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Abstract foundation for a general theory of cognitive agents is

still missing, there is a line of development within Al
research which aims at foundational justifications for the
design of cognitive agents, enabling the derivation of
theorems characterizing the possibilities and limitations
of computational cognitive agents.

The term Artificial Intelligence was coined in 1956. Since
then, this new research area has gone through several
cycles of fast progress and periods of apparent stagnation.
Today, the field has broadened and deepened significantly,
and developed a rich variety of theoretical approaches and
frameworks on the one side, and increasingly impressive
practical applications on the other side. While a thorough
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Introduction

In its most general form, artificial intelligence is an area of
computer science which is concerned with the design and
analysis of agents acting within an open, partially, or com-
pletely unknown environment. The agent and the environ-
ment are coupled by observations and actions, i.e., the agent
observes the environment and executes actions which can
affect the environment. Additionally, the agent has an internal
state, which can serve as memory and as a resource for
internal reflection. The environment, too, has a state, which
in general is not directly accessible by the agent. Only by
observations the agent gets indirect and partial information
about the state of the environment.

In total, the agent—environment system is a coupled dy-
namical system, which can be described by the following two
functions:

E : Ing x Stateg — Stater x Outg,

A :Iny X Statey — Statey X Outy,

where E is the function defining the dynamics of the envi-
ronment and A is the function defining the agent. These two
functions are coupled by setting Outg = In, and Outy
Ing. Typically, the elements of the input set of the agent are
called percepts, and the elements of the output set of the agent
actions. The agent function is often referred to as agent policy
(Fig. 1).

In order to define good or even optimal agent policies,
it is necessary to introduce the concept of goal or reward.
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An agent policy is optimal if it reaches a goal with minimal
resources or maximizes reward. Ans infelligent agent is now
defined as an agent which achieves goals in a wide range
of environments. This definition was extracted by Legg and
Hutter from more than 70 informal definitions occurring in
cognitive science and Al research (Legg & Hutter, 2007a).
In Legg and Hutter (2007b) they introduce the first general,
formal definition of the intelligence of a computational agent.
With the 7 -functional and its successors, e.g. for the incor-
poration of spatio-temporal aspects, see Orseau and Ring
(2012), there are finally formal definitions of the core concept
of artificial intelligence. The formal definition of intelligence
by Legg and Hutter is briefly discussed in section “Defining
Intelligence”.

Learning from Data: The Problem of
Induction

The problem of induction, which can be informally described
as extracting rules from examples, leads to the following
question:

*  What set of possible models of the data generating process
should a learning agent consider?

To answer this question in its full generality, it is neces-
sary to explore the notion of “all possible models” from
a mathematical and computational point of view, and dis-
cuss the question of effective learnability in the context of
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such generic model spaces. In Zimmermann and Cremers
(2012) we showed that within the learning framework in-
troduced by Solomonoff (1964a,b), Li and Vitanyi (2008)
the notion of “all possible models” cannot be defined in an
absolute sense, but only with regard to a reference proof
system. This dependence is used to establish a relation-
ship between the fime complexity of the data generating
process and the logical complexity—defined as the proof-
theoretic strength of a background axiom system—of the
algorithmic learning system, thus shedding new light on
the undecidability of the induction scheme introduced by
Solomonoff.

The incomputability of Solomonoff induction can be
traced back to the fact that the learning system does not
know how much time has passed between two observations,
i.e., how much time the data generating process has
“invested” in order to produce the next observation. Such
learning frameworks, where the generator and the learner
are suspended while the other one is busy, will be called
asynchronous learning frameworks. If one introduces a
synchrony condition, which couples the time scales of the
generator and the learner, one gets a synchronous learning
framework and we will show that within such a learning
framework effective and universal induction is possible, i.e.,
every effectively generated data sequence can be effectively
learned.

Learning Frameworks

Every formal analysis of learning has to define a framework
which specifies the exact type of learning problems
considered and what successful learning means within this
framework. The details of such a learning framework can
have major implications for the question which learning
tasks are solvable and which are not. In the following
we will introduce two learning frameworks and we will
show that these frameworks answer the same question—
are universality and effectivity compatible properties?—
differently.

The Asynchronous Learning Framework

A widely used model for analyzing sequential learning or
decision tasks is, for example, defined in Hutter (2005),
p. 126:

Definition 1 An agent is a system that interacts with an
environment in cycles k = 1,2, 3, .... In cycle k the action
(output) y, € Y of the agent is determined by a policy p
that depends on the I/O history y;x;---yr—1x¢—1. The envi-
ronment reacts to this action, and leads to a new perception
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(input) x; € X determined by a deterministic function ¢
or probability distribution p, which depends on the history
Y1X1- - Yk—1Xk—1Yk- Then the next cycle k + 1 starts.

Here X is a set containing all possible perceptions and
Y is a set containing all possible actions of the agent. If the
actions affect the future observations, then we call the above
model an asynchronous agent framework, and if the actions
are predictions which do not affect future observations, we
call it an asynchronous learning framework.

In these asynchronous frameworks the resources, espe-
cially time, needed for generating the perceptions or the ac-
tions and predictions by the environment (the data generating
process) or the agent are not modeled. This, for example,
does imply that an agent does not know whether a new
observation has arrived after 1s or after one billion years,
or, more importantly, that it has to wait longer and longer
for each new observation. This last implication means that
the time scales of the environment and the agent are not
coupled, that, in a way, they belong to different universes.
This decoupling of time scales is the reason why we call the
framework asynchronous, and we will see that this property
has deep implications.

Figure 2 illustrates the coupling of a learning system and
an environment in the asynchronous learning framework.

The following notions are based on definitions in Zimmer-
mann and Cremers (2012). Real-valued probabilistic learning
systems are a specific type of learning system within the
asynchronous learning framework:

Definition 2 A real-valued probabilistic learning system is
a function

A {0, 1) x {0, 1} — [0, 1]g, with A(x,0) + A(x, 1)
=1 forall x € {0, 1}*.

A real-valued probabilistic learning system has bits as
perceptions and the predictions are probabilities for the next
bit. One can extend the prediction horizon of A by feeding it
with its own predictions. This leads to a learning system A®
which makes probabilistic predictions for the next k bits (xy
is the concatenation of strings x and y):

AV = A,

AT, y1) = AP (x, y) - Axy, 1), x € {0, 1}, y € {0, 1},

AF D (x,y0) = AP (x, y) - A(xy, 0).

Finally, the learnability of an infinite bit sequence s (s;.; is
the subsequence of s starting with bit i and ending with bit
j) is defined as follows:
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Fig. 2 Asynchronous learning framework

Definition 3 An infinite bit sequence s is learnable in the
limit by the probabilistic learning system A, if for all € > 0
there is an nq so that for all n > ny and all kK > 1:

k
A( )(slznv Sn+1:n+k) >1—e.

This type of learnability criterion (learning in the limit) only
requires that the learning system eventually will be nearly
correct, but says nothing about the prediction accuracy on
initial segments of the bit sequence.

Solomonoff Induction

The induction scheme introduced by Solomonoff (1964a,b)
can be seen as a real-valued probabilistic learning system
within an asynchronous learning framework. Solomonoff
induction can learn (in the sense of Definition 3) all bit
sequences generated by Turing machines. In this sense it
is universal. In the following we will analyze the incom-
putability of Solomonoff induction and discuss why this
incomputability cannot be resolved within the asynchronous
learning framework.

The possible environments for Solomonoff induction can
be described as programs p (represented as finite binary
strings) executed by a fixed universal Turing machine U.
Specifically, the universal Turing machine U has a one-way
read-only input tape, some work tapes, and a one-way write-
only output tape (such Turing machines are called mono-
tone). The choice of the specific universal Turing machine
affects space complexity only by a constant factor and time
complexity at most by a logarithmic factor (Arora & Barak,
2009). Since the resources for generating the percepts are

not modeled in an asynchronous learning framework, these
effects are irrelevant and we can use any universal Turing
machine as our reference machine. The program strings are
chosen to be prefix-free, i.e. no program string is the prefix of
another program string. This is advantageous from a coding
point of view, and does not restrict universality (Li & Vitanyi,
2008).

A program p is a generator of a possible world, if it outputs
an infinite stream of bits when executed by U. Unfortunately,
it is not decidable whether a given program p has this well-
definedness property. This is the reason why Solomonoff in-
duction is incomputable: the inference process uses the whole
set of programs (program space) as possible generators, even
the programs which are not well-defined in the above sense. It
follows that either one restricts the model space to a decidable
set of well-defined programs, which leads to an effective
inference process but ignores possibly meaningful programs,
or one keeps all well-defined programs, but at the price of
necessarily keeping ill-defined programs as well.

The Synchronous Learning Framework

We will now introduce a learning framework where the
learning system gets information about the time the data
generating process has used in order to produce the next
observation. This concept is inspired by an analysis of real-
world sequential learning situations, where both the environ-
ment and the learning system are not suspended while the
other one is busy. But first we need the notion of the generator
time function, generator function for short, of a program p
(see Zimmermann & Cremers 2012):
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Definition 4 The generator time function GE,U ) N —
NU{oo} of a program p wrt. the universal reference machine
U assigns every n € N the number of transitions needed to
generate the first n bits by the reference machine U executing
p. If ng is the smallest number for which p does not generate
a new bit, then G;U)(n) = oo for all n > ny.

Further we call two programs p and g observation equivalent
if they generate the same bit sequence s. The equivalence
class of all programs corresponding to an infinite bit sequence
s will be denoted by [s]. According to the Oxford Dictionar-
ies Online (2013), synchrony can be defined as:

The state of operating or developing according to the same time
scale as something else.

This is a good description of what we have in mind, so we call
bit sequences having the following property synchronous:

GY )
n

Definition 5 s is synchronous (wrt. U) if limsup,,_, .
< oo for at least one p € [s].

As stated in section “Solomonoff Induction”, the time com-
plexity between different universal Turing machines can vary
by a logarithmic factor, so we have to define the notion of
synchrony relative to a fixed universal Turing machine U. A
bit sequence s is called synchronous, if there is a universal
Turing machine U so that s is synchronous wrt. U.

Synchrony entails that the time scales of the learning
system and the environment are coupled, that they cannot
ultimately drift apart. As long as one not assumes a mali-
cious environment, i.e., an environment that decelerates the
computing speed of the learning system more and more,
synchrony seems to be a natural property. A setting where
observable bit sequences can be assumed to be synchronous
will be called a synchronous learning framework.

Effective Universal Induction

We will now show that the problem of universal induction in
the synchronous learning framework is effective and discuss
implications of this result. The first step is formulated by the
following theorem:

Theorem 1 All synchronous bit sequences are learnable in
the limit by an effective learning system.

Proof This can be shown straightforward by using the
generator-predictor theorem proved in Zimmermann and
Cremers (2012), which states that a bit sequence s is learnable
in the limit by a learning system A(XY), if X' (a background
axiom system) proves the totality of a recursive functions
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which dominates the generator function of at least one
program in [s].

Now combining the synchrony condition wrt. a specific
universal Turing machine and the fact that the time com-
plexities of different universal Turing machines vary at most
by a logarithmic factor, it suffices to find a background
axiom system which proves the totality of a function which
dominates ¢ - n - log(n) for all positive constants c. Because
the function > will eventually be greater than ¢ -n -log(n) for
all fixed c, and the axiom system RC A (Recursive Compre-
hension Axiom, see Zimmermann & Cremers 2012) proves
the totality of n?, the effective learning system A(RC Ag) will
learn all synchronous bit sequences in the limit. O

The next idea is that via a process called clockification an
arbitrary computable bit sequence can be transformed into
a synchronous one (see Fig.3). Clockification is a process
by which a learning system extends in regular time inter-
vals (measured by its internal transitions) an observed bit
sequence s by inserting “clock signals” (coding a clock signal
by “00” and the original observed bits by “10” and “11”)
marking the passing of time. The resulting bit sequence is
a synchronous one.

Theorem 2 Within a synchronous learning framework, all
effectively generated bit sequences can be effectively learned
in the limit.

Proof By combining clockification and Theorem 1 we will
get the desired result. O

Caveats

The previous section has established an important result:
all effective generators can eventually be effectively learned
within the synchronous learning framework. This implies,
for example, that if a universe can be described by a Turing
machine, and we assume the assumptions of the synchronous
learning framework as valid, then there is an effective learn-
ing system A which would converge to the “theory of every-
thing” (TOE). This is an interesting result, but here is a list of
caveats which help to put this theorem into perspective:

1. A converges to the TOE, but we will never know when
this has happened or how close the current predictions are
to the truth.

2. The true model probably is not useful, learnability and
predictability fall apart, i.e., the true model could be
extremely complex, its evaluation would take so long that
its predictions would only arrive after the fact.

3. Even having a TOE does not mean that one can answer all
questions: there are cellular automata like “Game of Life”
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Fig. 3 Clockification: using an internal clock transforms all computable bit sequences into synchronous bit sequences

(Berlekamp, Conway, & Guy, 2001) or “Langton’s Ants”
(Langton, 1986) which can be seen as possible universes,
and the transition rules define the TOE of these universes.
But questions like “Are there self-reproducing patterns?”
or “Does this ant build a highway (i.e., a certain repetitive
pattern)?” cannot be answered in general, despite the fact
that we know the TOE of the “Game of Life” and the ant
world.

4. Finally, the information content of the universe could be
infinite: imagine a Turing machine which has a work
tape initialized to an infinite random bit sequence. Then
the transition process is effective, but the output stream
could still be incomputable by using ever more bits of the
random bit sequence.

The second caveat can be termed the “postdiction problem”:
one can in principle predict the future exactly, but the re-
sources needed to compute the predictions are prohibitive:
they would arrive long after the predicted event has happened.
This situation, where the notions of determinism and pre-
dictability fall apart, is discussed, for example, in Rummens
and Cuypers (2010).

In summary, the compatibility of universality and effec-
tiveness of inductive inference within the synchronous learn-
ing framework is an interesting theoretical finding, but has no
immediate practical implications. However, it can shed some
light on the path towards learning systems which are both
efficient and extremely general at the same time.

The Structure of Uncertainty

One central aspect of learning from experience is the rep-
resentation and processing of uncertain knowledge. In the
absence of assumptions about the world, there is no nontrivial
logical conclusion which can be drawn from the past on any
future event. Accordingly, it is of foundational interest to ana-
lyze the structure of uncertainty as a question in its own right,
and it has spawned a subfield of research within artificial
intelligence and philosophy. A plethora of approaches has
emerged over the last century to address this question, for
example, Dempster—Shafer theory (Dempster, 1967; Shafer,
1976), Possibility theory (Dubois & Prade, 1988; Dubois,
2006), Revision theory (Gérdenfors, 1992), Ranking theory
(Spohn, 1999, 2009), and non-monotonic logic (Ginsberg,
1987). A survey and discussion of many of the existing
approaches is given in Huber and Schmidt-Petri (2009).

In the following we discuss an approach to reasoning
under uncertainty by introducing a small axiom system de-
scribing necessary conditions for uncertainty measures. Fur-
thermore, this axiom system does not define the structure of
uncertainty explicitly, e.g. that uncertainty can be measured
by one real number, but entails the algebraic structure of
uncertainty values. This approach, which can be called al-
gebraic uncertainty theory, enables a unifying perspective
on reasoning under uncertainty. A good overview and a
discussion with examples of this algebraic approach can be
found in Arnborg (2016).
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Formalizing Uncertainty

First we have to discuss a subtle issue of terminology. Above
we have used the notion “uncertainty values” to denote
generalized truth values. Unfortunately, there is the following
problem when using this term in a formalized context: no
uncertainty about a proposition can be identified with sure
knowledge, but maximal uncertainty about a proposition is
not certainty with regard to the negation of the proposition.
The domains of truth values we want to axiomatize contain
a greatest and a least element, where the greatest element
should represent certainty and the least element impossibility,
i.e. certainty of the negated proposition. For this reason, we
adopt the notion “confidence measure” instead of uncertainty
measure in the following definitions and axioms.

The Algebra of Truth Bearers

Before delving into the structure of uncertainty, we have to
define the objects and their relations which are capable to
take on truth values, the truth bearers. In a context of crisp
events, i.e., after the fact it is unambiguously decidable if
the event has occurred or not, the algebra of truth bearers
is normally considered to be a Boolean algebra, but when
truth bearers are not crisp, then another proposition algebra
has to be considered, i.e., a fuzzy logic where the law of
complementation is not valid: x V —x # 1, or quantum logic.
The propositional algebra in quantum logic is “formally
indistinguishable from the calculus of linear subspaces of a
Hilbert space with respect to set products, linear sums, and
orthogonal complements” corresponding to the roles of and,
or, and not in a Boolean algebra. These linear subspaces
form orthomodular lattices which in general do not satisfy the
distributivity laws, see Padmanabhan and Rudeanu (2008),
page 128ff. The investigation of uncertainty measures for
non-Boolean proposition algebras is open to future research.

Uncertainty: The Boolean Case

A conditional confidence measure for a Boolean Algebra
U and a domain of confidence values C is a mapping I" :
Ux U\ {Ll} — C.Let A, B € U, then the expression
I" (A|B) reads: “the confidence value of A given B (wrt. I")”.
The domain of confidence values is partially ordered and has
a greatest () and a least (1) element. A confidence space
is a triple (U, I'", C). One of the following axioms (Extensi-
bility) for confidence measures deals with relations between
confidence spaces defined over different Boolean algebras.
Thus it is necessary to introduce a set of confidence spaces all
sharing the same domain of confidence values. Such a set of
confidence spaces we will call a confidence universe, and the
following axiom system is concerned with such confidence
universes, and not single confidence spaces. This seemingly
technical shift in perspective is essential for the formalization
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of natural properties like extensibility, which plays a crucial
role as an intuitive axiom complementing Cox’s assumptions.

In Zimmermann (2012) seven axioms are introduced,
which can be grouped in three connective axioms, two order
axioms, and two “infrastructure axioms,” where the connec-
tive axioms concern properties of the logical connectives,
the order axioms relate the order structures of a proposition
algebra and the confidence domain, and the infrastructure
axioms deal with the combinability of confidence spaces
and a closure property. Here we only state two of the seven
axioms as examples; for a complete list of axioms and a
discussion, see Zimmermann (2012).

Axioms for Uncertainty
In the following, we use I'(A) as an abbreviation for
r'(A|T).

(Not) For all (Uy, I, C) and (_Uz, I, C)i
If I (Ay) = I3(A3), then I (Ay) = [3(Ay).

The axiom Not expresses that the information in the
confidence value of a statement A is sufficient to determine
the confidence value of A. This is justified by the requirement
that every piece of information which is relevant for the
confidence value of A is relevant for the confidence value
of A and vice versa.

The other two connective axioms concern similar proper-
ties for the conjunction of two propositions. The next axiom
states that if a proposition A implies a proposition B (the
implication relation defines an order relation on a proposition
algebra), denoted by A < B, then the confidence in B is at
least as high as the confidence in A.

(Ordery) Forall (U,I',C)andall A,B € U: If A < B,
then I'(A) < I'(B).

The order axioms connect the implication ordering of
the proposition algebra with the ordering on the confidence
domain, where Order; specifies the forward direction and a
second order axiom specifies the backward direction (Fig. 4).

The infrastructure axioms require the extensibility of do-
mains of discourse, i.e., two independently defined confi-
dence spaces shall be embeddable into one frame of ref-
erence, and a closure property of conditioning which as-
sures that for every confidence measure conditioned on some
background knowledge there is an equivalent unconditional
confidence measure.

For the justification of the axioms it is important to inter-
pret the expression I" (A|B) as: “all that can be said about the
confidence of A given B (wrt. I").” Given this interpretation,
the common justification of the connective axioms is that a
violation of these axioms will necessarily lead to a loss of
relevant information. Note that the axioms use only equations
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r(e)

Fig. 4 Ordered confidence values v and w with corresponding propo-
sitions in a suitably chosen confidence space (U, I', C)

and inequalities between confidence values, because there are
no algebraic operations defined on the domain of confidence
values yet.

It is now possible to characterize the algebraic structure
of a confidence domain as the [0, 1]-interval of a partially
ordered ring. Rings are algebraic structures which generalize
fields. For example, the real numbers with addition and
multiplication form a field. In a field all elements except zero
have a multiplicative inverse, in a ring this is not required,
i.e., a ring can contain elements other than O which are not
invertible. Confidence measures satisfy the analogs of the
axioms of probability, but with regard to the ring operations.
This is stated by the following theorem:

Ring Theorem The domain of confidence values C of a
confidence universe satisfying the connectivity, order, and
infrastructure axioms can be embedded into a partially or-
dered commutative ring. All confidence measures I" of the
confidence universe satisfy:

rm=1, (1)
IF(AvB) =A@ (B, ifAAB=L1, (2
I'(AANB)=T(AIB)® '(B). (3)

In the next chapter we discuss a model for a general compu-
tational agent called AIXI, which was introduced by Hutter
(2005). This agent satisfies certain optimality conditions
with regard to its long-term behavior within the class of
computational agents. AIXI combines Solomonoff induction
and reinforcement learning, which captures also interactions
of an agent with the environment generating its perceptions.
AIXI, like Solomonoff induction, uses the Bayesian frame-
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work for representing and processing uncertainty, which does
not utilize the full generality of uncertainty calculi discussed
in this chapter, like infinitesimal or incomparable uncertainty
values, but Bayesian inference is a possible model of the
axioms introduced in Zimmermann (2012). How uncertainty
calculi using the full expressiveness of confidence domains
can be combined and integrated with the AIXI agent model
is open to future research.

A General Agent Architecture: AIXI

The framework of universal induction introduced by
Solomonoft only treats the modeling and predicting aspect of
learning, but the agent does not act based on its predictions,
so in the Solomonoff framework the environment affects the
learning agent, but not vice versa. In this sense, the loop
between agent and environment is not closed (no senso-
motoric loop). Enhancing the Solomonoff framework in
order to incorporate the possibility of actions leads to a
framework introduced by Hutter (2005), which can be seen
as an integration of the reinforcement learning framework
(Sutton, 1984) and the framework of Solomonoff. Now
the agent acts based on its predictions, and these actions can
affect the environment and change its future course, thus also
changing future observations of the agent. In order to define
the quality of an agent policy, we need generalization of the
loss function used to evaluate the predictions of learning
agents. Success is now defined by the environment and is
the second feedback channel, besides the percepts, from the
environment to the agent.

The search for optimal policies in this framework leads
to a generalization of Solomonoff induction, and agents
following such an optimal policy are called AIXI agents.
AIXI is a reinforcement learning agent which maximizes
the expected total rewards received from an environment. It
simultaneously considers every computable environment as
a possible generator of its perceptions. In each time step, it
looks at every computable environment and evaluates how
many rewards that environment generates depending on the
next action taken. The expected rewards are then weighted
by the subjective belief that this program constitutes the true
environment. This belief is computed from the length of the
program describing the environment: longer programs are
considered less likely, in line with Occam’s razor. AIXI then
selects the action that has the highest expected total reward
in the weighted sum of all these programs.

However, in Leike and Hutter (2015) it is shown, that a
bad prior for inductive inference can affect the agent behavior
indefinitely, because it does not sufficiently incite the agent
to explorative behavior. Accordingly, no theorem compara-
ble to the invariance theorem for Solomonoff induction is
available, and the choice of the reference machine becomes
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crucial. Unfortunately, investigations into suitable reference
machines are still in an early stage and have not yet resulted
in a clear candidate for a reference machine on which to base
a general cognitive agent.

Defining Intelligence

Legg and Hutter (2007b) used the combination of a general
reinforcement learning agent and Solomonoff induction to
define an intelligence functional 7" by assigning every agent
policy 7 an intelligence score describing its expected reward
averaged over all possible computable environments. It is an
attempt to translate their informal definition of intelligence,
“the ability to achieve goals in a wide range of environments,”
in a quantitative intelligence measure.

Let X be a set of perceptions, R be a set of rewards,
and ) be a set of actions of an agent. A deterministic agent
policy assigns to all possible sequences of percepts from
X and rewards from R an action from ). A probabilistic
policy assigns to all percept/reward sequences a probability
distribution on the action set ). The total reward V), (;) of a
policy 7 for an environment p is the accumulated reward an
agent executing policy i in environment p collects during its
lifetime.

Now the computable environment i can be seen as a
binary program running on a suitable universal Turing ma-
chine used as a reference machine. Solomonoff induction
assumes that the prior probability of an environment w is
proportional to 27"/, where || is the length of the binary
program describing p (Li & Vitdnyi, 2008). Thus simpler
environments, meaning that there is a shorter program to
describe them, get a higher prior probability. These prior
probabilities are used to define the expected reward of policy
7 over all computable environments:

Y(n) = Zz—‘“' -V (),

nek

where E is the set of all computable environments. Legg
and Hutter call 7 (;r) the universal intelligence of an agent
using policy . The first aspect of their informal definition of
intelligence, “achieving goals,” is encoded in the value V,, ()
of policy w with regard to each environment, the second
aspect, “in a wide range of environments,” is represented by
averaging over all computable environments. This measure
was the first formal definition of the intelligence of a general
computational agent, and thus represents an important mile-
stone in the foundations of artificial intelligence.
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The Quest for a Standard Reference Machine

The results of Leike and Hutter (2015) made it abundantly
clear that in order to make progress in understanding the
simplicity or complexity of finite objects it is necessary to
reach a consensus on a meaningful reference machine, i.e.,
which operations are available and executable in unit time.
Such a consensus on a reference machine could serve as a
standard for measuring descriptive and computational com-
plexity. Like today’s physical units, such a standard reference
machine would contain contingent elements, but if it is cho-
sen in a “natural” way it could nevertheless be tremendously
useful.

Reference Machines and Initial Complexity

In order to analyze the computational complexity (or sim-
plicity) of a computational object (algorithm, model, agent),
it is necessary to define a reference machine which executes
the computations. The first precisely defined mathematical
model of computation, an abstract machine, was introduced
by Alan Turing in 1936. There were many different attempts
to define a model of computation, for example, the A-calculus
or Markov algorithms, but they were all found to equiv-
alent to or weaker than Turing machines. This led to the
formulation of the Church—Turing thesis, that all conceivable
mathematical models of computation are equivalent to the
Turing machine. The thesis found widespread acceptance,
and today Turing machines are seen as defining an absolute
notion of computability. Turing also showed that there are
incomputable problems, of which the halting problem is the
most famous. Another important discovery was the existence
of universal Turning machines, i.e., Turning machines which
are capable to simulate all other Turing machines. For a
discussion of the Church-Turing thesis, universal Turing
machines, and related topics, see Herken (1994).

If one is only interested whether a problem can be solved
by computation or not, one can use any universal Turing
machine U as a reference machine and if there is a program
for U which solves the problem, then the problem is com-
putable, otherwise not. So for questions of computability any
universal Turing machine can be used and will lead to the
same answers. But things become much more complicated
when one is not only interested in computability, but also
in complexity, i.e. the resources needed to actually execute
the computations. Typically, one is interested in time and
space complexity, and a central theorem relates the time and
space complexity of a universal Turing machine to any Turing
machine (Arora & Barak, 2009):
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Theorem There exists a TM U such that for every x, p €
{0, 1}*, with U(x, p) = M,(x), where M, denotes the TM
represented by p.

Furthermore, if M), halts on input x within T steps, then
U (x, p) halts within C-T -log(T) steps, where C is a number
independent of |x| and depending only on M,’s alphabet size,
number of tapes, and number of states.

This means if one is interested only in the general growth
of the time complexity with the input length, i.e., with the
asymptotic behavior, a suitably chosen UTM can serve as
a reference machine for analyzing the time complexity of
computational problems. Current computational complexity
theory tries to classify problems with regard to the asymptotic
complexity, and for this goal the above specification of a
reference machine is sufficient. For example, one of the most
important problem classes, P, i.e., the problems solvable in
polynomial time, does not change when one changes from
one UTM Uj to another UTM U,, provided they can simulate
all other TM’s within polynomial time. This has led to a very
successful theory of computational complexity, which can
help to classify the hardness of a computational problem.
The famous P = NP problem is one of the major open
questions of this field, and problems which can be shown to
be NP — hard are generally believed to have no efficient
algorithms to solve them (Arora & Barak, 2009).

For questions aiming at the asymptotic growth of needed
resources depending on the size of the input, this is a suitable
resolution of computational complexity. But for questions
regarding the computational complexity of a finite problem,
like the computational complexity of a good strategy for a
game like Go, or for deciding which of two binary strings has
a shorter description, we need to look closer at the reference
machine.

Iterated Boolean Circuits

We now introduce a proposal for a reference machine in-
spired by the basic functionality of current computing de-
vices, but also by striving for mathematical simplicity. Cur-
rent computing devices can be seen as the iterative appli-
cation of a hardwired Boolean circuit to a vector of bits.
Accordingly, an iterated Boolean circuit is defined as a
Boolean function on B”, the set of n-bit vectors, which then
is applied iteratively, generating a sequence of bit vectors.
Additionally, the Boolean circuit is build entirely of NAND-
gates, i.e., the Boolean function which is false if both inputs
are true and otherwise true. The NAND-gate is a Boolean
base, so all Boolean functions can be expressed entirely with
NAND-gates. Interestingly, a similar machine model was
already defined by Alan Turing in a National Physical Labo-
ratory Report “Intelligent Machinery” published in 1948. He
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Fig. 5 A Boolean circuit
consisting of 4 NAND-gates

called networks of binary nodes connected by NAND-gates
“Unorganized Machines,” and introduced them as a possible
model for information processing in the human brain. This
report is reproduced in Cooper and Leeuwen (2013), pp. 501—
516.

These iterated Boolean circuits are now used to generate
sequences of output bits, and for an observed bit sequence the
learning problem is to find a small (measured by the number
of NAND-gates) Boolean circuit which, when iterated, gen-
erates the observed bit sequence. As an example, consider
the following bit sequence: 00010001000. There is a Boolean
circuit with 4 NAND-gates which generates this sequence,
see Fig.5. The leftmost bit is considered the output bit. In
Fig. 6 the sequence of output bits generated by the Boolean
circuit after 1 and after 11 iterations is depicted. Finally, when
the output sequence matches the observed sequence, we can
just continue with the iterated applications of the Boolean
circuit to generate predictions, see Fig.7. In this case, the
prediction for the 12th bit is “1.”

The problem of finding a generating Boolean circuit
matching an observed sequence can be seen as an inversion
problem. Inversion problems often lead to a combinatorial
search space, where no exhaustive strategy is applicable. We
now discuss an approach to deal with such combinatorial
search problems based on recent advances in machine
learning.

Outlook: Search in Circuit Space

The number of possible circuits grows like 200 je., super-
exponentially fast with the number n of gates. Even for small
numbers (like 10) an exhaustive search is not possible any-
more. The current advancements in combining deep learning,
a variant of artificial neural networks using many hidden
layers, with reinforcement learning can lead the way how
to explore huge combinatorial search spaces with limited
resources (Silver et al., 2018). In March 2016 a Go program
based on deep learning and a self-play loop won against
one of the best professional Go-players. This progress of
Computer Go was not expected within the next decade, which
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Fig. 6 Left: output sequence
after one iteration. Right: output
sequence after 11 iterations is
matching the observed sequence

000100010001 =— | 1 0 1

e

Prediction

Fig. 7 The twelfth bit is the prediction generated by the iterated
Boolean circuit

is a reason to hope that the basic principles of AlphaGo, and
its subsequent generalization AlphaZero, can be applied to
other combinatorial search problems as well. The core idea
is to use deep reinforcement learning to focus the exploration
of combinatorial search spaces on the most promising parts
(Fig. 8).

By introducing operators on circuit space (like adding a
gate, removing a gate, rewire a connection,...) the inversion
problem can be transformed into a reachability problem for
graphs and will thus be accessible to AlphaZero-like search
strategies (Fig. 9).

Conclusions and Outlook

Despite foundational results on learnability within the syn-
chronous and asynchronous learning frameworks, an axiom-
atization of uncertain reasoning, a formal definition of intel-
ligence, and many results on general reinforcement learning
agents, there is still no unifying axiomatization of general
cognitive agents comparable, for example, to the axiomatic
foundations of probability theory or set theory. Especially the
topics of a standard reference machine and cognition with
bounded resources have to be explored much further in order
to reach a meaningful and integrated foundational framework
for artificial intelligence.
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Nevertheless, the theoretical and practical advance of arti-
ficial intelligence has reached a state where ethical questions
and the impact on society become pressing issues. In the
following outlook we will discuss the emerging landscape of
ethical and social questions arising from the expansion of Al
systems to increasingly critical applications.

Algorithmic Accountability, Transparency, and
Fairness

The increase of computational resources and available data
on the one side, and the latest advancements in machine
learning, notably deep learning, on the other side have now
reached a critical level where Al systems start to leave highly
specialized and controlled environments and become part—
now or in the foreseeable future—of our daily lives, on an
individual and a societal level. Examples are autonomous
driving, natural language processing, and applications in the
judicial system. The prospect of general Al systems which
are not limited to narrow applications has led to growing
concerns about safety and trustworthiness. See Everitt, Lea,
and Hutter (2018) for a comprehensive review of current
literature.

The potential impact of Al applications on individuals and
society as a whole leads to an increased need for transparency
and accountability of Al systems which keeps pace with
the technical development. For example, autonomous driving
can lead to moral dilemmas when during an accident the
loss of human life becomes unavoidable, but the autonomous
driving system still can influence whose life will be endan-
gered (Awad et al., 2018). Natural language processing can
be used to facilitate fraud or to wield political influence, e.g.
via bots in social networks (Simonite, 2019). One especially
controversial decision support system already used by the
US judicial system is COMPAS, a system which assesses
the likelihood of a defendant becoming a recidivist. These
risk assessments can inform decisions about who will be set
free and who is not. Even if the race of the defendant is
not part of the variables considered by COMPAS, reports
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Fig. 8 The search strategy of [ J
AlphaGo

Fig. 9 The exploration of
Boolean circuits using an
AlphaZero-like search strategy
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have emerged that COMPAS risk levels are racially biased
(Angwin, Larson, Mattu, & Kirchner, 2016). A closer look
shows that the exact definition of unbiasedness or fairness
is instrumental, and different definitions can lead to different
outcomes (Corbett-Davies, Pierson, Feller, & Goel, 2016). In
this case, no decision system can be simultaneously unbiased
or fair with regard to all desirable definitions of unbiasedness
or fairness, and only an emerging consensus on which defini-
tion is the “right” or the “least problematic” one can mitigate
this dilemma.

From Association Learning to Causal Learning
The need for algorithmic transparency, accountability, and

unbiasedness adds new urgency to a topic which has af-
fected machine learning and statistics from the beginning:

the learned relationships are in general only association re-
lations and not causal relations, i.e., the observed covariation
between two variables A and B is caused by an unknown third
variable C. When actions based on predictions significantly
feed back into the observed system, association learning
cannot answer important questions arising with regard to the
consequences of the executed actions. In order to develop
and apply standards of transparency, accountability, and un-
biasedness, the result of learning has to identify the causal
factors that determine the predictions. The notion of causality
and the detection of causal relationships is a longstanding
problem in machine learning and statistics, but recently there
has been some progress, most notably the theory of causal
inference by Pearl, Glymour, and Jewell (2016), but also attri-
bution science (Otto, 2017) and causal deconvolution (Zenil,
Kiani, Zea, & Tegnér, 2019) are interesting developments.
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Attribution science, or probabilistic event attribution (PEA),
is an emerging field that assigns probabilities to possible
causes for observed effects, especially in the context of
climate change, but is still in an early stage and the validation
of its claims is subject to further research.

We are convinced that effective universal induction can
play an important role in causal learning by identifying
generators of observed data and not only associations within
the observed data. The importance of universal induction
was emphasized by one of the founding figures of artificial
intelligence, Marvin Minsky, during a discussion panel in
2010:

“It seems to me that the most important discovery since
Godel was the discovery by Chaitin, Solomonoff, and Kol-
mogorov of the concept called Algorithmic Probability which
is afundamental new theory of how to make predictions given
a collection of experiences and this is a beautiful theory,
everybody should learn it, but it has got one problem, that is,
that you cannot actually calculate what this theory predicts
because it is too hard, it requires an infinite amount of work.
However, it should be possible to make practical approxi-
mations to the Chaitin, Kolmogorov, Solomonoff theory that
would make better predictions than anything we have today.
Everybody should learn all about that and spend the rest of
their lives working on it.”
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