
Vote selling resistant voting

Colin Boyd1, Thomas Haines1, and Peter Roenne2

1 Norwegian University of Science and Technology, Trondheim, Norway
{colin.boyd,thomas.haines}@ntnu.no

2 SnT, Université du Luxembourg, Luxembourg, Luxembourg
peter.roenne@uni.lu

Abstract. Creating a secure (purely) remote voting scheme which pre-
vents active vote selling is an open problem. Observing that vote selling
has a primarily economic motivation, we propose a novel approach to
the problem which prevents a vote seller from profiting by allowing a
different party to choose the seller’s vote. As a proof of concept, we pro-
pose a concrete protocol which involves carefully restricting the ways the
voter can prove how they voted and then penalising them for revealing
it. With the assumption that the vote seller and vote buyer are mutu-
ally distrustful, we show that our protocol admits no situation where
the buyer and seller can achieve a mutually agreeable selling price. We
include a sample instantiation of our protocol demonstrating that it can
be practically implemented including the outlay of a smart contract in
Solidity.

Keywords: Vote buying resistance · Disincentives · Blockchain

1 Introduction

Coercion is a major security threat against electronic voting schemes, particu-
larly for remote schemes where the voter is not isolated in a polling booth but
can vote using any internet connection. A related, but in reality quite different,
threat is vote selling. As with coercion, there is a malicious party whose goal is
to influence or dictate the vote submitted by a valid voter. However, in contrast
with a coercion scenario, the voter is willing to cooperate and indeed wants to
vote in a way chosen by the malicious party, as long as the voter is paid (enough)
for doing so. In this paper we address the vote selling threat.

A possible mechanism to mitigate the vote selling threat is to ensure that
the voting scheme is receipt free, i.e. to ensure that voters are unable to prove
to others how they voted, as suggested in the seminal paper by Benaloh and
Tuinstra [4]. Denying the voter a receipt to prove how the vote was cast removes
an instrument that the voter could use to negotiate or claim a payment from the
buyer. However, we observe that this is not sufficient in many situations. In a
remote setting the vote seller can perform the voting protocol in the presence of
the buyer or can even hand over the voting credential required to vote and allow
the buyer to vote on the seller’s behalf. Indeed the scenario in which the voter

hands over the voting credential for cash may at first seem impossible to avoid in
the remote setting without some assumptions about what the voter is willing to
sacrifice, or without a trusted setup phase such as is present in the JCJ scheme
[11]. Further, even assuming a trusted setup-phase, a scheme like JCJ lacks good
usability and intuitive individual verifiability [10] and the construction makes it
harder to achieve eligibility verifiability without trust assumptions [15].

In this paper we propose a novel remote voting scheme which discourages
voter selling without providing some form of receipt-freeness but instead by
monetarily penalising the voter for revealing their vote. We believe this is inter-
esting due to the general unavailability of useable end-to-end verifiable coercion-
resistant e-voting schemes and the inherent assumption in the remote receipt-
freeness definitions that the voter does not deviate from the honest vote casting
protocol. We also hope to convince the reader that the problem is technically
challenging from a cryptographic perspective.

We achieve vote selling resistance by having each voter deposit some amount
of money which is automatically returned to them after a certain period of time
has elapsed. However, anyone can claim half the money and donate the other
half to a predetermined charity if they know a certain secret. This secret happens
to be leaked whenever the voter proves how they voted. Strictly speaking the
voter could always prove how they voted with general zero-knowledge since the
question of which vote the ballot encodes is in NP, but we carefully choose the
encryption scheme so that this is infeasible in practice. We note in passing that
donating the money to charity is but one of a number of options. Alternatively,
the money could be given to the government as a tax or transferred to a dead
address effectively burning it.

The idea of using economic incentives to prevent security threats is certainly
not new. Indeed, the Workshop on the Economics of Information Security3 has
been pointing out the connection between security and economics for over 15
years. Furthermore, there are a number of cryptographic protocols whose secu-
rity relies on economic incentives for adversaries, see e.g. [6, 8]. However, to our
knowledge an economic approach to prevent vote buying has not been proposed
before and seems natural given that the seller goal is to make a monetary profit.

Contribution

The overall contributions of this paper are to:

– introduce the idea of using economic incentives to mitigate the threat of vote
buying;

– propose a concrete voting protocol incorporating an economic disincentive
to vote selling and buying;

– demonstrate the feasibility of our approach by outlining an implementation
in Solidity.

3 https://econinfosec.org/

2

2 Aims

The core aim is easy to state; have a secure remote scheme which prevents vote
selling. However we relax this, instead desiring a secure scheme which disincen-
tives the voters for selling their votes. Ideally, this would be possible even if the
vote buyers and sellers trusted each other completely and the vote buyers were
election authorities. However, it seems enormously difficult to construct such a
scheme. We settle, in this paper, for a restricted setting in which the vote buyers
and vote sellers are mutual distrusting and disincentivising vote selling during
the election suffices.

In this section we will first define our assumptions about the parties and then
talk informally about the security proprieties, we would like to achieve.

2.1 Authorities

We assume the election is run by a set of Na authorities. As a basic requirement
for any secure voting scheme, we require that verifiability holds even if all author-
ities are corrupt. This means that anyone can verify that only authorised voters
took part, on the assumption that there is a valid registration process. However,
as is usual in voting schemes, we assume that at least one voting authority is
honest in order to maintain voter privacy and also will not collude with other
authorities to steal the voters’ deposits.

2.2 Voters and Vote Buyers

We assume that voters do not trust the vote buyers and are only willing to
change their vote if they receive the payment with a time delay less than Pd.
We, further, assume they want to be paid at least Cs.

We assume the vote buyers are interested in buying votes but are unwilling to
buy them above, and including, the price point Cb. We assume they are unwilling
to trust the voter and require evidence of what the vote was before releasing the
payment.

We do not explicitly model the negotiation of the price P which the buyer will
pay to the seller, which can happen with any protocol that the parties choose.
However, we do assume that there is some P which both parties are willing to
accept. This can be summarised in the following equation and, in particular note
that the existence of an agreed price implies Cb ≥ Cs.

P ∈ [Cs, Cb] (1)

Note that the mutual distrust of the voters and vote buyers means it suffices
to disincentivise vote selling during the election period. We further assume that
there does not exist any escrow process which would allow the voters and vote
buyers to overcome their mutual distrust. We claim the assumption of no escrow
is reasonable because voting selling is illegal and hence any escrow must be
privately conducted with a third party whom the voter already trusts and is

3

willing to be engage in illegal activity. The assumption of no escrow also excludes
the possibility of the voters and vote buyers creating a counter smart contract
to overcome their distrust.

3 Preliminaries

In this section we will detail the building blocks and cryptographic primitives
we need to build our scheme.

3.1 Smart Contract enabled Blockchain

We use a blockchain, such as Ethereum [1], as our public bulletin board which
allows us to integrate the deposit mechanism with the election. We rely on the
universal verifiability of the blockchain to ensure that the steps of the election
can be observed and checked by any party. The inbuilt payment mechanism
available in typical blockchains, such at Ether in Ethereum, will be used to
provide the economic incentives. Using similar techniques to those used in hash-
locked contracts [9], voters will be required to provide a stake, or deposit, at the
time of voting. The deposit will be recovered in full by honest voters a short
time after the election is complete. As we will explain later in Section 5, voters
trying to sell their votes will end up losing some or all of their deposit.

The required functionality can be achieved using a standard smart contract
in Ethereum, which includes mechanisms for automatic payments and timing.
The election authorities will construct the voting contract and post it to the
blockchain. This will allow any party to verify its functionality.

3.2 Encryption algorithm

Since voters will post their votes onto the blockchain, they must be encrypted
first. This is not only in order to provide usual privacy of votes, but also so that
the vote buyer cannot simply read the chosen vote. The encryption scheme cho-
sen must also support certain proofs (see below for details of the proofs needed)
and so a natural choice is ElGamal encryption [7] since it has the algebraic
structure to support these proofs (and for that reason is often chosen for voting
schemes). However, standard ElGamal encryption is not sufficient for our pur-
poses since it allows an easy zero knowledge proof that the ciphertext takes on a
certain value which could be used by the vote seller to convince the buyer that
the desired choice has been made. We want instead to force the seller to release
a specific value in order to convince the buyer.

Fortunately, there is a suitable solution already existing which is to use the
OAEP 3-round (or simply OAEP3) transformation of Phan and Pointcheval
[14]. Using similar principles to the well known OAEP transformation for trap-
door permutations (such as RSA), OAEP3 also works with ElGamal encryption.
OAEP3 transformed ElGamal satisfies RCCA security [5] as proven by Phan
and Pointcheval [14].

4

The OAEP3 transformation uses three hash function H1, H2, H3. Its inputs
are randomness r and the message m to be encrypted. Then the following values
are computed:

s = m⊕H1(r) t = r ⊕H2(s) u = s⊕H3(t) c = (t, u).

To encrypt message m, we first compute the OAEP3 transform to derive c and
then encrypt c using standard ElGamal.

The trick here is to observe that when the hash functions H1, H2, H3 are
ideal hash functions (thus using the Random Oracle Model) the OAEP3 output c,
which is used as the input to the normal ElGamal encryption, is indistinguishable
from a random string. This means that a normal ZK proof that the ciphertext
contains a particular choice of vote cannot be used unless the randomness r is
revealed so that c = (t, u) can be reconstructed. We will use this observation
to force a vote seller to give up the randomness r in order to convince the vote
buyer.

Note that the ElGamal encryption uses its own randomness distinct from the
r used in the OAEP3 transform. When we say we release the deposit to anyone
who knows the randomness we mean the r value uses in OAEP3 transform not
the randomness used in the ElGamal encryption.

3.3 Zero Knowledge Proofs

We need to use some standard proofs to provide verifiable evidence of correct
working of the voting scheme. Although these proofs are usually applied to stan-
dard ElGamal, they can also be used with the OAEP3 transformed variant as
pointed out by Pereira and Rivest [13].

NIZKP of correct encryption We use a knowledge of discrete log zero knowl-
edge proof to allow the voter to show they know the ballot inside their
encrypted vote, these proofs should be inherently tied to the voter using
signatures which will be submitted with the encrypted ballot.

Verifiable proof of shuffle We use a zero knowledge proof of correct shuffle
for ElGamal. This can be instantiated with known techniques [2, 16].

NIZKP of correct decryption We use a zero knowledge proof of correct de-
cryption of ElGamal.

4 A Vote-Buying Resistant Scheme

We will now describe the phases of the scheme. We envision a smart contract on
the bulletin board which enforces the public facing elements of the scheme. For
simplicity we assume a pre-existing voter PKI though this can be removed with
the expected loss of eligibility verification.

The contract is posted by the election authority to the blockchain (which
may either be public or private). The contract describes the stages of voting
analogous to the phases described below. In addition the contract describes

5

what can/should occur in these stages. Essentially the contract functions as the
bulletin board, while imposing certain constraints on who can do what when.
Since verifiability occurs based on the data posted on the contract, the contract
itself does not need to be correct for universal variability to hold. On the other
hand, the eligibility verification is enforced by the contract and this component
should be checked for correctness.

We have included a sketch of the contract in appendix A.

Setup. In the setup phase the authorities jointly generate the public key pk
to be used to encrypt votes [12]. The joint generation includes a shared set
of decryption keys so that all authorities (possibly up to a threshold) need
to cooperate to decrypt votes. The authorities also construct the contract
and submit it to the blockchain. The voter credentials {pki}i∈[1,n] from the
existing PKI are assumed to be known or can be included explicitly in the
contract. The authorities also specify the deposit amount D.4

Submission. In the submission phase each voter may submit a ballot Encpk(m)
by encrypting with OAEP3 and ElGamal and producing a zero knowledge
proof of knowledge of the encrypted value (after OAEP3 transformation).
In addition the voter creates a deposit of value D. All of these values are
signed by the voter. The contract checks that the submission is well-formed
by checking the proof and that the signature comes from an eligible voter
who has not previously voted. If so, it accepts the ballot and marks the voter
as having voted.

Claim. The claim phase runs from submission until the beginning of the proving
phase. During this phase any party can submit an encrypted claim with
respect to any vote. The contract will then perform a plaintext equivalence
test and, if the test succeeds, the deposit is paid out half to the claimed
party and half to the predetermined charity. This payout can only happen
once according to the blockchain validity rules.
Note that since the messages in the ElGamal ciphertext are OAEP3 trans-
formed, they are close to uniformly random in the message space and hence
just guessing the message is infeasible. If denial of service attacks are a threat
this claim process can be modified to require a small payment to submit. This
payment should be small enough so that the money claimed if successful is
higher than the fee.

Tallying. The authorities take turns to re-encrypt and shuffle the ciphertext
using the verifiable shuffle to prove correctness. The authorities then jointly
decrypt the ballots and publish the result. At this point they do not make
public the proofs of correct decryption or reveal the randomness used in the
OAEP3 transform.5.

4 It is possible to adjust the deposit amount during the election. The authorities may
wish to do this if a significant number of successful claims are being made.

5 It is significantly simpler if the tallying and proving phases are made into one phase.
If they are separate, we either need to assume the authorities won’t steal the deposits
or develop someway for them to undo the OAEP3 transform using some distributed
technique like MPC

6

Proving. During the proving phase, which occurs at least Pd after the election
closes, the authorities post the proofs of correct decryption and reveal the
randomness used in the OAEP3 transform.

Verification. In the verification phase any party can check the publicly avail-
able evidence.

5 Security

In many ways the core of the scheme is a very similar to a standard e-voting
scheme template based on mixnets. The small, but important, differences are de-
signed to allow the disincentive mechanism to function. The basic voting security
properties follow the standard pattern.

5.1 Verifiability

The argument for the universal verifiability of the election scheme is entirely
standard. All ballots are signed by their respective voters and the bulletin board
will accept only one ballot per eligible voter which ensures that the list of col-
lected ballots is correct up to denial of service. The ballots are then verifiably
mixed and verifiably decrypted which ensures they are counted as collected.

We do not specify any specific method for cast as intended verification. How-
ever, the standard methods like Benaloh challenges [3] can clearly be applied.

5.2 Privacy

The general privacy of the scheme follows for the ballot independence of the
submitted ballots, the mixing of the ballots and the IND-CPA security of the
encryption scheme.

5.3 Vote buying resistance

The scheme has vote buying resistance for the following reasons. First recall
that the voter and vote buyer are mutually distrustful. In particular, both are
economically incentivised, so the voter wants to maximise the price P paid while
the buyer will try to minimise it. The strategy to show that our protocol provides
vote buying resistance is to show that Equation 1 cannot be satisfied, so that
the buyer and seller are unable to agree on any suitable value for P .

We consider two mutually exclusive cases. Either (1) the voter produces
the vote and later tries to convince the buyer of the choice of vote or (2) the
buyer produces the vote with the help of the seller. For the first strategy, due
to the usage of the OAEP3 transformation, the voter must reveal the OAEP3
transformed message, or equivalently the randomness r, to show how they voted.
But this is precisely the information needed to claim the voter’s deposit.

We need to consider two possible scenarios, which differ depending on what
happens with the deposit. Note that the seller will not wait until the voting

7

protocol finishes to reclaim the deposit because the seller knows that the buyer
will try to claim it before then. However, the voter can also try to reclaim half
the deposit in the Claim phase, so there will be a race condition between buyer
and seller to try to get the deposit.

Scenario 1 The buyer pays P to the seller and the seller successfully executes
a Claim.
Outcome: Seller loses half deposit and gains P . Buyer pays P

Scenario 2 The buyer pays P to the seller and the buyer successfully executes
a Claim.
Outcome: Seller loses whole deposit and gains P . Buyer pays P but recovers
half the deposit

Table 1 shows the payoff for each party in each of these scenarios.

Seller Payoff Buyer Payoff

Scenario 1 P −D/2− Cs Cb − P

Scenario 2 P −D − Cs Cb − P + D/2
Table 1. Payoff Matrix

Note that the vote seller and buyer will only proceed with the deal if the
expected return is greater than 0, in other words their behaviour is determined
only by their economic incentives. The question becomes: does there exist a price
P such that both parties will have gained something?

Let Pr(Buyer wins race) = p so that Pr(Seller wins race) = 1− p. The anal-
ysis, and crucially the deposit amount, is independent of the expected success
rates of the parties provided they are consistent, however, note that if both par-
ties believe they will win the race condition all the time then no deposit amount
suffices. The seller loses half the deposit in scenario 1 and all the deposit in
scenario 2. Thus the seller is happy only if:

P −D/2− p ·D/2 > Cs. (2)

Consider then the buyer who gains half the deposit in scenario 2 and nothing in
scenario 1. The buyer is happy only if:

P − p ·D/2 < Cb. (3)

The event that the buyer and seller proceed will only occur if both inequalities
(2) and (3) are satisfied. Therefore the vote selling attack occurs only if:

Cs + P − p ·D/2 < P −D/2− p ·D/2 + Cb.

or D < 2(Cb − Cs). To prevent the attack we therefore choose D > 2(Cb − Cs).
Finally we consider case (2) where the buyer forms the ciphertext and the

seller cooperates by signing the vote ciphertext and proofs, or the seller can even

8

give the signing credential to the vote buyer. In this case only the buyer is able
to make a successful claim. Either the buyer or seller must stake the deposit,
assuming that the signing credential also allows payments on the blockchain. If
the seller pays the deposit then Scenario 2 above applies since only the Buyer
can make the claim. If the buyer makes the deposit then the roles are reversed
and buyer will lose since the buyer will only be satisfied when P ≤ Cs.

6 Conclusion

We have introduced a novel approach to vote buying resistance which utilises
economic incentives to remove the economic motivation to buy voters rather than
making it impossible to do so. We have, then, provided a reasonable instantiation
of this scheme for distrusting vote buyers and sellers.

We believe that there are opportunities to optimise and refine our proposals
in a number of different ways.

– A more formal analysis with formal definitions for security and a more com-
prehensive economic model may yield interesting insights.

– It may be possible to develop better protocols which remain secure against
stronger adversaries. For example it would be good to allow the vote buyer
and seller to collude rather than assuming they are mutually distrusting.

– We have assumed that values of Cs and Cb exist and are known to the
implementor. This may not be reasonable in all situations. Increasing the
value of the deposit allows a looser estimate of these values, but there is a
limit to how large a deposit can reasonably be.

– Is it possible to construct an encryption system which allows efficient proofs
of correct decryption without allowing efficient proofs of encryption to a
particular message? Such a construction could be usefully applied in our
protocol.

– It would be interesting to construct a variant of the scheme where each
voter holds a long-term credential to authenticate their ballot, and it is this
credential which is leaked to the vote buyer by a proof of the cast vote. In
this case the deposit can be kept lower since the vote buyer can release the
deposit in future elections, too.

Acknowledgements

PBR would like to thank Reto Koenig for discussions. The authors acknowledge
support from the Luxembourg National Research Fund (FNR) and the Research
Council of Norway for the joint project SURCVS.

References

1. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: building smart contracts
and dapps. O’Reilly Media (2018)

9

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7237, pp. 263–280.
Springer (2012)

3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT. USENIX Association (2007)

4. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing. pp. 544–553.
ACM (1994)

5. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
CRYPTO. Lecture Notes in Computer Science, vol. 2729, pp. 565–582. Springer
(2003)

6. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L., Stefanov, E., Triandopoulos, N.:
Hourglass schemes: how to prove that cloud files are encrypted. In: Yu, T., et al.
(eds.) ACM Conference on Computer and Communications Security, CCS’12. pp.
265–280. ACM (2012), https://doi.org/10.1145/2382196.2382227

7. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory 31(4), 469–472 (1985)

8. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Babai, L. (ed.) Proceedings of the 36th Annual ACM Sym-
posium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004. pp. 623–632.
ACM (2004), https://doi.org/10.1145/1007352.1007447

9. Herlihy, M.: Atomic cross-chain swaps. In: Newport, C., Keidar, I. (eds.) ACM
Symposium on Principles of Distributed Computing, PODC. pp. 245–254. ACM
(2018), https://dl.acm.org/citation.cfm?id=3212736

10. Iovino, V., Rial, A., Rønne, P.B., Ryan, P.Y.: Using Selene to verify your vote in
JCJ. In: International Conference on Financial Cryptography and Data Security.
pp. 385–403. Springer (2017)

11. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM workshop on Privacy in the electronic society. pp.
61–70. ACM (2005)

12. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EURO-
CRYPT. Lecture Notes in Computer Science, vol. 547, pp. 522–526. Springer (1991)

13. Pereira, O., Rivest, R.L.: Marked mix-nets. In: Brenner, M., et al. (eds.) Financial
Cryptography and Data Security - FC 2017 International Workshops, WAHC, BIT-
COIN, VOTING, WTSC, and TA. Lecture Notes in Computer Science, vol. 10323,
pp. 353–369. Springer (2017), https://doi.org/10.1007/978-3-319-70278-0\

_22

14. Phan, D.H., Pointcheval, D.: OAEP 3-round: A generic and secure asymmetric en-
cryption padding. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 3329,
pp. 63–77. Springer (2004)

15. Roenne, P.B.: JCJ with improved verifiability guarantees. In: The International
Conference on Electronic Voting E-Vote-ID 2016 (2016)

16. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: AFRICACRYPT. Lec-
ture Notes in Computer Science, vol. 6055, pp. 100–113. Springer (2010)

A Contract

For simplicity at present, we have described some functionality with comments
and proofs of correct mixing are excluded from the contract. We stress that it

10

is straightforward to extend this sketch to the full contract but we omit the fine
details.

1 pragma solidity >=0.3.0;

2
3 contract controlled { ///A contract which remembers the

initial creator and allows functions to be restricted to

the initial creator

4 address public electionCouncil;

5
6 function controlled () public {

7 electionCouncil = msg.sender;

8 }

9
10 modifier onlyElectionCouncil {

11 require(electionCouncil == msg.sender);

12 _;

13 }

14 }

15
16 ///This contract implements the voting scheme described

previously

17 ///in the paper

18 contract Election is controlled {

19
20 uint256 public groupOrder

=218882428718392752222464057452572

21 75088548364400416034343698204186575808495617 ;

22
23
24 function addEc (bytes32 point1x , bytes32 point1y , bytes32

point2x , bytes32 point2y) private returns (bytes32 ,

bytes32) {

25 bytes32 ret_1;

26 bytes32 ret_2;

27
28 assembly {

29 let size := mload(0x40)

30 mstore(size , point1x)

31 mstore(add(size , 32), point1y)

32 mstore(add(size , 64), point2x)

33 mstore(add(size , 96), point2y)

34
35 let res := call (1000, 6, 0, size , 128, size , 64)

36 ret_1 := mload(size)

37 ret_2 := mload(add(size , 32))

38 }

39
40 return (ret_1 , ret_2);

11

41 }

42
43 function multiEc (bytes32 point1x , bytes32 point1y , bytes32

scaler) private returns (bytes32 , bytes32) {

44 bytes32 ret_1;

45 bytes32 ret_2;

46
47 assembly {

48 let size := mload(0x40)

49 mstore(size , point1x)

50 mstore(add(size , 32), point1y)

51 mstore(add(size , 64), scaler)

52
53 let res := call (50000 , 7, 0, size , 96, size , 64)

54 ret_1 := mload(size)

55 ret_2 := mload(add(size , 32))

56 }

57
58 return (ret_1 , ret_2);

59 }

60
61 function negateScalaEc(bytes32 scala) private view returns

(bytes32){

62 return bytes32(groupOrder -(uint256(scala)\% groupOrder));

63 }

64
65 function negatPointEc(bytes32 point1x , bytes32 point1y)

private returns (bytes32 ,bytes32) {

66 uint256 con = groupOrder -1;

67 return multiEc(point1x , point1y , bytes32(con));

68 }

69
70 struct groupElement{

71 bytes32 x;

72 bytes32 y;

73 }

74
75 struct ElGamalCiphertext{

76 // ElGamal Ciphertext

77 bytes32 c1_x; //g^r

78 bytes32 c1_y;

79 bytes32 c2_x; //y^r v

80 bytes32 c2_y;

81 }

82
83 groupElement public pk; //y = g^x

84
85 string public question; //The question of the election

86 uint public totalVoted;

87

12

88 uint public maxNumVoters;

89 uint public numVoters;

90
91 uint public numTellers;

92
93 uint public deposit;

94 address public charity;

95
96 mapping(address => bool) public eligible;

97 mapping(address => bytes32 []) public vote;

98 mapping(uint => bytes32) public pkSharesStorage;

99
100 enum State { SETUP , VOTE , TALLYING , PROVING , FINISHED }

101 State public state;

102
103 modifier inState(State s) {

104 require(state == s);

105 _;

106 }

107
108 /// Create a new election

109 function Election(string elctionQuestion , bytes32 []

pkShares , uint numberVoters , uint eldeposit , address

elcharity) public {

110 state = State.SETUP;

111 question = elctionQuestion;

112 deposit = eldeposit;

113 charity = elcharity;

114 require(pkShares.length %2 ==0 && pkShares.length >= 2);

115 var (temp1 , temp2) = (pkShares [0], pkShares [1]);

116 pkSharesStorage [0] = pkShares [0];

117 pkSharesStorage [1] = pkShares [1];

118 for(uint i = 2; i < pkShares.length; i=i+2){

119 pkSharesStorage[i] = pkShares[i];

120 pkSharesStorage[i+1] = pkShares[i+1];

121 (temp1 , temp2) = addEc(temp1 , temp2 , pkShares[i],

pkShares[i+1]);

122 }

123 numTellers = pkShares.length /2;

124 pk = groupElement ({x: temp1 , y:temp2 });

125
126 maxNumVoters = numberVoters;

127 }

128
129 function designateVoters(address [] voterRoll) public

onlyElectionCouncil inState(State.SETUP)

{

130 require(maxNumVoters >= voterRoll.length + numVoters);

131 numVoters = numVoters + voterRoll.length;

132 for(uint i=0; i<voterRoll.length; i++) {

13

133 eligible[voterRoll[i]] = true;

134 }

135 }

136
137 function open() inState(State.SETUP) public

onlyElectionCouncil {

138 state = State.VOTE;

139 }

140
141 // cipher is expected to contain 4 elements and proofs is

expected to contain n*2 (where n is the number of

elements)

142 function Vote(bytes32 [] cipher , bytes32 [] proofs) public

inState(State.VOTE) {

143 require(//We should really change everthing else to

require or we will take money from ineligable

voters

144 msg.value >= deposit ,

145 "In sufficent money deposited."

146);

147
148 // Check the data is formatted as expected

149 require(cipher.length == 4);

150 require(proofs.length == 2);

151 // Prepare ciphertext

152 if(eligible[msg.sender]){ // Caller (voter) must be

eligable and this must be there first time

153 if(Proof(cipher , proofs)){ //Check proof , and if it

passes add the vote

154 vote[msg.sender] = cipher;

155 eligible[msg.sender] = false;

156 totalVoted ++;

157 }

158 }

159 }

160
161 function Proof (ElGamalCiphertext cipher , bytes32 challenge

, bytes32 response) private returns (bool) {

162 //We need to check the hash

163 var temp = [bytes32(hex"00"), bytes32(hex"00"),bytes32(

hex"00")bytes32(hex"00")];

164 (temp[0], temp [1]) = multiEc(cipher.c1_x , cipher.c1_y ,

negateScalaEc(challenge));

165 (temp[2], temp [3]) = multiEc(hex"

000000000000000000000000000000

166 0000000000000000000000000000000001", hex"

00000000000000000000000000000000000000

167 00000000000000000000000002", response);

168 (temp[0], temp [1]) = addEc(temp[0], temp[1], temp[2],

temp [3]);

14

169
170 bytes32 expectChallenge = keccak256(hex"

0000000000000000000000000000

171 000000000000000000000000000000000001", hex"

00000000000000000000000000000000000000

172 00000000000000000000000002", cipher.c1_x , cipher.c1_y ,

173 cipher.c2_x , cipher.c2_y , temp[0], temp[1], temp[2], temp

[3]);

174 return(challenge == expectChallenge);

175 }

176
177 function close () inState(State.VOTE) public

onlyElectionCouncil {

178 state = State.TALLYING;

179 }

180
181 bool claimUnderway = false;

182 address targetsAddress;

183 address claimerAddress;

184
185
186 //Claim

187 function claim(address target , ElGamalCiphertext cipher)

public returns (bool) {

188 claimUnderway = true;

189 targetsAddress = target;

190 claimerAddress = msg.sender;

191 }

192
193 function processClaim(bool correct) public

onlyElectionCouncil returns (bool) {

194 claimUnderway = false;

195 if(correct){ //For simplicity and cost we assume the

PET occurs off chain

196 claimerAddress.transfer(deposit /2);

197 charity.transfer(deposit /2);

198 }

199 }

200
201 //Tally

202 function tally(bytes32 [] result) inState(State.DECRYPT)

public onlyElectionCouncil returns (bool) {

203 state = State.PROVING; // Since the results are never used

onchain inputting is sufficent

204 }

205
206 function prove(uint[] proofs) inState(State.PROVING)

public onlyElectionCouncil returns (bool) {

207 state = State.FINISHED; // Since the proofs are never used

on chain inputting them is sufficent

15

208 }

209 }

Listing 1.1. Ethereum Contract

16

