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Abstract. Many real-world problems involve cooperation and/or competition
among multiple agents. These problems often can be formulated as multi-agent
problems. Recently, Reinforcement Learning (RL) has made significant progress
on single-agent problems. However, multi-agent problems still cannot be easily
solved by traditional RL algorithms. First, the multi-agent environment is con-
sidered as a non-stationary system. Second, most multi-agent environments only
provide a shared team reward as feedback. As a result, agents may not be able
to learn proper cooperative or competitive behaviors by traditional RL. Our algo-
rithm adopts Evolution Strategies (ES) for optimizing policy which is used to
control agents and a value decomposition method for estimating proper fitness
for each policy. Evolutionary Algorithm is considered as a promising alternative
for signal-agent problems. Owing to its simplicity, scalability, and efficiency on
zeroth-order optimization, EAs can even outperform RLs on some tasks. In order
to solve multi-agent problems by EA, a value decomposition method is used to
decompose the team reward. Our method is parallel on multiple cores, which can
speed up our algorithm significantly. We test our algorithm on two benchmarking
environments, and the experiment results show that our algorithm is better than
traditional RL and other representative gradient-free methods.

Keywords: Multi-agent problems - Evolutionary algorithm - Value
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1 Introduction

Cooperative and competitive behavior is a common intelligent phenomenon that has
been discovered in many domains, such as ant colony [1] and human social behavior [2].
There is a lot of research inspired by such phenomenon [3, 4]. Nowadays, people are
becoming more interested in the research of how these behaviors emerge, and some works
try to reproduce such phenomena through algorithms directly [5, 6]. This type of research
problem can be formally defined as multi-agent tasks. Research on multi-agent problems
can help us better understand our social behavior, design better traffic controlling system
and so on. In this paper, we focus on cooperative behavior of multi-agent problems.
Recently, RL algorithms have made significant progress on single-agent problems
[7, 8]. However, these traditional RL algorithms are not very effective for multi-agent
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problems, because the multi-agent problem is much more complicated than the single-
agent problem. First, the environments of most single-agent problems are stationary.
But, in the multi-agent problem setting, the policy of each agent changes over time, the
environment would be non-stationary for an agent if it regards other agents as a part
of the environment [9]. However, the stationary environment is one of prerequisites for
traditional RL convergence [19]. So, the multi-agent problem is non-trivial to be solved
by traditional RL algorithms.

Very recently, some research shows that Evolutionary Algorithms (EAs), also makes
a competitive performance on single-agent problems [11, 12]. The performance of EA
even outperforms RL in several single-agent control tasks. Compared to RL, EA is
simple and easier to implement. Also, because EA is a gradient-free method, it is known
as a better solution for non-convex optimization problems whose gradient is difficult to
obtain. What is more, EA has better parallelization capability. EA is easier to be scaled
on multi-core computers compare to some traditional RLs [22].

However, there are some difficulties for traditional EA to solve multi-agent problems.
In the multi-agent environment, agents often only receive a shared reward of the whole
team [13]. For example, a group of football players receives a reward only after they lost
or win that match. If we directly use the team reward to optimize the independent policy
through EA, it would be difficult for agents to learn proper cooperative behaviors.

In this paper, we propose an approach, named Parallel Evolution Strategies with
Value Decomposition (PES-VD), for cooperative multi-agent problems. PES-VD is a
hybrid method, combining with EA and RL. First, we extended the Parallelized Evolu-
tion Strategies [11] and designed a variant named Parallelized Evolution Strategies for
direct policy search. Second, we take advantage of RL and developed a value decompo-
sition approach to estimate fitness for policy evaluation. Third, in order to improve the
efficiency of our approach, we parallel our algorithm in multiple cores.

2 Related Work

In recent years, several significant progresses have been made in the field of multi-agent
problems. Multi-agent reinforcement learning [9, 10] is one of the most popular methods
for multi-agent problems.

Similar to the traditional RL, there are two types of multi-agent reinforcement learn-
ing: value-based and policy-based. The first type of multi-agent reinforcement learning
is always used for solving the multi-agent problem with discrete action-space. One of the
most commonly applied methods for multi-agent problems is Independent Q-learning
(IQL) [14]. IQL is extended directly from Q-learning, and train each agent through a
separated Q-learning. However, this method does not work well for multi-agent prob-
lems. Because of the restriction of the tabular manner, IQL only could be used for low-
dimension problems. Tampuu et al. replace the tabular manner by deep neural network
[15]. With deep neural network, the approach has better generalization ability. Benefits
from the decentralized training procedure, these approaches are easy to scale. But these
methods are also unstable because of the decentralized training in the non-stationary
environment where agents learn simultaneously.

In order to reduce the effect of the non-stationary in the environment, a set of works
adopt centralized training and decentralized execution manners. Value Decomposition
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Network (VDN) [16] acquires the idea from independent deep Q-learning. During the
centralized training process, VDN sum up the Q-value of each agent for estimating a
team reward. QMIX [17] is another value-based approach, which estimates total Q-value
through a monotonic function of each agent’s Q-value. It shows that monotonic function
can guarantee consistency between centralized and decentralized policies. However,
these value-based methods are not good solutions for multi-agent problems with continue
or high-dimensional action space.

Policy-based RL approach is another type of algorithms for multi-agent problems.
Counterfactual Multi-Agent Policy Gradients (COMA) [18] is based on the framework
of actor-critic reinforcement learning. It needs to train a fully centralized critic in COMA,
which will be impractical as the number of agents increasing. Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) [19] achieves great performance in a set of simple
multi-agent problem environments. Although MADDPG only needs the combination of
observations and actions of all agents as training data, the dimension of input space still
will grow dramatically as the number of agents increasing.

Evolutionary algorithm (EA) as a type of gradient-free approaches also shows
promising performance in agent controlling problems. From the perspective of RL, EAs
also can be considered as policy-based algorithms [26]. NeuroEvolution of Augmenting
Topologies (NEAT) [20] evolves both the structure and parameters of a neural network.
But NEAT is a time-consuming approach, and it is not suitable for optimizing deep
neural network. In recent years, researchers also adopt Random Search [21], Evolution
Strategies [11] and Genetic Algorithm [12] for optimizing parameters of neural network.
Benefit from the rapid development of parallelization technology, these traditional algo-
rithms can gain competitive performance as state-of-the-art RL in some challenging
single-agent problem. However, it is difficult for EA to be deployed in multi-agent prob-
lems directly, especially for the tasks which only provide a shared team reword. Agents
might unable to learn proper behaviors by EA if we directly use the team reward as
fitness.

3 Problem Description

Generally, the multi-agent problem can be formalized as a Markov Game [ 10] with a tuple
G = {S, U, O, P, r, N, y, T}.Itdefines an environment with a global state S, where
there are N agents. Each agenti € {1, ... N} has its observations O; and actions A;. The
state of the environment is initialized randomly by a distribution unavailable to all agents
p:S — [0, 1]. Ateach time step, agents carry out actions based on their observations.
Typically, these actions are chosen through a policy 7; : O; x A; — [0, 1], and form
ajointaction U = A; x ... x Ap. Then, the environment turns into a new state s’
according to a transition function P(s/ s, a) :SxU xS — [0, 1]. For agent i, it receives
new observations 0; : S — O; and areward r; : S x U — R in this new environment
state. y is the reward discount factor and the time horizon 7' can be a finite or infinite.
In this paper, we consider the cooperation setting. All agents receive a shared team
reward r from the environment with discrete time-space and partial observation. Each
episode has finite time steps 7. Agents choose actions through their deterministic policies
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7. So in this cooperation Markov Game setting, the goal of the task is to maximize the
expectation of team rewards (1).

(o', a) (1)

T
maxR(z) = E
g t=0

4 Proposed Method

Our method consists of two parts, value decomposition and policies. The value decom-
position network can be considered as a coach for guiding the training of agents and is
only used while training. A variant named Parallelized Evolution Strategies is designed
for the training of independent policies. The overview of our algorithm is shown in
Fig. 1. Our method is implemented in parallel. Workers are used to evaluate the policies
and calculate the gradient of value decomposition network. Then, the master process
collects data from workers to update policies and value decomposition network.

observations observations

team rewar:

Fig. 1. The overview of our algorithm

Value decomposition network and policy networks learn simultaneously during the
training process, while only policy networks are required during execution. Agents
choose actions through their policies independently and interact with the environment.
The input data of the policy network is the partial observation of the related agent.
Value decomposition estimates fitness for the policies. The input data of the value
decomposition network consists of whole observations and the team reward.

4.1 Parallelized Evolution Strategies

We employ an artificial neural network which is parameterized by € to represents the
policy of one agent. Different from gradient-based methods for neural network training,
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we train these policies through Evolution Strategies. Algorithm 1 illustrates the detail
of the variant Parallelized Evolution Strategies used in our algorithm. M workers are
used to evaluate the policies in multiple processes, and a master collects the data from
workers to update policies.

Algorithm 1 A Variant Parallelized Evolution Strategies
1: Input: learning rate a,, noise standard deviation o, initial policy
parameters 69,69, ...,0%
Initialize: M workers with known random seeds, and initial parame-
ters 69,69,...,0%
for generationg = 0,1,2,..do
for each workerj = 1,..,Mdo
for each agenti = 1,..,N do
Sample € ~N(0,1)
Compute return f = f(8} +o€))
end for

Send scalar returns f;to the master
end for

N

R O J o b W

(S = BTN

Master reconstruct all perturbation Eij forj =1,..,M andi = 1,..,N
using know random seeds

set 07" <07 +a, /o3 fle] fori =1,..,N
g+1
6 1,..,N

= e
w N

Synchronize with workers for i =

end for

-
S

PES can work well on single-agent problems, even if we simply sum up the rewards
of an episode as fitness 11. However, we found this fitness evaluation manner is not suited
for cooperative multi-agent problems. So, a predicted state value v; which is estimated
by value decomposition (describe at Sect. 4.2) based on the observations of agent i is
used for calculating the fitness f; of a 7" steps episode (2).

fi=Y v 2)

We extend our method directly from Parallelized Evolutionary Strategies and use a
random noise to represent the variance added to the network parameters [11]. So, even
each agent has its independent policy network, the overall data transmitted between
processes is still acceptable.

4.2 Value Decomposition Network

For cooperative multi-agent problems, we found EA always does not work well if we
simply regard the team reward as its fitness, because the team reward cannot effectively
reflect the contribution of each agent for the whole group. For this reason, we developed
a value decomposition network, for evaluating the proper contribution of each agent
during the training process.

For the value decomposition network, each value network is parameterized by 6.
At each step, value decomposition takes the observations of all agents as input data for
calculating a join value v’ and individual values v; of each agent. Taking all observations
as input can significantly alleviate the effect of non-stationary problems in the multi-
agent environment [19]. Inspired by [16], we also assume that the joint value function
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can be decomposed into value function across agents. So, we have the Eq. (3), and
the team reward received from the environment can be used for the training of value
decomposition network directly.

N
Vo~ Zv,- 3)
i=1

We adopt Temporal Differences (TD) error as aloss function for the network updating

.
TD = r' + )\V(Ot+l; OV) —v(0';0") 4)

Because Q(0',a’) = E(r' 4+ wv(0"*!; ")) is not directly equal to v(o’; "), loss
function (4) might cannot accurately estimate the actual loss. However, the experiments
from Asynchronous Advantage Actor-Critic (A3C) [22] show that this estimation man-
ner can reduce the complexity of the neural network architecture and is more conducive
to obtaining stable results.

Different from the critic network in A3C, we implement a separate network for
estimating the target state value v(o”r] 10V ) similar to DQN [8]. The experiment results
(Sect. 5.3) show that the separate network can significantly improve the efficiency and
stability of our algorithm.

4.3 Parallelization

Our algorithm consists of two parts: policies and value decomposition. In order to accel-
erate the training efficiency and better use computer resources, we implement the policies
and the value decomposition algorithm in parallel.

The parallelization of the policy has been introduced in Sect. 4.1. The parallel realiza-
tion of the value decomposition is inspected by the idea of Parallel Reinforcement Learn-
ing in [22]. However, instead of running in multiple threads, we implement our algo-
rithm in multiple cores. Although it will cost more communication resources, running
in multiple cores can have better use of CPU resources [22].

Figure 2 illustrates the working flow of the value decomposition network in multiple
processes.

Fig. 2. Parallelization structure of value decomposition network
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The master process maintains a global value decomposition network parameterized
by 6,4 and each worker process has a local value decomposition network parameterized
by 0’v , and a local target value decomposition network. The local value decomposition
initializes its parameters from global value decomposition at the beginning. Then, at each
generation of PES, the local value decomposition network calculates its gradients and
uploads them to the master. Master updates the global value decomposition parameters
based on the Eq. (5) and then synchronizes them to the local value decomposition at the
beginning of the next generation.

M
Ova < 0va + g Y I(TD)/36, 5)
J

For the local target value decomposition network, we update its parameters every
B > 1 generations. The training process will be more stable and efficient by using a
separate network for estimating the target value [8].

5 Experiment Results

We compare our algorithm with both gradient-based and gradient-free methods in two
different multi-agent environments: Multi-Agent Particle Environment (MAPE) [23]
and StarCraft Multi-Agent Challenge (SMAC) [13]. For gradient-based methods, we
compare with REINFORCE [24], Actor-Critic [25], DQN [8], VDN [16]. Particularly,
VDN is a state-of-the-art value-based approach for multi-agent problems. For gradient-
free methods, we also compare our method with Random Search (RS) [21] and Evolution
Strategies (ES) [11].

We adopt the same network architecture for our algorithm in those two environments.
For the Policy network, we use two tanh MLP with 256 units per layer. At each time
step, each Policy network takes observations of the related agent as input and outputs
actions.

The value network of value decomposition also has two hidden layers. The first
layer is a MLP with 256 units, and the second layer is a LSTM with 256 units. The value
network takes observations of the related agent as input and outputs a state value. The
Mixer layer of value decomposition sums up the values output by each value network.
We share the parameters of each value network, which can improve the convergence
efficiency of the network in these cooperative multi-agent problems [16]. We run our
algorithm on a server with 72 CPU cores.

5.1 Experiment on MAPE

Multi-Agent Particle Environment (MAPE) is a 2D simple world with N agents and
L landmarks. Action-space is continuous and time is discrete in this environment. At
each time step, agents carry out a discrete action. We evaluated our algorithm in the
Cooperative Navigation task of MAPE

We compare our algorithm with RS, ES, REINFORCE, Actor-Critic, DQN, VDN in
this environment. Each algorithm that we evaluate in this environment had been trained
to converge. The max episode steps are 25 in this task.
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We evaluate 100 episodes for each method and use the average distance from
landmarks (Dist.), the number of collisions (Collisions), and the number of occupied
landmarks (Occupied Landmarks) for comparison.

It can be seen from the results in Table 1 that both gradient-based methods (REIN-
FORCE, Actor-Critic, DQN, and VDN) and gradient-free methods (RS and ES) cannot
solve the Cooperative Navigation task properly. Those approaches only consider how
to maximize the expected reward of the agent itself and ignore the whole team reward.
Under this mechanism, agents would lose sign of which behaviors are more beneficial
for their team.

Table 1. The results of cooperative navigation task

Algorithm Dist. | Collisions | Occupied
landmarks

RS 1.92 25.52 0.04

ES 1.37 26.69 0.11

REINFORCE | 8.01 25.21 0.01

Actor-critic 1.36 25.73 0.13

DQN 1.56 26.31 0.09

VDN 2.21 25.12 0.5

CAES 0.31 27.11 1.6

Howeyver, for this task, we found our method causes more collisions than other
approaches among agents while navigation. Because the Evolutionary Algorithm is
more concerned about long-term rewards and ignores some short-term conditions. What
is more, as agents approaching the landmarks simultaneously, it will be more prone to
collisions between agents.

5.2 Experiment on SMAC

The StarCraft Multi-Agent Challenge (SMAC), focuses on micromanagement chal-
lenges where units are controlled by separated agents. The observations of this envi-
ronment for each agent are partial. Agents only receive the information around them at
a certain distance. There are two groups of units that fight with each other at the tasks
of SMAC. One group is controlled by training agents, and the other is controlled by
pre-designed rules. The goal of each group is to destroy the opposed one. Agents will
receive positive collective rewards depending on how much harm they have made to the
opposed group.

We test our algorithm in 3s_vs_4z and 2c_vs_64zg tasks of SMAC. The 3s_vs_4z
and 2c_vs_64zg tasks both are homogeneous and asymmetric type missions. It evaluates
kiting ability in the 3s_vs_4z task with 3 Stalker ally units and 4 Zealot enemy units.
Besides, the 2c_vs_64zg task is a harder one which needs more positioning strategy for
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agents to win the competition. There are 2 Colossi allay units and 64 Zergling enemy
units in the 2c_vs_64zg task. We compare our algorithm with gradient-free methods
(RS, ES) in these two tasks.

We train these three algorithms for 1500 generations and evaluate the average episode
team reward received at each generation.

As the results shown in Fig. 3 and Fig. 4, in these two SMAC tasks, our method
can receive higher average episode rewards than RS and ES. We also found that the
performances of RS and ES do not change too much even if been trained longer. On the
contrary, our method has the ability to learn different cooperation strategies in different
environments.
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Fig. 3. Results in the 3s_vs_4z task
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Fig. 4. Results in the 2c_vs_64zg task

5.3 Separate Network Ablation Experiment

Although A3C does not adopt a separate network for target value prediction, we found
using a separate network can improve convergent efficiency and stability for our algo-
rithm. Actually, the complex of our algorithm does not change too much while parallels
in multiple processes with a separate network.

We both test our original algorithm and the one without a separate network in the
Cooperative Navigation task of MAPE. The results are shown in Fig. 5.
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Fig. 5. Results of without a separated network and with a separated network in Cooperative
Navigation task

The results show the average episode team rewards received by agents within 3000
generations of training. The agent trained by the algorithm with a separate network can
reach a higher reward faster. However, without separate network one is less efficient,
and the episode reward has not been enhanced much even if it has been trained for 6000
generations.

predicted value

o 500 1000 1500 2000 2500 3000
generation

Fig. 6. Predicted fitness estimated by value decomposition

6 Conclusion and Future Work

Our approach is based on Evolutionary Algorithm which is used for the training of
the policy networks. A value decomposition network is adopted for decomposing team
reward. Policy networks and value decomposition network are trained simultaneously
during the learning process. While only policy networks are needed in the execu-
tion phase. We test our algorithm in two different environments and compare it with
REINFORCE, Actor-critic, DQN, VDN, RS, ES.

In both environments, our method achieves promising results. For the Cooperative
Navigation task in MAPE, CAES is much better than both traditional RLs and gradient-
free approaches.
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For the other two tasks in SMAC, the experiment results also show that our method
is applicable for different cooperative strategies. EA is considered to be not suitable for
Multi-Agent problems if it directly using the team reward as fitness. There is a great
improvement for EA by using the value decomposition network to predict fitness in
Multi-Agent problems.

We also found that, during the training process, the prediction ability of the value
decomposition network improves over time. As the predicted fitness estimated by value
decomposition in the Cooperative Navigation task shown in Fig. 6, the output of value
decomposition is not stable before the 600th generation where the predicted fitness
decreases. This means the fitness function of policy also changes gradually. So, it can
be seen as a dynamic problem from the perspective of optimization. We should design
an algorithm which more suitable for this dynamic problem in our future work.
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