Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 394))

  • 290 Accesses

Abstract

Evolving systems emerge from the synergy between systems with adaptive structures, and the recursive methods of machine learning. Evolving algorithms construct models and derive decision patterns from stream data produced by dynamically changing environments. Different components can be chosen to assemble the system structure, rules, trees, and neural networks being amongst the most prominent. Evolving systems concern mainly with time-varying environments, and processing of nonstationary stream data using computationally efficient recursive algorithms. They are particularly suitable for on-line, real-time applications, and dynamically changing situations, and operating conditions. This chapter gives an overview of evolving systems focusing on the model components, learning algorithms, and illustrative applications. The aim of to introduce the main ideas and a state of the art view of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelov, P., Filev, D.: An approach to Online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 484–498 (2004)

    Article  Google Scholar 

  2. Angelov, P., Kordon, A.: Adaptive inferential sensors based on evolving fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 529–539 (2010). https://doi.org/10.1109/TSMCB.2009.2028315

    Article  Google Scholar 

  3. Angelov, P., Ramezani, R., Zhou, X.: Autonomous novelty detection and object tracking in video streams using evolving clustering and takagi-sugeno type neuro-fuzzy system. In: IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence), pp. 1456–1463 (2008)

    Google Scholar 

  4. Er, M., Wu, S.: A fast learning algorithm for parsimonious fuzzy neural systems. Fuzzy Sets Syst. 126(3), 337–351 (2002)

    Article  MathSciNet  Google Scholar 

  5. Filev, D., Tseng, F.: Novelty detection based machine health prognostics. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 193–199 (2006)

    Google Scholar 

  6. Fritzke, B.: Growing cell structures: a self-organizing network for unsupervised and supervised learning. Neural Netw. 7, 1441–1460 (1994). https://doi.org/10.1016/0893-6080(94)90091-4

    Article  Google Scholar 

  7. Hisada, M., Ozawa, S., Zhang, K., Kasabov, N.: Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol. Syst. 1, 17–27 (2010)

    Article  Google Scholar 

  8. Ikonomovska E., G.J.R., Gjorgjevik, D.: Regression trees from data streams with drift detection. In: Proceedings of the 12th International Conference on Discovery Science, DS ’09, pp. 121–135. Springer-Verlag, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04747-3_12

  9. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer-Verlag, New York Inc, Secaucus, NJ, USA (2007)

    MATH  Google Scholar 

  10. Kasabov, N., Song, Q.: DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  11. Leite, D., Costa, P., Gomide, F.: Granular approach for evolving system modeling. In: Hullermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design, Lecture Notes in Computer Science, vol. 6178, pp. 340–349. Springer Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_35

  12. Lemos, A., Caminhas, W., Gomide, F.: Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis. In: Hullermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design, Lecture Notes in Computer Science, vol. 6178, pp. 360–369. Springer Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_37

  13. Lemos, A., Caminhas, W., Gomide, F.: Evolving intelligent systems: methods, algorithms and applications. In: Ramanna, S., Jain, L., Howlett, R. (eds.) Emerging Paradigms in Machine Learning. Springer (2013)

    Google Scholar 

  14. Lemos, A., Gomide, F., Caminhas, W.: Fuzzy evolving linear regression trees. Evol. Syst. 2(1), 1–14 (2011). https://doi.org/10.1007/s12530-011-9028-z

    Article  Google Scholar 

  15. Lemos, A., Gomide, F., Caminhas, W.: Multivariable gaussian evolving fuzzy modeling system. IEEE Trans. Fuzzy Syst. 19(1), 91–104 (2011). https://doi.org/10.1109/TFUZZ.2010.2087381

    Article  Google Scholar 

  16. Leng, G., McGinnity, T., Prasad, G.: An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets Syst. 150(2), 211–243 (2005)

    Article  MathSciNet  Google Scholar 

  17. Lima, E., Hell, M., Ballini, R., Gomide, F.: Evolving fuzzy modeling using participatory learning. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications. Wiley-Interscience, IEEE Press (2010)

    Google Scholar 

  18. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  19. Macias-Hernandez J., A.P., Zhou, X.: Soft sensor for predicting crude oil distillation side streams using Takagi Sugeno evolving fuzzy models. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 3305–3310 (2007)

    Google Scholar 

  20. Rosa R., G.F.D.D., Skrjanc, I.: Evolving neural network with extreme learning for system modeling. In: IEEE Evolving and Adaptive Intelligent Systems, pp. 11–14 (2014)

    Google Scholar 

  21. Rubio, J.: Sofmls: Online self-organizing fuzzy modified least-squares network. IEEE Trans. Fuzzy Syst. 17(6), 1296–1309 (2009). https://doi.org/10.1109/TFUZZ.2009.2029569

    Article  Google Scholar 

  22. Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Trans. Fuzzy Syst 16(6), 1439–1449 (2008)

    Article  Google Scholar 

  23. Williamson, J.: Gaussian ARTMAP: A neural network for past incremental learning of noisy multidimensional maps. Neural Netw. 9(5), 881–897 (1996)

    Article  Google Scholar 

  24. Yager, R.: A model of participatory learning. IEEE Trans. Syst. Man Cybern. B Cybern. 20(5), 1229–1234 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Gomide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomide, F., Lemos, A., Caminhas, W. (2021). Evolving Systems. In: Lesot, MJ., Marsala, C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-54341-9_15

Download citation

Publish with us

Policies and ethics