Skip to main content

RCA-NET: Image Recovery Network with Channel Attention Group for Image Dehazing

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12015))

Included in the following conference series:

Abstract

In this paper, we propose an image dehazing network with a channel attention model. Most existing methods try to resolve the dehazing problem through an atmospheric transmission model, but always fail to get promising results since the real-world physical imaging system is of high complexity. Therefore, we propose recovering a fog-free image from its foggy image using an end-to-end pipeline which can produce more realistic results. We apply a channel-wise attention model into our network and also employ the perceptual loss for supervision. Experimental results indicate that our method performs better than several state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 Computer Vision and Pattern Recognition, pp. 1–8. IEEE, Anchorage (2008)

    Google Scholar 

  2. Guo, D., Liu, P., She, Y., Yang, H., Liu, D.: Ultrasonic imaging contrast enhancement using modified dehaze image model. Electron. Lett. 49(19), 1209 (2013)

    Article  Google Scholar 

  3. Gibson, K.B., Nguyen, T.Q.: Fast single image fog removal using the adaptive wiener filter. In: 2013 IEEE International Conference on Image Processing, pp. 714–718 (2013)

    Google Scholar 

  4. Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 72 (2008)

    Article  Google Scholar 

  5. Du, Y., Li, X.: Recursive deep residual learning for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 730–737 (2018)

    Google Scholar 

  6. Zhang, H., Sindagi, V., Patel, V.M.: Joint transmission map estimation and dehazing using deep networks. arXiv preprint arXiv:1708.00581 (2017)

  7. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3000 (2014)

    Google Scholar 

  8. Diao, Y., Zhang, H., Yadong, W., Chen, M.: Real-time image/video haze removal algorithm with color restoration. J. Comput. Appl. 34(9), 2702–2707 (2014)

    Google Scholar 

  9. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 617–624 (2013)

    Google Scholar 

  10. Wang, Y.K., Fan, C.T.: Single image defogging by multiscale depth fusion. IEEE Trans. Image Process. 23(11), 4826–4837 (2014)

    Article  MathSciNet  Google Scholar 

  11. Song, W., Deng, B., Zhang, H., Xiao, Q., Peng, S.: An adaptive real-time video defogging method based on context-sensitiveness. In: 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), pp. 406–410 (2016)

    Google Scholar 

  12. Sulami, M., Glatzer, I., Fattal, R., Werman, M.: Automatic recovery of the atmospheric light in hazy images. In: 2014 IEEE International Conference on Computational Photography (ICCP), pp. 1–11 (2014)

    Google Scholar 

  13. Bahat, Y., Irani, M.: Blind dehazing using internal patch recurrence. In: 2016 IEEE International Conference on Computational Photography (ICCP), pp. 1–9 (2016)

    Google Scholar 

  14. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

  15. Guan, J., Lai, R., Xiong, A.: Wavelet deep neural network for stripe noise removal. IEEE Access. 7, 44544–44554 (2019)

    Article  Google Scholar 

  16. Guan, J., Lai, R., Xiong, A.: Learning spatiotemporal features for single image stripe noise removal. IEEE Access. 7, 144489–144499 (2019)

    Article  Google Scholar 

  17. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  18. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  19. Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 729–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_43

    Chapter  Google Scholar 

  20. Tao, L., Zhu, C., Song, J., Lu, T., Jia, H., Xie, X.: Low-light image enhancement using CNN and bright channel prior. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3215–3219 (2017)

    Google Scholar 

  21. Li, J., Li, G., Fan, H.: Image dehazing using residual-based deep CNN. IEEE Access 6, 26831–26842 (2018)

    Article  Google Scholar 

  22. Zhang, Y., et al.: An end-to-end image dehazing method based on deep learning. J. Phys. Conf. Ser. 1169(1), 012046 (2019)

    Google Scholar 

  23. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2201–2208 (2009)

    Google Scholar 

  24. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_36

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the anonymous reviews for their valuable comments and suggestion. This paper is supported by National Natural Science Foundation of China (61675160); 111 Project (B17035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, J., Zhang, J., Zhang, Z., Tan, W., Song, S., Zhou, H. (2020). RCA-NET: Image Recovery Network with Channel Attention Group for Image Dehazing. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics