Skip to main content

Background Subtraction by Difference Clustering

  • Conference paper
  • First Online:
  • 844 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12015))

Abstract

Previous approaches to background subtraction typically considered the problem as a classification of pixels over time. We frame the problem as clustering the difference vectors between pixels in the current frame and in the background image set, and present a novel background subtraction method called Difference Clustering. This not only saves computational time, but also achieves high Pr and Fm values for accuracy. In particular, the difference between the current frame and the background image set is extracted using the quartile method for clustering. Compared to traditional k-means model to generate k clusters, our quartile method needs only 2 clusters. Moreover, traditional k-means clustering models need to update the means until convergence, which is time-consuming. In contrast, our quartile method finds the final means directly to reduce the numbers of iterations and computational time, resulting in a real-time algorithm. Experiments on several videos from standard benchmarks demonstrate that our proposed approach achieves promising results compared to several previous methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heikkila, M., et al.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  2. Yang, D., et al.: Background modeling by stability of adaptive features in complex scenes. IEEE Trans. Image Process. 27(3), 1112–1125 (2018)

    Article  MathSciNet  Google Scholar 

  3. Stauffer, C., et al.: Adaptive background mixture models for real-time tracking. In: 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (1999)

    Google Scholar 

  4. Butler, D., et al.: Real-time adaptive foreground/background segmentation. EURASIP J. Adv. Sig. Process. 2005(14), 841926 (2005)

    Article  Google Scholar 

  5. Xiuman, D., et al.: Moving target detection based on genetic k-means algorithm. In: 2011 IEEE 13th International Conference on Communication Technology, pp. 819–822. IEEE, September 2011

    Google Scholar 

  6. Goyette, N., et al.: Changedetection. net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8. IEEE, June 2012

    Google Scholar 

  7. Lim, L.A., et al.: Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recogn. Lett. 112, 256–262 (2018)

    Article  Google Scholar 

  8. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  9. Mahmood, A., et al.: Exploiting transitivity of correlation for fast template matching. IEEE Trans. Image Process. 19(8), 2190–2200 (2010)

    Article  MathSciNet  Google Scholar 

  10. Saatci, Y., et al.: Bayesian gan. In: Advances in Neural Information Processing Systems, pp. 3622–3631 (2017)

    Google Scholar 

  11. Wang, Y., et al.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. 96, 66–75 (2017)

    Article  Google Scholar 

  12. Braham, M., et al.: Semantic background subtraction. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4552–4556. IEEE, September 2017

    Google Scholar 

  13. Bianco, S., et al.: Combination of video change detection algorithms by genetic programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)

    Article  Google Scholar 

  14. Isik, S., et al.: SWCD: a sliding window and self-regulated learning-based background updating method for change detection in videos. J. Electron. Imaging 27(2), 023002 (2018)

    Article  Google Scholar 

  15. Lee, S., et al.: WisenetMD: motion detection using dynamic background region analysis. Symmetry 11(5), 621 (2019)

    Article  Google Scholar 

  16. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)

    Article  Google Scholar 

  17. Kim, K., et al.: Background modeling and subtraction by codebook construction. In: 2004 International Conference on Image Processing, 2004. ICIP 2004, vol. 5, pp. 3061–3064. IEEE, October 2004

    Google Scholar 

  18. Xiao, M., et al.: A background reconstruction for dynamic scenes. In: 2006 9th International Conference on Information Fusion, pp. 1–7. IEEE, July 2006

    Google Scholar 

  19. Chang, R., et al.: A novel content based image retrieval system using K-means/KNN with feature extraction. Comput. Sci. Inf. Syst. 9(4), 1645–1661 (2012)

    Article  Google Scholar 

  20. Miron, A., et al.: Change detection based on graph cuts. In: 2015 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 273–276. IEEE, September 2015

    Google Scholar 

  21. Sehairi, K., et al.: Comparative study of motion detection methods for video surveillance systems. J. Electron. Imaging 26(2), 023025 (2017)

    Article  Google Scholar 

  22. Keller, J., et al.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 4, 580–585 (1985)

    Article  Google Scholar 

  23. Benezeth, Y., et al.: Comparative study of background subtraction algorithms. J. Electr. Imaging 19(3), 033003 (2010)

    Article  Google Scholar 

  24. Zhu, B., Gao, W., Wu, X., Yu, R.: A heterogeneous image fusion algorithm based on LLC coding. In: Basu, A., Berretti, S. (eds.) ICSM 2018. LNCS, vol. 11010, pp. 134–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04375-9_12

    Chapter  Google Scholar 

  25. Mukherjee, S., Cheng, I., Basu, A.: Atlas-free method of periventricular hemorrhage detection from preterm infants’ T1 MR images. In: Basu, A., Berretti, S. (eds.) ICSM 2018. LNCS, vol. 11010, pp. 157–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04375-9_14

    Chapter  Google Scholar 

  26. Nigam, J., Sharma, K., Rameshan, R.M.: Detection-based online multi-target tracking via adaptive subspace learning. In: Basu, A., Berretti, S. (eds.) ICSM 2018. LNCS, vol. 11010, pp. 285–295. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04375-9_24

    Chapter  Google Scholar 

  27. Wang, T., et al.: A survey on vision-based hand gesture recognition. In: Basu, A., Berretti, S. (eds.) ICSM 2018. LNCS, vol. 11010, pp. 219–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04375-9_19

    Chapter  Google Scholar 

  28. Liu, C., Cheng, I., Basu, A.: Synthetic vision assisted real-time runway detection for infrared aerial images. In: Basu, A., Berretti, S. (eds.) ICSM 2018. LNCS, vol. 11010, pp. 274–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04375-9_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqiu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Gao, X., Zhao, C., Wu, J., Basu, A. (2020). Background Subtraction by Difference Clustering. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics