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In this paper we try to give some contributions, in order to
solve the problem of system identification (or minimal realization), for
various classes of systems. In order to give some more insight into this
problem, we shall define some abstract versions of the minimal realization
process. The models we discuss are used for the study of subsets (or .
subcatagories)in which thereexists the minimal realization and it is unique.

In section 1 we recall the minimal realization problem and some
of its propertiecs.

Section 2 develops the first model, which is based on equivalence
relations. The sets which support winimal realization are in connection with
the systems of rcpresentants of an cquivalence relation. This mod21 cores-
ponds to the external behaviour point o7 vicw.

In section 3 we give a model basad on ordering relations. This version
corresponus to the qualificative “minimal". Soth miodels in sections 2 and 3
include systeins identification. This is not however, the only example ; one
can find other, as the "integer part" function and the "congruence modulo n".

The most powerful model seemé to be thie categorical one, which is
introduced in section 4. The admissible subcategorizs are those one for which
the inclusion functor admits an adjoint.

Some conclusions and further developments of the subject are discus-

sed in the last section.



1 - Introduction

The problem of system identification (or minimal realization) is
of great importance in studying various classes of systems. Usually this
problcin states as follows ; given some bzhaviour, one looks for a system
(in some class) which have this bahaviour and whose charactaeristics are the
best ones, in some sense to be specified. The term “minimal", for example,
denotes some "optimality" of structure", of the system under consideration.

This problem was put first for linear systems, and then generalized
for deterministic dynamic systems (see [ 2] ).

Later on, the categorical approach to systems theory permitted to
include a broad class of systems, as probabilistic or fuzzy systems (see [ 1] )
Somemininal realization theorems were proved, such that in some special condi-
tions the minimal realization exists (sea[3 7], [67 ).

In recent years (see [ 9] ) there was proved that an equivalence
exists between the category of reachable systems with a given behaviour, and
some category of equivalence relations on the input space. In this way, the
minimal realization corresponds to the Nerode equivalence (a wellknown result ).
The new fact is that this equivalence is the supremum of all other relations
in that category.

Thinking at the minimal realization at someprocess of "best approxima-
tion", we can rastate this problem and generalize it. If the class of all
dynamical systeias is given, we shall look for the identification of a system
in a given subclass which will be the "best one".

In the next sections we shall describe three models of general system

identification. These mbdels will include classical minimal realization, but



also other situations, as rings of equivalence classes, for example.
We shall briefly skctch the minimal realization problem for dynamic
deterministic systems.
Such a system will be a complex
S - \-Lx, U, ¥, 8, @. "0}
where X, U, Y are arbitrary sets called, respectively, the state-space,

input-space and output-space.

The dynamics 5 is amap & : X x U —> X, and the output function

is g : X—2o Y,

The system Y s initialized, and Xg € X is its initial state.

We can build the category of dynamical systems, denoted by Sys‘ The objects

of Sys will be systems <§P as above. A morfism between two systems S1 and

52 will be a triple @ = (u, v, w). More explicitely, if

- ‘ N 1 : -~ s .
S, -{xi, Ujs V5o 800 6 xog, i=1,2, thenu: X, — 3 X,

v Ul.__g.Uz, W Y1 —> Y, are usual functions, such that the diagrams

o B
X x U 1 X 1 Y
1 1 — X 3 Y
Uuxy u \L w
v % v oo

arecomutative, and u(xé) = xg

Briefly, morphisms between systems, must comute with dynamics and output
maps, and preserve the initial states.

Usualy the dynamics § of a system &f is extended to an action of the
free monoid U™ on the state space X. This extension is making recursively,
by 1) § (xsA) =x, (V) x €X

2)5 (x200) =5 (5(xs0) ¢ ')s (V) Xe Xog 19" ¢ U™



We can build the reachability map ax

X
5, : U ——> X, &
X, X9
ana the response map from initial state Xg

(6 )"S(xose)

foos U Y, fx, = Bebd
Xg 7 0 Xg
Here Xg is a fixed in X ; thus genecrally, we have a family of responses

(f,) x € X

The reachability map gives all states the system can reach, after receiving
inputs, starting from Xg-

The response map gives the output of the system, which starts in Xq- It is
also called the external-behaviour map.

A system is reachable (from Xg) if GXO is surjective.

A system ¥ is observable if the map xr———afx is injective. Thus, observing
the output, we can radiscover the initial state.

What we have sketched above, is called thz passage from the internal des-
cription of a dynamical system, to the external description.

Thinking at a system as a model of some physical process, one may say that
obtaining fXO means a simulation of that process.

In practice however, we have merely given an external behaviour, and want to
build a system. ile shall refer to this problem as to_modelling.

The system we are looking for imust be, of course, connected with the given
external behaviour. The first condition is that the unknown system iust have
the same behaviour as that gjven one, starting from some initial state. This
condition is however discutable, since we may look for a system with a beha-
viour "very closed” to the given one. The next condition is that we look for
a system which must have some "optimality of structure". In precise mathematical

terms, this ~ntimality is achieved by looking for reachability and observa-



bility. This condition is also discutablas because, at least for complex
systems, it would be better to ask fur some weak reachability (see [.12 ]
for details).

We shall, however, describe here the classical minimal realization,
which gives a rechable and obscrvable system (see[ 27 ). This problem is
also reffered to as system identificatiun (see [13] ).

Suppose given a function f : U¥ — Y which describes the external
behavicvur of some process (i.e. input-cutput relationship). We have then :
Theorem : There exists a dynamic system

Ig = {Xf’ Us Vo & B "o}

such that

1) fxo = lf(i.e. the behaviour of J>f is f)

2),‘;?f is reachable from x, anc observaole
Proof : The prouf can be found in [2] anu will be umitted here. We mention,

however, that Xf is obtained via the Nercdz equivalence in TR

B 0 0, fOL)=FOH), (v) 6e U™

and Xf = U*? i, the quotient set.
Wle remember again that system \f} is "the best one" with the behaviour f.
The abuve result can be put into a categorical framework, considering the
categury of behaviours and the category of systems. In this way, a dezpest
result says that there is a pair of adjoint functors between these categories
(see [77 ).

In the next sections we shall generalize minimal realization. lie shall
uescribe some abstract models for the process of obtaining special system.
These models are based on equivalence relations (section 2), on orderings

(section 3), and on category theory (sectiun 4). These are some points of



view of identifying systems in a given class.

2 - Relational models

le shall describe in this section, a relational model for system
identification. This wudel, as its name says, is based upon equivalence
relations. Our version starts with Zadeh's definition of a system identifica
tion : " the Jdetermination on the basis of input and output, of a system
within a specified class of systems, to which the system under test is
equivalent " (see [137 ).

The fbrmu]ation below is also connected with a pader by Gaines [5] .

Let us suppose a pair (X, R) where X is a set, and R an equivalence
relation in X.

Definition : An admissible subset is A C X with the property :

(V)xe X = () « e Asa R x

Je shall denote by g% (X) the set of all admissible subsets of X.

In which follows, we shall try to characterize the admissible sets,
i.e. elements of J%(X). First, sume simple remarks :

1) X € & (x)

2) he f(X)y 824 = 3 eFX)
We shall prove now that zach admissible set contains an admissible subset,
which is the "best one", in some sense :
Theorem : For cach A € &5 (X) there exists Age F&(X), Ay € A with the pro-

perty a, b € AO > aRb



Proof : Let us consider A / R, the quotient set (in fact, R is replaced by

the equivalence induced Ly R on A). e shall salect one and only one element
from each equivalence class 2¢ 4 / R. The éo]]ection of the oltained elements
will De denoted by Ags and, of course, Ao C A. It is also oLvious that (V)

a, b e A

0 ———7> a R U, since a and 5 belong to different classes. e must
prove that A e A (X). If-x e X, thore is @ ¢ A, x R a, thus x e &, & € A/R.
cut in AO we a ~cady hav~ -an eluient fism &, say 3, € AO. It results that
Xs 3y € a, thus x R 3,5 anu the proof ends. ie shall give now two examples
of this aLstract identification model. The first one will be, of course, the
minimal realization for deterministic systems.

Example 1. Let us suppose that Sys is the class of all deterministic systems,
as in section 1. Foref eSys, we shall denote Ly Ef its external behaviour,
from initial state of f . Let us note that we do not start from a behaviour,
an¢ look for a system. Our identification problem will be : starting from a

system, to find an "optimai system" with the same Lehaviocur. Let us consider

the pair (Syst, R) where R is the equivalence relation defined oy :

PP esys, ¥ R&’C:}ff = fg
Let us denote now, Ly Sys (r, ¢) the subclass of réachab]e and observable
systems, Sys (r, 0) € Sys. We think that ¥ ¢ Sys (r, 0) is reachable
from its initial state. The claséica] minimal realization theory says now,
that Sys (r, 0) is an admissible sulclass of Sys. In gther words.
(V)Y eSys = (3) Qf“ e Sys(r, 0) fao = 1'@50m and ‘?m is the mini-
mal realization of f .
We mention that each class of systems ¥ , Sys(r, 0)C € < Sys, will be also
admissible ; we can think, for example, at some weak concepts of reachability

and observability.



Example 2 : This example will Le aifferent in nature, and it will tell us
in a way, about tha limits 5f this identification model.
e shall consider Z the set of integers, and R tha congruence modulo n,
n } 2 :p,q € Z,p=q (mod n) % nl p-q
An aumissible subset isiN = {O, 1, 2,...} the set of natural mumbers. The
set IN’*= il, 2yennns } is not aumissibla.
We can apply the above theoram, in order to obtain “minimal" admissi-
ble subsets. For example, _E’Nb = {0, 1, 2, ..., n-1} C IN is admissible,
and p, q e lN’D = p # q(mod n). Another admissible isIN; ={n, n+1,...2n+1} .

It is wellknown that the elements ofNO are a system of representants for

s N
the equivalence = (woc n), anc Z / = (mod n) =‘Zn =20 1,..., n- 1}

Corollary : For A € Jb (X) and Ay as in the alove theoram, we have

(V) X € A :} (3) aeAO,um‘que,xRa
Proof : obvious
We may call this unique a, the minimal realization of x.
We shall prove now a thecrem which characterizes aumissible subsets.
It will relate A e J%(X) and the sections cf the canonical map X —s X/R.
We say that a function i -—-f-) N is sectionable, if there is a func-
tion N ___g_;.vi such that f 0 g = 1“;; we shall cail g a section of f.

It is clear that a section is a right inverse for f.

de shall denote by J(?;O(X)C_ A(X) the "minimal" admissible sats 'i.e.
Gz;)(X) ={A§_X/ (W) x € X:ﬁ(a ) a e A, unique, X R a}
Theorem : There is a bijection between J%O(X) and the set of allisections

of X 23 X/R.
Proof : Let us denote Ly Sec ={s/ s: XIR—— X, po0s = 1X/R} .



e shall ocuild two maps :

_Cﬂ;o (X) ——@——59 Sec

-

such that ¢ o = id, Tod = id
If le 6@% (X), it is clear that X N i contains a single ezlement, for each
X e X/R. Let RO 4 = {axg. de cefine P (A) = sy, 5, 1 XIR —> X,
S4(%) =
ps ¢ (s.(R) ) = ¢ (a) = &, =R, it results that P is well defined.
Let now s € Sec , we set iy (s) = Ims = s(X/R).
de prove first that'@‘(s) Gd%b(x) ; for each x e X, as X € X/R,
%) =2, € ik (s).
Since s is a section of ¢ , we have ¢ (s(X) ) = X::;}q)(ax) =X=3= X=a,R, .

This a_ is also unique , for example, if 3y R X, a‘x R x with Ay a'x 6‘@?(5);

X

we have a, = s(il), a'y = 5(29).

But § =3 :::) ¢(s(21) ) = s(x ) :::> x = if = = a'x.
We must prove now that (B o@’— id, ¥ o @ . We have :

¢ (F(s)). =P (ms) =5,
As & O Ims = §s(x)'%, it is clear that Sims = S° anc thus Q) oiy
.mwgr(dg (R) ) =T (s,) = ImSy = &, and thus ¥ o = id, and the proof

id.

ends. We shall see in the next sections that almost all models for system
identification are related to such "right inverses".

Our relational mouel here is good to encompass with minimal realiza-
tion anu also with other situations in mathematics. However, its structure is

too poor, in order to obtain Jeep results.
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3 - Ordering odels

We shall develop here a wocdel for system identification, which is
based upon order relations. We shall not obtain, as a particular case, classi-
cal minimal realization.

The motivation of introducing an ordering tc replace the equivalence
relation in section 2, is that we way Took now for systems which “approximate"
a given system, for example. This model will be well suited for identification
of rondeterministic systems, where the concept of an equivalence is too
powerful,

Such an urdering can also Le thougnt as cumplexity , with preference
for the less complex system ( see [5] ).

Hoping that no confusion can arise, our terminclogy here will be the
same as in the jprevious section.

Let (X, £ ) be a pair, with X a set, and <Lan ordering on X.

Definition : An admissible subset of X is A € X such that

D(V)xeX = (3) a e A, x>/ax
£ —_ AN

2)(\j)ae,+,x>/a___>ax//a.
Remark : For each x € X, the 3y, is unique, after the definition above.
It1sc1earthatax=sup{ae A/agx} € A.
We shall see later that such aumissiule subsets can exist, even if X is not
complete lattice.
Let us denote by db (X) the collection of admissible subsets of X.

We may, of course, call a, ¢ A (for each x € X), the minimal realization

of x.



At this leval it is difficult to give conditions under which there exist
acmissible subsets. It is alsoc difficult to determinate whether "minimal
realizations” exist or not.

We shall however, give a theorem which relates J%(X) to the
existenca of retracts for the inclusion map A ——> X.

A function Wi —i——> N is rectractible, if there is a function

1| ——9-—) ¥, such that g o f = IH , we call g a rectract of f. It is clear

that a retract is a left inverse for f.

Theorem : The following statements are equivalent :
1) A ¢ dy _
i
2) there exists an isotone retract Ag==2X , withioy 1y

»
Proof : 1) = 2). From definition of A ¢ 0% (X), let us set

@ X —> A, g(x) = a, . It is clear that o 0 1 = lA’ and
(i 0 ¢)(x)=a, £ xsthusiog { 1,. How ¢ is also isotone,
s1ncexé y-——xax<x Sy. Butaxéy, and a, e A

= 3, ( 3pie v (x) e W)

2) = 1). Let us suppose 2) true. If x e X, we seta =y (x) e A.

Fromi o ¢ élx it results that a Q X.

Let us prove that a € A, a g X — a \< a-

As ¢ is isotone, a \< x =) { ¢ (x),but o (a) =p(i(a)) =a
thus a \< a . and jche proof ends.

This theorem, as it will be seen later, reflects an adjoint property
between a pair of functors. The importance of such results resides in the
fact that we can give global conditions in order to characterize admissible
sets. These admissible sets are important, since they are subclasses in

which "optimal models" exist.

J
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Example 1 : This example is theoretical, and will reflect the problen of

finding aumissible subsets. Let X =R, the set of real numbers, and f; the

usual ordering. Then Z C R, the set of integers, is an admissible su:set

According to the above tneorem, the retract ¢ is the "integer part function" :
g :R—> Z, ¢ (x)=[x]

e have denoted Dy [ x]the greatest integer which is E;to the given x € IR.

It easy to see that, if X is sup-complete, then each subset, which is sun-

complete, is an aumissible subset. This is oLvious, since for such A & X,

X €X, we have a_ =supia en/a( x} € n.

Example 2 : Let X = F (i) ={f/ £ — [0, 1]}, the set of all

fuzzy subsets of 1. The ordering is $; , Jdefined Ly

foye 3 (i), F{gef(m) \< gm), () me
We choose A = QP(M) = {f [ fhi— { 0, 1%; the set of all subsets of ii
(identified with their characteristic functions).

As B (.i) is a complete lattice, and P (ii) a complete sublattice, it
results that@(i“i) is admissible.

If we Jenote for each f e $ (4), by Af =~{m € M/ f(m) = 1}, then
the "best approximation” for each f € 3 (i), is fAf e P (1) (the characteristic
function of Af).

This is easy tc be proved, according to :

f e & (i), sup { g/ g e P, g s; f}:= fip- This example can be relatad
to the problem of approximating fuzzy sets (see [10], [11] ). We shall now
give an example, in order to apply this abstract identification model to sys-
tems theory. Usually is quite Jdifficult to define an ordering in the class of
systems. The relations of " complexity" or "approximation" as given in [5],
are preorarings. Of course, the theory above can be restated in terms of

preoruerings we loose in that cas the unicity.
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Example 3 : Let us consider X = Sys, the class of systems. The orderinz will
Ue the "inclusion" of systems. llore exactly, if P ={Xs u, Y, &, (3},
c\f'{X', u, v', 8", ﬁ'g, we shall say that & is a subsystem of P if :
XC X', bcu,Yycy, 'SfXxU =5,3"|x = 6.
e shall write ¥ f, if & is a subsystem of ¥’ . It is clear that & is an
ordering in Sys.

Let us prove that the class of reachable systems Sys(r) < Sys is
aamissible.

If ¥ eSys, 3’={X, g, ¥, &, ﬁ}, Tet us consider the reachability
map 6’(0 : U*__.> X. lie denote Ly X0 = Im 6"0 = 5XO(U’), and consider the
system :{;)szxo.. u, Y, 609 50} . The uefinitions of the dynamics 80, and the
output map BO are as follows :

60; X0 XU —— XO’ 8, (X5u) =& (x,u)

ByiXg —3 Y, By (x) = B(x)
ana it is clear that these Jefinitions are correct.
We also see that &f eSys(r), and £, F.
Now, if ¥’ €Sys(r), anc éo'_(_:_ ¥ , it is easy to prove that d"g:_ ;‘.’%.
Thus tﬁ, is the "best approximation" of the system & Ly a reachable system.
It is clear that this exaiple Jdees not contain very much information ; it
simply proves that our model of system identification works in some cases.

This example also proves that among admissible classes of systems, we
can find those with important structural properties, such as reachability. This
is in some sense, coherent with the model in section 2, even if we cannot

call the above 3’0 the minimal realization of ¥.
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4 - Categorical models

We shall describe in this section the last model for system iden-
tification. This model is based on some concepts of category theory.

Our point of view will be a2 ainto consider minimal realization of
a dynamical system. de shall not speak about external behaviour, but we shall
think at the "optimal structure model" assigned to a given mouel. In this
way we shall manipulate only internal descriptions.

Let us remember first, some facts of category theory, which will be

needed later.

If € and B@'are two categories, a (covariant) functor from € into @’
is F: ©— @ . This means an assignment \Bleler(on objects), and, for
each A, 38 ¢ ||, an assignment B (A,B) — @'(FA, FB) (on morphisms).

The fullowing axioms are supposed :

1) F( 1, ) = 1, for each A .e|@|

2) F(vou)=F (v) oF (u)

We suppose the reader already familiar with such concepts.

If @ :Fj € are two functors, a natural transformation from F to G
G
is @ : F—>G, a collection of morphisms C})= ( ¢A) Aclel’ qu:FA —> GA,
It is supposed that, for each 4, B e |@land u e'@(A, B), the following

Jdiagram commutes : Y
FA —— 35 GA

o e

FB Yy > aB
Such concepts as functors (transformations between categories),
and natural transformations (transformations between functors), arise very

naturally in many problems.
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ke shall denote by Sets the category of sets.

F .
Two functors € =3 B’are isomorphic, uenotec F~ G, if there
G -

exists a natural transformation q_) : F_% G, @’i) = ( “DA)A e |8 such that

¢, is an isomorphism, for each A e|l&l.

de shall speak now aiout adjoint functors, which will play an
important rdle in the development of system identification models.

If Q ’ @’ are categories, we can build the product category“gx E"
whuse objects are pairs (A,8), A € |\@], 8 € |€)]. The morphisms are definec
obviously.

If § is a category, we shall denote its opposite (or dual)
category by €.

The objects of ©%are the same as those of & , but the arrows
(morphisms) are reversed.

Let now ¥ and &’ be twu categories, anc a pair of functors

e g

G
ile can buil. two functors :
fQ(., G.): 8T x @ _ sets
€(F.,.) :e°f «x @ 5 Sets
such that, for example,§ (.,G.) (A,8) = € (A, GB). These functors are defined
un morphisms in an obvious way.

Definition. wWe say that G is a right aljoint to F (or F is a left ajoint to G),

‘ 3
if the functors € (., G.) and € (F., .) are isomorphic.
We shall .enote by

Graf g 5 @ (., 6) 2 @ (F.,.)




- 16 -

Examples of adjoint functors (or adjoint pairs) arise in many problems
one may argue that each “natural construction" gives an adjoint pair ot
functors. We shall describe Tater, in an example, such a pair. For much more
on category theory than we describe. here, the reader may successfully
consult [8].

Our cateygorical model for system izentification will be built by
distinguishing some subcategories of a given category .

Definition : A realization subcateyory of € will be Eﬁ%g;_f?, such that the

inclusion functor O%'f;ﬁ> & has a 1eft a.joint € S5 4 .

In the pair Cﬂﬂgg%?%? , we shall call G the realization functor ;

for each X ¢ ||, GXe |Ob| will be called the minimal realization of X.

we shall later see that classical iwinimal realization of systems
can be recaptured in this way.
Example : Let us restrict our attention to reachable systems. After section 3
we have seen that a system, even if not reachalle, contains a reachable
subsystem (its reachable part).

We shall consiuer Sys(r), the category of reachable systems. A mor-
phism ép___~> X will Le a trisle (u, v, w), with seconc component v
(which operates on input spaces) being surjective. More exactly, if U, U' are
respectively, the inuut spaces of & and E?ﬂ, theg v : U ——> U' is an epi-
merphisn.

Let Sys(r.,o0) be the subcategory of Sys(r), which contains reachable

and observable systems. We shall prove that Sys (r, o) is a realization subca-

tegury of Sys(r).
We must build the functor G : Sys(r) ——> Sys{r,o) which will be
a left acjoint to the inclusion functor F : Sys(r,0) ———> Sys(r).
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For this purpose, et ¥ e)Sys (r)l . & ={X, U, Y, 86 , 8, xoi.
He shall Jefine in X the equivalence relation :
X X' € X xn X =, f =1,
It is simple to prove that the system
&?m =%)U«J 2 Us Vs s By XO} 8///“\\\
with 8y ¢ XX U —3 Xy 5 8 (R, u) = & (x, u)
B0 XN o B_(%) =8 (x)
is reachaible an. observalle.

Thus E?m~is the minimal realization of&F’(a]] such minimal realizations of @

are isomorphic).

Y.

The functor G will be cefinec by a(&P) m

Let us remark that there is a morphism :
d: ¥ —5 F T (v 1)
where ¢ : X —— X/~ is the canonical map (see also section 1). Since
1U is surjective, §>is indeed a morphism in Sys(r).
e may prove that the following universality property holds , for each system

9
E? \Sys(r, Y )l and for each morphismt?li;.:?: there exists an unique

"
morphism é&——ﬁ—}- ' which makes the following diagram commutative
S 259,
Ny o8
S’ o i i
Toprove this, let «= (f, g, h), B= (¥, g, h), we set g =g, h=nhand f

results from the diagram :

X, Xl
X f

F(R) = F(x) » (V) R € X/~ .
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To see that f is well-defined, let us prove that x ~ x' = f(x) = f(x').

As the equivalence in X means the equality of behaviours, we shall prove that
= 1 = £

fx =T = Pex) = Fex

(here fx, fx' are behaviours of t? , while f'f(x)’ f £(x) are benhaviours of

QP’ ). Accoruing to the definition of morphisms in the category Sys(r) (see

also section 1), we can easily obtain the following commutative diagram.

U X fx
_ Y
a L
Ul* —9 YI
Te(x)

3y g* we have denoted the extension of g : U — 5 U' at the free monoids :

gf:u* .y oy, g X (ugye.ou) = 9(u;)5(u,)...9(u )
Y v

= ) X . . - . . =f! X

Thus h o fx f £(x) 0 g%, and, in the same way, we obtain : h o fx' f f(x.)og.

P - 1 *_ ] *
It results that fx = fx' ~————7> f £(x) og =f £(x") 0 g”.

Since g is epimorphism, it results that g* is also epimorphism and, from well-

known property we have :

Pe® 9 Flepe) 09 == ' 7 Peix

Now, to end the proof, we rememuer that the system ¥’ is observable, thus

flf(X) = f f(X') '>‘ f(X) = f(X')
From the above universality property, it is simple tc prove that functors

Sys (r,o0) g—-f—e> Sys(r) form an adjoint pair.
a
Remark : We may say, after this example, that minimal realization is left adjoint

to inclusion, restricting our attention to reachable systems, and morphisms
whose input component is surjective.

There can be given, of course, a lot of examples of realization subca-
tegories ; we shall not insist here on this aspect.

The inclusion functor in the above example can also be thought as one

which “forgets" the observability proygerty.
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5 - Conclusions

We nave sketched in this paper three models for systems identifica-
tion. The most significant one is the categorical model.

This mocel applies to system theory in such a way that if we can
Jrove_ that an inclusion functor has a left aujoint, we prove the existence..
of minimal realization. Such minimal realization theorems can be redescovered,
for example, for fuzzy systems (see [10] ), by defining reachability and
observability in an apropriate way.

A1l .the presented models were deeply connected with system theory,
either in which realization of behaviours is concerned, or in the problem of
approximating a systeii by a simpler one.

Wwe shallwunderline here a ;roperty which is neither new in mathematics,
nor in system theory ; in order to obtain the “optimality of structura", we
must dbuild an adjoint pair of functors.

- This idea works also for the model in section 3, since we are faced
there with an adjointness property, too.

[t is to be expected that these results can be generalized. in many
ways. A first step will be to give sufficient conditions for a subcategory to
be-a realization one. This will imply sufficient conditions for existence of
minimal realization..

The second idea, which may be more fruitful, is to think that feec-
back is in some sense adjoint, or dual (see §:4] ) to dynamics or behaviour..

Wwe shall speak about these problems in a next paper.
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