sampling TEchnique) [4] generates
new, artificial patterns of the minority class that are designed to be similar to
the actual patterns in the dataset. For this, it uses a nearest neighbour app-
roach, creating new patterns by combining features from existing neighbouring
patterns. SMOTE has been widely used and is known to help with generalisation
in imbalanced classifiers [4,29].

A different approach to address class imbalance is cost-sensitive classifica-
tion which is based on the idea of assigning a cost to misclassifications [20].
Conventional classifiers try to reduce the number of misclassifications but do
not pay attention to which class they belong. Introducing class costs is a com-
mon approach to reflect the varying degrees of importance among classes. In
most imbalanced classification problems, the minority class is the class of inter-
est and is thus assigned a higher cost so that the resulting classifier will focus
more on reducing the error rate of that class.

4 Classifier Ensembles

Traditionally, a single classifier is used in pattern recognition problems. However,
classifiers are rarely perfect and designing a classifier that generalises well is a
difficult problem. On the other hand, different classifiers can complement each
other when it comes to achieving high performance [10]. This observation leads to
the development of multiple classifier systems, also known as ensemble classifiers.
Using separate classification methods simultaneously, and then combining their
outputs, these methods can deal particularly well with noisy inputs and yield
more robust classification [11].

In general there are three reasons for why ensemble methods are worth
using [7]:

– Statistical argument: This is relevant in problems that suffer from data spar-
sity. With a limited number of patterns, training could produce many different
classifiers with similar performance. But some of them will be better than oth-
ers at generalisation. Combining these classifiers into an ensemble is better
than picking one and risking that it will not perform well on unseen data.

– Computational argument: This argument applies to methods that use some
sort of hill-climbing or random search, for example neural networks with
gradient descent or decision trees with greedy splitting rules. These techniques
are inherently difficult to optimise and a common issue is the search getting
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stuck in a local optimum. This is where an ensemble can be beneficial by
utilising multiple classifiers which begin searching in different places, thus
improving the likelihood of finding the global optimum.

– Representational argument: It may be impossible to obtain an optimal clas-
sifier. For example, for a dataset with a non-linear decision boundary, there
is no linear classifier that can achieve perfect classification. In a situation like
this, there are two solutions. One is to train a classifier of higher complex-
ity, while the other is to combine some imperfect classifiers with the aim of
increasing the overall performance.

The most common approaches of ensemble learning are bagging and boosting.
In bagging [1], the idea is that each classifier is not trained on the full dataset.
Instead, the dataset is randomly sampled multiple times (with replacement),
and each classifier trained on a different subset. All classifiers’ outputs are then
combined. Boosting revolves around “weak learners”, i.e. classifiers that are only
slightly better than a random guess [24]. These can be effectively transformed, or
“boosted”, into strong learners by iteratively training ensemble members, with
each of them focussing on specific data patterns that were difficult to learn for
the previous classifiers.

5 Ensemble Classifiers for Imbalanced Data

In this paper, we investigate a number of ensemble classifiers that specifically
address class imbalance. In the following, we briefly describe the algorithms that
we use.

5.1 SMOTEBagging

SMOTEBagging combines a bagging ensemble with various sampling strate-
gies [28]. The main idea is to employ a bagging scheme that trains individual
classifiers on subsets of the training data so that each class is equally represented.
SMOTE is applied to the minority class, and all original samples along with the
generated patterns are used alongside a random subset of the majority class
when training each classifier. Experimental results in [28] show that SMOTE
effectively improves the diversity and performance of a bagging ensemble.

5.2 SMOTEBoost

[5] proposes a method that also utilises SMOTE, but in combination with an
AdaBoost classifier. SMOTE is employed to improve the performance on the
minority class, while boosting is used make up for the loss of general accu-
racy. SMOTEBoost is more sophisticated than just simply running SMOTE on
a dataset and then training an ensemble on it. SMOTE is instead used sepa-
rately for each classifier, and all synthetically generated patterns are discarded
before training the next classifier. Unlike standard AdaBoost, which treats all
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misclassifications equally, misclassified minority class patterns are focussed on.
Particularly hard to learn minority patterns will have “similar” synthetic pat-
terns with similar weights added to the training set, thus enabling classifiers
to better learn them, while implicitly creating more diversity in the ensemble
(since every classifier is trained on a number of exclusive patterns that will be
discarded afterwards).

5.3 EasyEnsemble

[16] proposes an effective ensemble which focusses on undersampling rather than
oversampling. EasyEnsemble can be seen as a fusion between bagging and boost-
ing but is somewhat unique in that it technically generates an ensemble of ensem-
bles. During each iteration, it uses random undersampling with replacement to
generate a subset of the majority class training data. This subset is then used
together with the full minority class data as a training set for an AdaBoost
ensemble. This way, a set of diverse AdaBoost ensembles is generated, each
trained on different majority class data. Finally, the outputs of all classifiers
predicting the same class are summed, and the class with higher support is
chosen.

5.4 Balanced Random Forest

In a similar fashion to EasyEnsemble, the Balanced Random Forest algorithm [6]
adapts standard the Random Forest algorithm [2] for imbalanced data. The
algorithm uses undersampling on the majority class, and so each tree receives a
subset with an equal spread between the classes.

5.5 AdaC2

AdaC2 utilises AdaBoost with a cost-sensitive approach to address data imbal-
ance [27]. The goal is to adjust the weights so that misclassified minority class
patterns are the main focus. The algorithm uses a cost value for each pattern
which represents the penalty to the classifier for misclassifying that pattern with
minority class costs higher than majority class costs. These costs are then incor-
porated into the weights as

wk+1
i =

wk
i eβiCi

Z
, (1)

where wk+1
i is the weight of pattern i in the next classifier, wk

i is that pattern’s
weight in the current classifier, Z is a normalisation factor, β is a parameter
such that βi = αk if pattern i was misclassified by classifier k, and βi = −αk

otherwise, with αk a parameter that is some predefined function of the classifier’s
error rate.
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5.6 AdaCost

AdaC2 and related algorithms are actually simplified variants of another cost-
sensitive method, namely AdaCost [9]. In this algorithm, the AdaBoost cost
function is

wk+1
i =

wk
i eβiDi

Z
. (2)

Here, instead of introducing a constant cost for each pattern, a cost adjustment
function Di is used, which is designed to have higher values when the pattern
was misclassified. An interesting aspect of this algorithm is that, unlike AdaC2,
it does not reduce to AdaBoost when both the majority and minority class are
given the same weight [27].

6 Pulsar Classification

In this paper, we perform pulsar classification based on the HTRU2 study which
produced a large database of pulsar candidates collected in the dedicated High
Time Resolution Universe Survey [13].

The features are extracted from the pulse profile which describes the
longitude-resolved version of a the signal, averaged in frequency and time. The
DM-SNR curve represents the correlation between the dispersion measure (DM;
the integrated density of free electron columns between the pulsar and the point
of observation) and the signal-to-noise ratio (SNR) from the given pattern.

Specifically, we use eight attributes that represent the various features of each
pulsar candidate [19], namely:

– mean of the integrated pulse profile;
– standard deviation of the integrated pulse profile;
– excess kurtosis of the integrated pulse profile;
– skewness of the integrated pulse profile;
– mean of the DM-SNR curve;
– standard deviation of the DM-SNR curve;
– excess kurtosis of the DM-SNR curve;
– skewness of the DM-SNR curve.

The dataset1 comprises 16,259 bogus patterns (caused by radio frequency
interference and noise) and 1,639 real pulsar patterns which have been manually
verified, thus exhibiting significant class imbalance.

7 Experimental Results

In a binary classification problem, there are four basic measures which are used
to define various performance metrics [25]:

1 https://archive.ics.uci.edu/ml/datasets/HTRU2/.

https://archive.ics.uci.edu/ml/datasets/HTRU2/
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– True Positives (TP): Number of patterns from the positive class that are
correctly classified;

– True Negatives (TN): Number of patterns from the negative class that are
correctly classified;

– False Positives (FP): Number of patterns from the negative class that are
incorrectly classified as the positive class;

– False Negatives (FN): Number of patterns from the positive class that are
incorrectly classified as the negative class.

From these, we can calculate [25]:

– Accuracy: is the overall percentage of correctly classified patterns and is
defined as

Acc =
TP + TN

TP + FN + FP + TN
; (3)

– Precision: is the percentage of patterns classified as positive that are correct
and is defined as

Prec =
TP

TP + FP
; (4)

– Recall or Sensitivity: is the percentage of positive patterns classified correctly
and is defined as

Rec = Sen =
TP

TP + FN
; (5)

– Specificity: is the percentage of negative patterns classified correctly and is
defined as

Spec =
TN

TN + FP
. (6)

For imbalanced classification problems, the following measures are more useful:

– F-score [22]: is defined as the harmonic mean of precision and recall,

F =
2 ∗ Prec ∗ Rec

Prec + Rec
; (7)

– G-mean [15]: is defined as the geometric mean of sensitivity and specificity,

G =
√

Sen ∗ Spec. (8)

As base classifiers, we employ decision trees and support vector machines
(SVMs), except for the Balanced Random Forest which is inherently based on
tree classifiers. For comparison, we also implement conventional AdaBoost as a
standard ensemble classifier.

The obtained results are given in Table 1 for tree classifiers and in Table 2
for SVMs.

From Tables 1 and 2, we can see that AdaBoost gives fairly good performance.
This confirms that the extracted features provide a good basis for successful
pulsar identification. However, ensembles that are dedicated to imbalanced clas-
sification problems do, with the exception of the Balanced Random Forest, give
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Table 1. Experimental results using decision trees as base classifiers.

Accuracy Precision Recall Specificity G-mean F-score

AdaBoost 97.96 94.80 81.21 99.57 89.92 87.48

SMOTEBagging 96.66 76.64 89.11 97.39 93.16 82.40

SMOTEBoost 96.63 76.48 88.93 97.37 93.06 82.24

Balanced Random
Forest

96.15 73.84 86.96 97.04 91.86 79.86

EasyEnsemble 95.89 71.10 89.60 96.50 92.99 79.29

AdaC2 97.82 90.41 84.08 99.14 91.30 87.13

AdaCost 97.82 90.41 84.08 99.14 91.30 87.13

Table 2. Experimental results using SVMs as base classifiers.

Accuracy Precision Recall Specificity G-mean F-score

AdaBoost 96.82 94.64 67.52 99.63 82.02 78.81

SMOTEBagging 97.33 81.84 89.44 98.09 93.67 85.48

SMOTEBoost 96.97 81.29 84.95 98.12 91.30 83.08

EasyEnsemble 97.22 80.76 89.68 97.95 93.72 84.99

AdaC2 98.04 94.20 82.80 99.51 90.77 88.14

AdaCost 97.96 92.58 83.44 99.36 91.05 87.77

significantly better results, in particular in terms of yielding both high G-mean
and F-score results combined with high sensitivity, thus confirming the usefulness
of the presented approaches. Looking more closely at the different ensembles, we
can see that EasyEnsemble correctly recognises the highest number of true pul-
sars, though at the trade-off of misclassifying more patterns from the majority
class. Overall, SMOTEBagging gives the best balance and provides good clas-
sification for both classes, while the use of SVMs as base classifiers is generally
superior to decision trees.

8 Conclusions

In this paper, we have shown that ensemble classifiers that address class imbal-
ance represent a useful approach for finding true pulsars among the candidates
in the HTRU2 study. Since the investigated methods are essentially agnostic
with respect to the application, we expect that they can also be successfully
employed for other astrophysical applications such classification of photometric
variable stars [21], supernovas [17] or globular clusters [3]. We also currently
investigate these ensemble classifiers for imbalanced classification problems in
object classification and video analysis [14].
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