Skip to main content

Fused Geometry Augmented Images for Analyzing Textured Mesh

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Abstract

In this paper, we propose a novel multi-modal mesh surface representation fusing texture and geometric data. Our approach defines an inverse mapping between different geometric descriptors computed on the mesh surface or its down-sampled version, and the corresponding 2D texture image of the mesh, allowing the construction of fused geometrically augmented images. This new fused modality enables us to learn feature representations from 3D data in a highly efficient manner by simply employing standard convolutional neural networks in a transfer-learning mode. In contrast to existing methods, the proposed approach is both computationally and memory efficient, preserves intrinsic geometric information and learns highly discriminative feature representation by effectively fusing shape and texture information at data level. The efficacy of our approach is demonstrated for the tasks of facial action unit detection, expression classification, and skin lesion classification, showing competitive performance with state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html.

References

  1. Abd El Meguid, M.K., et al.: Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers. IEEE Trans. Affect. Comput. 5(2), 141–154 (2014). https://doi.org/10.1109/TAFFC.2014.2317711

  2. Ballerini, L., et al.: A color and texture based hierarchical K-NN approach to theclassification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis, vol. 6, pp. 63–86. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-007-5389-1_4

    Chapter  Google Scholar 

  3. Dapogny, A., et al.: Investigating deep neural forests for facial expression recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 629–633, May 2018

    Google Scholar 

  4. Huang, Y., et al.: Combining statistics of geometrical and correlative features for 3D face recognition (2006)

    Google Scholar 

  5. Kawahara, J., et al.: Deep features to classify skin lesions. In: International Symposium on Biomedical Imaging (2016)

    Google Scholar 

  6. Kittler, J., et al.: Conformal mapping of a 3D face representation onto a 2D image for CNN based face recognition. In: International Conference on Biometrics, pp. 146–155 (2018)

    Google Scholar 

  7. Li, H., et al.: 3d facial expression recognition via multiple kernel learning of multi-scale local normal patterns. In: ICPR, pp. 2577–2580 (2012)

    Google Scholar 

  8. Li, H., et al.: An efficient multimodal 2D + 3D feature-based approach to automatic facial expression recognition. Comput. Vis. Image Underst. 140(Suppl. C), 83–92 (2015)

    Google Scholar 

  9. Li, H., et al.: Multimodal 2D+3D facial expression recognition with deep fusion convolutional neural network. IEEE Trans. Multimed. 19(12), 2816–2831 (2017). https://doi.org/10.1109/TMM.2017.2713408

    Article  Google Scholar 

  10. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69905-7_27

    Chapter  Google Scholar 

  11. Razavian, S., et al.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 806–813 (2014)

    Google Scholar 

  12. Ross, A., Jain, A.K.: Information fusion in biometrics. Pattern Recogn. Lett. 24, 2115–2125 (2003)

    Article  Google Scholar 

  13. Sandbach, G., et al.: Binary pattern analysis for 3D facial action unit detection. In: British Machine Vision Conference (BMVC), pp. 119.1–119.12. BMVA Press, September 2012

    Google Scholar 

  14. Sandbach, G., et al.: Local normal binary patterns for 3D facial action unit detection. In: IEEE International Conference on Image Processing (ICIP), pp. 1813–1816, September 2012

    Google Scholar 

  15. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  16. Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 223–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_14

    Chapter  Google Scholar 

  17. Yang, M., et al.: Monogenic binary pattern (MBP): a novel feature extraction and representation model for face recognition. In: International Conference on Pattern Recognition, pp. 2680–2683 (2010)

    Google Scholar 

  18. Yang, X., et al.: Automatic 3D facial expression recognition using geometric scattering representation. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–6, May 2015

    Google Scholar 

  19. Yin, L., et al.: A high-resolution 3D dynamic facial expression database. In: IEEE Conference on Face and Gesture Recognition (FG), pp. 1–6, September 2008

    Google Scholar 

  20. Zhang, W., et al.: Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 786–791, October 2005

    Google Scholar 

  21. Zhu, X., et al.: Face alignment across large poses: a 3D solution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 146–155, June 2016

    Google Scholar 

Download references

Acknowledgment

This work is supported by a research fund from Cyber-Physical Systems Center (C2PS), Khalifa University, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Berretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taha, B., Hayat, M., Berretti, S., Werghi, N. (2020). Fused Geometry Augmented Images for Analyzing Textured Mesh. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics