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A Formally Verified Static Analysis Framework for
Compositional Contracts

Fritz Henglein1,2, Christian Kjær Larsen1, and Agata Murawska1,2

1University of Copenhagen 2Deon Digital
{henglein,c.kjaer,agata}@di.ku.dk

Abstract. A commercial or financial contract is a mutual agreement to ex-
change resources such as money, goods and services amongst multiple parties.
It expresses which actions may, must and must not be performed by its parties
at which time, location and under which other conditions.
We present a general framework for statically analyzing digital contracts, formal
specifications of contracts, expressed in Contract Specification Language (CSL).
Semantically, a CSL contract classifies traces of events into compliant (complete
and successful) and noncompliant (incomplete or manifestly breached) ones.
Our analysis framework is based on compositional abstract interpretation, which
soundly approximates the set of traces a contract denotes by an abstract value
in a lattice. The framework is parameterized by a lattice and an interpretation
of contract primitives and combinators, satisfying certain requirements. It treats
recursion by unrestricted unfolding. Employing Schmidt’s natural semantics
approach, we interpret our inference system coinductively to account for infinite
derivation trees, and prove their abstract interpretation sound.
Finally, we show some example applications: participation analysis (who is
possibly involved in a transfer to whom; who does definitely participate in
a contract) and fairness analysis (bounds on how much is gained by each
participant under any compliant execution of the contract).
The semantics of CSL, the abstract interpretation framework and its correctness
theorem, and the example analyses as instances of the abstract interpretation
framework have all been mechanized in the Coq proof assistant.

1 Introduction

Rising interest in distributed ledger technology has spawned increased development of
smart contract languages, specification and programming languages for expressing and
managing the execution state of a multi-party contract.

1.1 Digital contracts, control and settlement

Smart contract languages are often full-fledged, Turing-complete, expressive program-
ming languages that combine—and conflate— the contract (a “passive” object like
to a protocol or rulebook, corresponding to a paper contract), its control (validating
actions by the contract parties; performing actions on behalf of contract parties such
as receiving escrow payments; soliciting and reacting to other relevant events such as
stock prices in derivatives contracts) and the settlement (validation and effecting) of
resource transfers. They are thus hard to analyze both in principle and in practice.

In contrast to this, Contract Specification Language [4], used by Deon Digital [14]
for specifying contracts in a finance, insurance and other domains, is a relatively simple,



CSP-like domain-specific language with deliberately few constructs for composing con-
tracts from subcontracts. CSL is a digital contract language with its own, independent
semantics; it specifies only contracts, not their control nor their settlement.

We find it advantageous to keep contracts, control and settlement logically and
architecturally separated under the motto smart contract = contract + control +
settlement, analogous to Kowalski’s algorithm = logic + control [25]. It facilitates
having the same contract managed by a choice of contract managers: with or without
escrow [18], with different collateral requirements [15], different or changing regulatory
reporting requirements, etc.; and employing existing resource managers, notably the
banking system, without intermediation (tokenization) [19, 17].

Keeping contracts and contract managers separate supports portability, analysis,
adaptive control.1 In particular, digital contracts can be analyzed without having to
analyze the full programming language(s) in which their management and resource
transfers are coded.

1.2 Contributions

We claim the following novel contributions:

– We provide a semantic framework for digital contracts and a novel abstract
interpretation framework for soundly analyzing contracts written in the contract
specification language CSL, including support for specifying contracts using general
recursion.

– We provide illustrative analyses that represent important properties of a contract:
Who is transferring resources to whom? Who may be involved (participate) in
the contract? Who is definitely expected to participate – have they signed up to
the contract? Is the contract always roughly fair (e.g. under a mark-to-market
valuation of all resources exchanged) under any valid execution?

– We specify containment semantics, the abstract interpretation framework of CSL
and formally verify the soundness of the general framework, as well as the correct-
ness of presented example analyses, in the Coq proof assistant.

Our approach is based on CSL’s containment semantics, which is formulated as a
proof of compliance for a complete event trace. Intuitively, this is like asking only at
the very end whether the events occurred constitute a valid, complete execution. In
practice, CSL contracts are monitored online, processing one event at a time. Here,
we exploit the powerful meta-theoretic property that the monitoring semantics and
the containment semantics are equivalent. If we consider the monitoring semantics as
the primary semantics, the containment semantics crucially provides a (co)induction
principle for compositional analysis of contracts. It facilitates a powerful, but also
deceptively simple way of formulating abstract interpretations and proving their
soundness.

1.3 Paper organization

The remainder of the paper is organized as follows. In Section 2 we present a couple
of examples of contracts in CSL and discuss the analyses we would like to perform
1 If desirable; “code is law” by contract parties fixing the association of a specific immutable
contract manager is a possibility, not a necessity in this framework.

2



on them. This informal presentation of CSL is followed by a proper introduction in
Section 3. We then present our general analysis frameworkand examples of concrete
analyses of participation and fairness in Section 4. Details regarding the complete Coq
mechanization2 of the presented theory follow in Section 5. Section 6 concludes with
related work and discussion of future work.

2 Preview

We begin by looking at a few multi-party contracts and the types of analyses we might
be interested in applying to them.

The first example is a sales contract, where we use a trusted third party (escrow
manager) to make sure that a seller of an item delivers it before receiving the payment.
Here we first expect a payment from the buyer to the escrow. Then we have a choice
of either delivering the bike and getting the money from the escrow manager before
the deadline, or returning the money after the deadline. In CSL this can be written in
the following, slightly simplified way:

letrec sale[trusted, seller, buyer, goods, payment, deadline] =
Transfer(buyer, trusted, payment, _).
(Transfer(seller, buyer, goods, T | T < deadline).
Transfer(trusted, seller, payment, T’ | True).Success

+ Transfer(trusted, buyer, payment, T | T > deadline).Success)

in sale("3rd", "shop", "alice", 1 bike, 1000 EUR, 2019-09-01)

In this multiparty contract we are interested in the possible resource flows between
the involved parties. For instance, we want to check that the trusted third party
never receives money from the seller, and is only handling resources from the buyer.
We call this participation analysis, and the result of it is a relation between pairs of
agents. For the escrow sale contract this relation is Rp = {(3rd → shop), (shop →
alice), (alice→ 3rd), (3rd→ alice)}

We might also be interested in checking how much each agent can gain (or lose)
by participating in the contract. Fairness analysis infers lower and upper bounds
on the utility of participating in the contract for each participant. As an input to
the analysis, we provide a valuation function mapping a unit of a resource type to a
real number representing its value in some base currency, for instance: V = {bike 7→
900, EUR 7→ 1}. Looking at the contract, there are two possible outcomes. If the shop
does not deliver the bike, neither the shop nor Alice have any gain or loss. If the
shop delivers the bike, it gains 100 and Alice loses 100 because of the difference
between value and purchase price. The result of the analysis we would like to obtain
is Rq = {(3rd, [0, 0]), (shop, [0, 100]), (alice, [−100, 0])}.

The sale contract is fairly simple to analyze, since it does not contain any recursion
or transfers with complicated acceptance conditions. However, things can quickly get
harder, for instance if we look at this loan contract:

letrec repay[amount, interest, payments, from, to] =
Transfer(from, to, R, _ | R = amount * payments + interest).Success
+ Transfer(from, to, R, _ | payments > 1 ∧ R = amount + interest).
repay(amount, interest, payments - 1, from, to)

2 Available at https://ayertienna.github.io/csl_formalization_wtsc20.zip
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in Transfer("bob", "alice", 1200 EUR, _) .
repay(100 EUR, 10 EUR, 12, "alice", "bob")

The participation analysis is still easy, returning Rp = {(bob → alice), (alice →
bob)}. Analyzing the fairness is a bit more tricky, but it is still possible to infer that
in this case, Rq = {(alice, [−120,−10]), (bob, [10, 120])}. Now let us combine sale
with repay in the following way:

letrec sale[trusted, seller, buyer, item, payment, deadline] = ...
repay[amount, interest, payments, from, to] = ...

in sale("3rd", "shop", "bob", 1 bike, 1000 EUR, 2019-09-01);
(sale("3rd", "bob", "alice", 1 bike, 1 EUR, 2019-09-08)
|| repay(100 EUR, 5 EUR, 10, "alice", "bob"))

It may not be immediately obvious, but this is an extremely unfair contract, since the
second sale contract (or both of them) may be canceled, and yet alice is obliged to
pay back the 1000 EUR (with interest!). In this case, the potential gains and losses of
the contract participants are much greater:

Rq = {(shop, [0, 100]), (3rd, [0, 0]), (alice, [−1050,−6]), (bob, [−94, 1050])}.

These examples show that while contracts are compositional, their properties might
not be. Indeed, cleverly combining two relatively fair contracts results in a contract
where one of the parties can cheat the other. Our goal in this paper is to make it
relatively easy to build analyses like the ones above.

3 Contract Specification Language

We now give a formal introduction to CSL, a domain-specific language for compositional
contract specification. We note that the presentation of the language is limited to
features required for the contract analysis introduced in the next section. For a more
detailed overview, see Andersen et al. [4].

3.1 Syntax

CSL is used to describe possible interactions between agents exchanging resources. It
supports contract templates, i.e. (potentially mutually recursive) contracts, which may
further depend on a vector of formal parameters. A contract can therefore depend
on both expression variables and contract template variables. We denote the context
containing the former as ∆, and the latter as Γ . The basic syntax for contracts is
given by the following grammar:

c ::= Success | Failure | c1 + c2 | c1 ‖ c2 | c1; c2 |
Transfer(A1, A2, R, T |P ).c | f(a)

D ::= {fi[Xi] = ci}i
r ::= letrec D in c

The first two constructs represent finished contracts: Success denotes the successfully
completed contract, whereas Failure indicates an unfulfillable contract or a manifest
contract breach. The following three are contract combinators: an alternative of
executing contract c1 or c2 is expressed as c1 + c2; if the goal is to execute two
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contracts in parallel, c1 ‖ c2 is used; and finally, c1; c2 represents sequential composition
of contracts. Next, Transfer(A1, A2, R, T |P ).c is a resource transfer between two agents,
the most basic form of resource exchange, indicating that agent A1 is obliged to send
resource R to agent A2 at some time T such that the predicate3 P is true; the contract
then continues as c. Here A1, A2, R and T are binding occurrences of variables, whose
scope is both P and c. The variables are bound when the contract is matched against
a concrete event e = transfer(a1, a2, r, t). We use concrete values in place of binders
to indicate equality constraints, e.g. Transfer(alice, bob, R, T |P ).c is short-hand for
Transfer(A,B,R, T |P ∧A = alice∧B = bob).c. f(a) is an instantiation of a contract
template named f with a vector of concrete arguments a. Contract templates are
collected in an environment D = {fi[Xi] = ci}i, where each ci is a contract depending
on formal arguments vector Xi. Upon instantiation, these arguments become concrete
values from the expression language. Lastly, contract c using a collection of contract
templates D is written as letrec D in c.

Γ ;∆ ` Success : Contract Γ ;∆ ` Failure : Contract

(Γ ;∆ ` ci : Contract)i=1,2 op ∈ {+, ‖, ; }
Γ ;∆ ` c1 op c2 : Contract

f : ∆′ → Contract ∈ Γ ∆ ` a : ∆′

Γ ;∆ ` f(a) : Contract

(∆′ = ∆,A1 : Agent, A2 : Agent, R : Resource, T : Time)

Γ ;∆′ ` c : Contract ∆′ ` P : Boolean
Γ ;∆ ` Transfer(A1, A2, R, T |P ).c : Contract

(Γ ;∆′
i ` ci : Contract)i Γ = {fi : ∆′

i → Contract}i
` {fi[Xi] = ci}i : Γ

` D : Γ Γ ; · ` c : Contract
` letrec D in c : Contract

Fig. 1. Well-formedness of contracts

Figure 1 presents a simple type system ensuring well-formedness of contracts. It
relies on a typed expression language with a typing judgment of the form ∆ ` a : τ
(e.g. ∆′ ` P : Boolean), which can be generalized to vectors of expressions: ∆ ` a : ∆′.
In the remainder of this paper, we assume all contracts are well-formed.

Events and traces. The execution of the interactions specified in a contract takes
the form of a sequence of events, which are external to the specification. We typically
refer to this event sequence as a trace. Since CSL has only one type of basic interaction
between agents – specified as Transfer(A1, A2, R, T |P ).c – we accordingly have one
type of events that can occur in a trace: e ::= transfer(a1, a2, r, t). A transfer(a1, a2, r, t)
event indicates that a concrete agent a1 has sent resource r to agent a2 at a time t. A
trace s is then a finite sequence of these events in the order in which they occurred.
The language can be extended to support user-defined business events [2].

3 “Predicate” in the sense of a formula denoting a Boolean-valued function.
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Expression language. CSL is parametric in the choice of the expression language;
however, types Boolean, Agent, Resource and Time need to be present as those are
used to decide whether an event e = transfer(a1, a2, r, t) is accepted by contract
Transfer(A1, A2, R, T |P ).c. This is done by checking the value of expression P under
assignment {A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t}. As the value of an expression may also
depend on expression variables listed in context ∆, we need a concrete environment
δ corresponding to it. We denote a mapping of expression a to a concrete value as
Q[[a]]

δ. For convenience, we write δ |= P if Q[[P ]]
δ

= true and δ 6|= P if Q[[P ]]
δ

= false.

3.2 Contract Satisfaction

A CSL contract specifies the expected behaviour of participating parties. Above we
have provided some intuitions for accepting a single event by matching it against a
Transfer contract. Here we make these intuitions more formal, and generalize accepting
a single event to a trace satisfying a contract. The complete rules of the contract
satisfaction relation for traces are presented in Fig. 2.

δ `D ε : Success
δ `D s : c1

δ `D s : c1 + c2

δ `D s : c2
δ `D s : c1 + c2

δ `D s1 : c1 δ `D s2 : c2 (s1, s2) s

δ `D s : c1 ‖ c2
δ `D s1 : c1 δ `D s2 : c2
δ `D s1 ++ s2 : c1; c2

Q[[P ]]δ
′
= true δ′ `D s : c (δ′ = δ, {A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t})
δ `D transfer(a1, a2, r, t) s : Transfer(A1, A2, R, T |P ).c

X 7→ v `D s : c f(X) = c ∈ D v = Q[[a]]δ

δ `D s : f(a)

Fig. 2. Contract satisfaction

An empty trace (ε) satisfies a Success contract, matching the intuition that Success
denotes a completed contract. To satisfy a contract offering an alternative c1 + c2, the
trace must satisfy one of its components, c1 or c2, expressed in the next two rules.
To satisfy a parallel composition of contracts c1 ‖ c2, trace s must be decomposed
into s1 and s2, satisfying, respectively, c1 and c2. This decomposition may be an
arbitrary interleaving, denoted by (s1, s2) s. By contrast, in sequential composition
c1; c2 we require that trace s is cut into two, s = s1 ++ s2, as c1 must be satisfied
before anything happens in c2. Matching an event transfer(a1, a2, r, t) against contract
Transfer(A1, A2, R, T |P ).c is the crucial case of contract satisfaction. Concrete values
a1, a2, r and t are provided for formal arguments A1, A2, R and T , respectively, which
extend the existing concrete environment δ. In this extended environment, we check
that the expression P evaluates to true and that the remainder of the trace, s, satisfies
contract c. Finally, for a trace to satisfy a contract template instantiation, we must
change the concrete environment δ to be the evaluation of arguments a passed to the
template f . We then check the definition of template f , and verify that indeed, trace
s satisfies that contract.
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4 Static Analysis

In this section we define a general framework for analysis of compositional contracts,
and discuss requirements on its components that will guarantee the soundness of
resulting analyses. We follow by providing some concrete instances: possible and definite
participation in a contract and fairness analysis. For more details, see Larsen [26].

4.1 General Analysis Framework

CSL as a language can be decomposed into two components: contracts and predicates.
The former are a fixed, predefined set of operations that describe interactions between
participants. The latter provide a basis for accepting or rejecting an event submitted
by a participant. Naturally, analysis of compositional contracts specified in CSL will,
correspondingly, consist of two parts.

The overall objective of static analysis is to infer properties of a program (here:
contract) without the need to “run” it on all inputs. This typically involves keeping
track of how the abstract environment changes throughout execution. In CSL, the list of
contracts is static; there are no contract variables. However, the expression environment
is affected by both incoming events, which introduce new binders and restrictions
on values; as well as contract template calls, which alter the local environment. The
expression analysis is used to make these changes and restrictions explicit.

In this section, we specify requirements on both predicate and contract analysis
that guarantee the soundness of the analysis results with respect to the contract
satisfaction relation (containment) defined in Section 3.2.

Predicate analysis. To capture bindings we require an abstract environment with
abstract values M : Var → A, together with an abstraction function α : D → A from
concrete to abstract values. We often choose A to be the power-set lattice of values, in
which case α(v) = {v}. For two abstract environments m1,m2 we write m1 v m2 iff
∀x.m1(x) v m2(x).

Whether to accept or reject an incoming event is determined by the predicate P in
Transfer(A,B,R, T |P ).c. With a concrete environment δ, we can simply check whether
δ |= P holds. Working with abstract values, we want to extract the restrictions on
variables that make P evaluate to true, and use them to refine the abstract environment.
We describe this transformation as a function [[P ]]

]
: M →M⊥. As the type suggests,

this analysis also has the choice of returning ⊥ to signal unsatisfiability, making the
analysis much more precise if we can determine that a Transfer will never accept any
events. We also require an abstract expression semantics for evaluating arguments to
contract templates [[a]]

]
m : A, which in most cases is a simple lookup in m.

The properties that we require of a predicate analysis and abstract environment
are gathered on Figure 3. They include relating abstract and concrete environment, as
specified in Equation 1, which we abbreviate δ ∼ m. When the abstract and concrete
environments are related, we expect the abstract one to preserve the overapproximation
when the predicate is satisfiable, as expressed by Equation 2. Similarly, we expect
that if the predicate analysis signals unsatisfiability, then the predicate is indeed not
satisfied, as given by Equation 3. Predicate analysis transformation [[P ]]

] should in
general be monotone and failure-preserving, as specified by Equations 4 and 5. Similar
requirements regarding over-approximation and monotonicity preservation can be
stated for the [[a]]

] function.
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δ ∼ m := ∀x ∈ V ar.α(δ(x)) v m(x) (1)
δ ∼ m ∧ δ |= P → δ ∼ [[P ]]](m) (2)
δ ∼ m ∧ [[P ]]](m) = ⊥ → δ 6|= P (3)

m1 v m′
2 ∧ [[P ]]](m1) = m2 6= ⊥ ∧ [[P ]]](m′

1) = m′
2 → m2 v m′

2 (4)
m v m′ ∧ [[P ]]](m′) = ⊥ → [[P ]]](m) = ⊥ (5)

Fig. 3. Constraints for predicate analysis

Depending on the choice of expression language, predicate analysis may get costly
and complicated. It is therefore important to ensure that an “identity analysis”, which
performs no refinements, is an allowed instance we can use as the analysis of last
resort. Most implementations will also rely on some form of unification for analysis of
equality predicates, as in practice we often specify e.g. “the sender of the first event is
the same, as the receiver of the second one”.

Abstract collecting semantics. To define an abstract collecting semantics for con-
tract analysis, we begin with a complete lattice (L,v,t,u,⊥,>) describing properties
of traces. We also need a representation function β : Tr → L mapping traces to the
best properties describing them. We will use this representation function to later relate
the abstract constraints to the trace satisfaction relation shown in Figure 2. Our goal
is to define an analysis [[c]]

]
m ∈ L describing all possible traces. In other words, the

following is our approximation of soundness:

∀s ∈ Tr , (δ `D s : c) ∧ δ ∼ m⇒ β(s) v [[c]]
]
m (6)

Since we want the analysis to be compositional, we need combination functions for
+, ; and ‖, which can only combine the results for subcontracts, C+, C;, C‖ : L×L→ L.
Further, to analyze contract Transfer(A1, A2, R, T |P ).c we must combine the result for
c with the result of analyzing P given the bound variables: CTransfer : L×M×Var4 → L.
This time, the combinator might depend on the newly introduced bound variables,
the result of the subcontract and the predicate analysis. We also require a designated
lattice element LSuccess ∈ L for the analysis of the successful contract.

The generic abstract collecting semantics for CSL can be seen on Figure 4. The
analysis for both C; and C‖ are left unspecified, however for C+ we have no choice
but to use the t operator of the underlying lattice. We note that as we explicitly
distinguish between the predicate analysis returning ⊥ or a concrete value, we require
that analysis to be decidable. There are some further restrictions on the relationship
between β and the abstract collecting semantics:

β(〈〉) v LSuccess

β(t1) v `1 ∧ β(t2) v `2 → β(t1 ++ t2) v C;(`1, `2)

β(t1) v `1 ∧ β(t2) v `2 ∧ (t1, t2) t→ β(t) v C‖(`1, `2)

δ[A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t] ∼ m ∧ β(s) v `→
β(transfer(a1, a2, r, t) s) v CTransfer(`,m,A1, A2, R, T )
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D,m . c : ` Contract specification c has abstract trace `

D,m . Success : LSuccess D,m . Failure : ⊥
D,m . c1 : `1 D . c2 : `2

D,m . c1 ‖ c2 : C‖(`1, `2)

D,m . c1 : `1 D . c2 : `2

D,m . c1; c2 : C;(`1, `2)

D,m . c1 : `1 D . c2 : `2
D,m . c1 + c2 : `1 t `2

[[P ]]]m = ⊥
D,m . Transfer(A1, A2, R, T | P ).c : ⊥

D,m′ . c : ` m′ = [[P ]]]m 6= ⊥
D,m . Transfer(A1, A2, R, T | P ).c : CTransfer(`,m

′, A1, A2, R, T )

m′ = [[(a1, x1), . . . , (an, xn)]]
]m D,m′ . c : `

D,m . f(a1, . . . , an) : `
D(f) = (f [x1, . . . , xn] = c)

Fig. 4. Abstract collecting semantics

Finally, we require all the Cop, as well as CTransfer to be monotone. This facilitates
using widening techniques for both the environment and trace approximations.

Infinite abstract trees. Before we discuss the soundness of our analysis, we have to
think about what kind of derivation trees can we encounter when analyzing arbitrary
contracts. While it is true that all concrete traces of any contract will be finite, the
language still allows recursive contracts to be defined. This results in the possibility of
constructing an infinite derivation tree using rules from Figure 4. To address this, we
will now treat the D,m . c : ` judgment as coinductive.

Let UA be the set of ω-deep, finitely branching trees with nodes labeled by either
D,m. c : ` or ∆. We follow Schmidt [32] in defining the well-formed abstract semantic
trees to be the greatest fixed point of a functorial Φ̄ corresponding to the judgments
from Figure 4. Its least fixed point yields only finite trees; the greatest fixed point
includes infinite trees arrived at by infinite unfolding of recursive definitions. We
then say that the abstract semantics of the contract specification c in an abstract
environment m ∈ M is a t ∈ gfp(Φ̄) such that the root of the tree is a judgment:
root(t) = D,m . c : ` for some ` ∈ L. Intuitively, abstract semantic trees are built
using the rules from the abstract collecting semantics, but can have possibly infinite
paths.

Soundness. We can now state that abstract semantic trees soundly predict satisfying
traces.

Theorem 1 (Soundness of approximation). If H :: δ `D s : c, δ ∼ m and we
have a tree t ∈ UA with root(t) = D,m . c : ` then β(s) v `.

Proof. Structural induction on the derivation of trace satisfaction, H.

We again follow Schmidt [32] in our approach of defining a binary relation on trees,
�UA
⊆ UA × UA as the largest binary relation satisfying:

– t �UA
t′ if t′ = ∆.
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– t �UA
t′ if root(t) = D,m . c : `, root(t′) = D,m′ . c : `′, m v m′, ` v `′ and for

all subtrees i of t there exists a subtree j of t′ such that ti �UA
t′j .

Informally this is a relation between trees such that if we explore them in the same
way, t will be more precise than t′.

Theorem 2 (Soundness of widening). If m v m′, t1, t2 with root(t1) = D,m. c :
`1 and root(t2) = D,m′ . c : `2 then t1 �UA

t2.

Proof. The relation �UA
on trees is closed; the remaining cases are by induction on c.

4.2 Example Analyses

We finish this section by showing some example instantiations of the framework. For
space-efficiency reasons we omit the statements of required properties, as they are
simply concretisations of the properties mentioned in the general framework description,
this time with concrete lattices. The proofs of all these properties can be found in the
accompanying Coq development.

Potential participation. We are interested in inferring a relation on the parties
transferring resources. The intended meaning of the analysis is that if a pair of agents
(a, b) is in the result, there might be a transfer of resources from a to b in some
satisfying trace. For this analysis, the abstract environment will only track the agent
variables: Lc = P(A×A), Mc = Varagent → P(A)

The representation function β accumulates all the agents participating in the events
of a given trace.

β(transfer(a1, b1, r1, t1), . . . , transfer(an, bn, rn, tn)) = {(a1, b1), . . . , (an, bn)}

The correctness of the analysis relies on the fact that β is a homomorphism with
respect to append, interleaving and union.

Lemma 1. If s1 ++ s2 = s or (s1, s2) s then β(s) = β(s1) ∪ β(s2).

Proof. By proving two inclusions; both by induction on the derivation of s1 ++ s2 = s
or (s1, s2) s, respectively.

The analyses of Failure and Success are simple, since in both cases no one is
communicating, so LSuccess = LFailure = ⊥ = ∅. For all the contract combinators we just
join the results of the subcontracts Cop = t for op ∈ {+, ; , ‖}, since in the case of choice
we do not know statically which of the subcontracts will be satisfied. For Transfer we
take all the possible pairs of values for sender and receiver: CTransfer(l,m, a1, a2, r, t) =
l ∪ (m(a1) ×m(a2)). If we assume that the expression language only allows testing
agents for equality we can use a simple unification algorithm for the predicate analysis.

Fairness. In this analysis we are interested in estimating the cost of participating in
a contract for every agent. This time, the lattice is the total function lattice on the
intervals on the real number line augmented with ±∞. The abstract environment is a
mapping from variables to sets of agents or resources.

Lc = Var → IR, Mc = Varagent ∪Var resource → A∪R

10



We will also need V : R → R, a valuation function that provides the value of one unit
of any resource type. We can extend it to sets of resources by joining the resulting
singleton intervals:

VL(R) =
⊔
{[V (r), V (r)] | r ∈ R}.

Let ⊕ be addition on intervals, extended pointwise to maps. We make an entry with
the negative value of the resource for the sender, and an entry with the value of the
resource for the receiver.

β′
V (a1, a2, r, t) =

{
{a1 7→ [−V (r),−V (r)], a2 7→ [V (r), V (r)]} when a1 6= a2

{a1 7→ [0, 0] when a1 = a2

The representation function is simply a fold over the trace, parameterized by valuation
function V :

βV (s) = fold(⊕, {v 7→ [0, 0] | v ∈ Var},map(β′
V , s)).

In the correctness of fairness analysis we again need a result relating concatenation,
interleaving and ⊕.

Lemma 2. If s1 ++ s2 = s or (s1, s2) s then for all valuations V , β(s) = βV (s1)⊕
βV (s2).

Proof. Induction on the derivation of s1 ++ s2 = s or (s1, s2) s, respectively.

The analysis of the successful contract maps every agent to the singleton interval
of 0, representing that nothing is transferred: LSuccess = {v 7→ [0, 0] | v ∈ Var}. In the
case of + we have no other option than to join the intervals to accommodate both
alternatives, C+ = t. For sequential and parallel composition we know that both
subcontracts are satisfied, so we can add all the intervals: C; = C‖ = ⊕.

The Transfer analysis has to distinguish between two cases. If there is exactly one
sender or one receiver for the event, we can be precise. Otherwise we will have to
widen to interval to include [0, 0], since we do not know the actual agent:

VTransfer(A,R) =

{
{a 7→ VL(R)} when A = {a}
{a 7→ [0, 0] t VL(R) | a ∈ A} otherwise

We can then use this to define the analysis of the Transfer:

CTransfer(l,m, a1, a2, r, t) =

l ⊕ VTransfer(m(a1),−m(r))⊕ VTransfer(m(a2),m(r))

Definite participation. Where in the first example we wanted to know about pairs
of agents who might participate in the contract, here we want to calculate the set of
agents who definitely participate as the sender.

Formally, agent a is definitely participating (as a sender) in contract c if for
every trace s such that δ `D s : c, there exist s1, s2, b, r, t such that s = s1 ++
transfer(a, b, r, t) s2. Similarly to the potential participation example, the abstract
environment will only track the agent variables: Lc = P(A), Mc = Varagent → P(A).
Interestingly, the representation function also has to be (almost) identical:

β(transfer(a1, b1, r1, t1), . . . , transfer(an, bn, rn, tn)) = {a1, . . . , an}
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This is of course a huge overapproximation, but indeed any agent who is definitely
participating in the contract, will be captured by β.

The requirement for C+ to be the t of the lattice gives away that, compared to
the potential participation analysis, we will have to invert the ordering on the lattice
to get the required structure. We can then set C; and C‖ to be ∪ (which is u), and
define the LSuccess as ∅, or the > of the lattice.

The analysis for Transfer is, as usual, the most interesting. We only want to include
a sender of a transfer in the result, if the predicate identifies them uniquely – in other
words, if the abstract value corresponding to the sender is a singleton.

CTransfer(l,m, a1, a2, r, t) =

{
{a1} ∪ l when m(a1) is a singleton
l otherwise

In this example, the requirements for appends and interleavings are in fact identical
as in the potential participation case.

Lemma 3. If s1 ++ s2 = s or (s1, s2) s then β(s) = β(s1) ∪ β(s2).

Proof. By proving two inclusions; both by induction on the derivation of s1 ++ s2 = s
or (s1, s2) s, respectively.

5 Coq Mechanization

Both the trace semantics of CSL and the abstract collecting semantics have been
mechanized in the Coq proof assistant4. We have also mechanically verified the
argument that the concrete analyses mentioned in the previous section are indeed
correct instantiations of the general contract analysis framework. While the specifics of
the implementation are best understood by looking at the code, this section provides
a general overview of what – and how – has been mechanized. For a more in-depth
discussion of the implementation choices, see Larsen [26]

5.1 Mechanized Semantics of CSL

The formalization of CSL uses dependently typed De Bruijn indices in the style of
Benton et al. [9].

Inductive ty : Set := Agent | Resource | Timestamp | Bool.
Inductive contract (Γ : list (list ty)) (∆ : list ty) : Type

To represent a concrete environment δ, we use a heterogeneous list indexed by the
corresponding typing environment ∆. As the language of expressions we have picked
for the mechanization is extremely simple, we can denote the base types using the
corresponding Coq types. To capture contract templates, we again use heterogeneous
lists.

Definition tyDenote (τ : ty) : Set := (...).
Definition env ∆ := hlist tyDenote ∆.
Definition template_env Γ := hlist (contract Γ ) Γ .

4 Coq sources: https://ayertienna.github.io/csl_formalization_wtsc20.zip

12



Traces are represented as lists of events of appropriate types (i.e. quadruples of concrete
values). The trace satisfaction semantics from Figure 2 is encoded very naturally as
an inductive definition.

Inductive event : Set :=
| Event : tyDenote Agent → tyDenote Agent →

tyDenote Resource → tyDenote Timestamp → event.
Definition trace := list event.
Inductive csat :
∀ Γ ∆, env ∆ → template_env Γ → trace → contract Γ ∆ → Prop

5.2 Generic Analysis Framework

To implement the analysis framework as described in the previous section, we make
use of Coq’s type classes. We first define a type class describing requirements for
predicate and template arguments’ analysis.

Class PredicateAnalysis (A : ty → Type) ‘(L : SetLattice A)

Next, we define contract analysis relying on the predicate analysis being provided.

Class CSLAnalysis (L : Type) (A : ty → Type) ‘(Lattice L) ‘(PredicateAnalysis A)

Finally, we specify a coinductive type for the analysis, and prove its soundness,
corresponding to Theorem 1.

CoInductive csl_analysis L A ‘(CA : CSLAnalysis L A) :
∀ Γ ∆, contract Γ ∆ → template_env Γ → hlist A ∆ → L → Prop := (...)

Theorem csl_analysis_sound L A ‘(CA : CSLAnalysis L A) :
∀ Γ ∆ (D : template_env Γ ) (δ : env ∆) (m : hlist A ∆) (c : contract Γ ∆) r t,
aenv_correct δ m ∧ csl_analysis CA c D m r ∧ csat δ D t c → Incl (β t) r.

We also show that the environment widening is sound, corresponding to Theorem 2.
This time we are using the inductive version of the CSL analysis type.

Inductive csl_analysis L A ‘(CA : CSLAnalysis L A) :
∀ Γ ∆, contract Γ ∆ → template_env Γ → hlist A ∆ → L → Prop := (...)

Lemma env_widening_sound L A ‘(CSLAnalysis L A) :
∀ Γ ∆ (D : template_env Γ ) (m m’ : hlist A ∆) (c : contract Γ ∆) s s’,
aenv_Incl m m’ ∧ ind_csl_analysis c D m s ∧
ind_csl_analysis c D m’ s’ → Incl s s’.

Concrete analyses. The provided Coq sources contain three instances of the
CSLAnalysis class, corresponding to the examples described in the previous sec-
tion. Due to space considerations, we only give more details about the potential
participation analysis.

One key difference between the definitions on paper and in the definitions in Coq
is the formalization of sets. For the predicate analysis we use finite sets to describe
analysis results. We use a minor generalization of sets to approximate the power-set
domain of values indexed by the base type.

Inductive abstract_set τ : Type :=
| FullSet : abstract_set τ
| ActualSet : set (tyDenote τ) → abstract_set τ .
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For this particular analysis, the abstract domain consists of pairs of agents. As we
sometimes might not know anything about one of them, we must distinguish between
concrete values and “any value” placeholders.

Inductive abstract_value τ : Type :=
| AnyValue : abstract_value τ
| ActualValue : tyDenote τ → abstract_value τ .
Definition abstract_agent_pair := (abstract_value Agent ∗ abstract_value Agent).

We can then show that abstract sets form a lattice, and so do abstract values. With
those instances at hand, we still need to show all the properties required by the
contract analysis type class.

We further provide a mechanization of simple expression analysis, which is aware
of the equality constraints between literals and variables. This is sufficient for the
participation analysis, as the only operation supported for the Agent type is equality
testing.

Program Instance possible_values_predicate_analysis :
@PredicateAnalysis _ _ abstract_set_setlattice := (..)

Finally, the resulting declaration of CSLAnalysis instance can be given:

Program Instance participation_possible_values :
CSLAnalysis aap_set_lattice possible_values_predicate_analysis :=

{
L__succ := bot; C__par := join; C__seq := join; C__transfer := (..);
β := β_participation; β__transfer := (..); β__par := (..); β__seq := (..);
monotone_C__par := (..); monotone_C__seq := (..); monotone_C__transfer := (..)

}.

We refer to the source code for more details, including an example of a contract running
the obtained analysis.

6 Conclusion

In this paper we have outlined, designed, implemented, verified and mechanized a
framework for analysis of CSL contracts, illustrated by a few example analyses. While
these example analyses are relatively simple, we find the generality of our abstract
interpretation based analysis framework promising enough to capture more complex
contract properties, including those with significant legal consequence, e.g. agent
obligation in contracts, utility to participants under all executions, recognition of single-
sided contracts (i.e. ones where only one of the parties has any obligations remaining),
etc. We found that using type classes in the mechanization of our framework makes
it relatively easy to experiment with new analyses in a formal setting. Conversely,
Coq mechanization interleaved with and driving the framework design has aided in
identifying subtleties and tricky technical aspects that might be (and have been [4])
overlooked.

Related work. There is a rich literature on declarative contract languages going back
30 years [23]. Many of these are propositional in nature: they model the control flow
and discrete temporal properties, but not the real-time and quantitative aspects—how
much by which time—that are crucial in real-world contracts: Delivery of a bicycle by
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tomorrow, by the end of the century or without any deadline are crucially different, as
is having to pay $5, $500 or $500,000,000 for it.

Harz and Knottenbelt [16] provide a recent overview of contract languages that
incorporate quantitative aspects of resource transfers. Within their classification,
CSL can be placed in the high-level language tier; it is closest to DAML [13] and
Marlowe [33], which CSL predates by a decade [3, 4, 24]. CSL is motivated by the
seminal works by Peyton Jones and Eber [31] on compositional financial contracts,
and by McCarthy [28] on the Resources-Events-Agents (REA) model for economic
accounting. It draws on (propositional) process calculus and language theory, but is
extended with real-time (deadline) and quantitative resource aspects crucial to real-
world contracts. It was originally designed as a component of a DSL-based enterprise
systems architecture [20, 2], but is presently employed mostly in the financial domain
where it is used to not only express payment requirements, but also notifications and
other business events in negotiation processes.5

Most tools for analyzing smart contracts focus on security properties of Ethereum-
style smart contracts. They have identified numerous Ethereum smart contracts that
are potentially unsafe in the sense of permitting a (pseudonymous) user, such as
a miner, to draw unfair6 advantage. They typically look for unsafe programming
patterns; see e.g. Nikolic, Nikolic, Kolluri, Sergey, Saxena, Hobor [30] and Luu, Chu,
Olickel, Saxena, Hobor [27].

An important property is liquidity, the guarantee that a smart contract cannot
lock up a nonzero balance of Ether or any other user-defined resource it controls [8].
This is a special property of smart contracts that exclusively control resources they
have issued or received.7

CSL specifies digital contracts between the contract parties, independent of any
particular third-party contract manager (such as an Ethereum-style smart contract)
they may eventually employ for control (execution) [15]. The question of liquidity
is inapplicable to a digital contract, but can be posed of a contract manager. For
example, a contract manager that performs an escrow function and is guaranteed
to be abortable and in such case pays back all escrow amounts, guarantees that all
digital contracts managed by it are liquid. Likewise, a contract manager that only
monitors payments by contract parties to each other without receiving or disbursing
any payments itself trivially guarantees liquidity.

Chatterjee, Goharshady and Velner [11] present a language for expressing multiparty
games as state machines with a fixed number of rounds of concurrent moves by all
parties. They analyze them game-theoretically, that is under the assumption that
each party employs an optimal strategy (also called policy) that maximizes their
utility (gains). In this setting, a game is considered fair if the expected pay-off for no
party is substantially higher than the others’ assuming each party acts optimally for
themselves. This notion of fairness is different than our example analysis, where we

5 See www.deondigital.com
6 Unfair in the sense of providing unexpected gains or losses to participants. Note that under
the adage of “code is law” an unfair contract is still a contract that cannot be changed: it
is what it is.

7 The pattern of pseudonymous parties collateralizing participation in a contract by depositing
money with a trusted third party is common and practically unavoidable: The parties
being pseudonymous, they could just walk away once they owe more than they are owed.
This may explain why each Ethereum-style smart contract is “born” with an associated
Ether account.
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stipulate that all valid and complete executions of a contract be fair, also those where
a party acts suboptimally, e.g. when overlooking a deadline, failing to make a move
or just making a bad move because they don’t know any better. A contract that is
fair in our strong sense typically stipulates that resource exchanges be fair and be
atomically executed (possibly using an escrow manager) or permit only “bad” moves
that are outside the control of the contract partners (e.g. the price of a stock falling
after it has been purchased).

Bahr, Berthold, Elsman [7] have pioneered mechanized formalization of contract
language semantics, property checking and static analysis. They design and formalize
denotational and operational semantics of a multi-party extension of the seminal Peyton
Jones/Eber financial contract language [31], including a static check for causality and
static computation of a contract’s horizon. Causality guarantees that a contractually
required payment cannot depend on a future observation. A contract’s horizon is its
maximal life time. More recently, Annenkov and Elsman have extended this framework
to certifiably correctly compile contracts to a payout language and extract stochastic
simulation code in Futhark [21] for high-performance execution on GPUs [5]. They not
only mechanize the semantics and analysis of the financial contract language in Coq,
they automatically extract certifiably correct code from their constructive Coq proofs.

At the intersection of Ethereum-style smart contracts and mechanized semantics
and verification, Bhargavan et al. [10] have embedded Solidity and EVM in F* and
use the dependent type system of F*, which employs powerful SMT solving, to detect
unsafe programming patterns such as not checking the return value of send-messages.
Chen, Park, and Roşu have verified core properties of some important smart contracts
in Ethereum [12] using the K framework to formalize the semantics of EVM [22].
Amani, Bégel, Bortin and Staples formalize EVM and design a program logic for
expressing properties of EVM code in Isabelle/HOL [1]. Annenkov, Nielsen, Spitters
[29, 6] formalize functional programming languages for expressing smart contracts
and prove in Coq that a multiparty smart contract for decentralized voting on and
adopting proposals satisfies its high-level (partial) specification.

We believe our work is unique in providing a mechanized, formally verified frame-
work for user-definable static analyses of arbitrary (CSL-specifiable) contracts, not
only specific analyses or verification of specific (smart) contracts.

Future work. Directions for future investigation include finding more examples of
properties to be verified using the proposed general technique, including analysis of
temporal properties. One interesting case, briefly mentioned before, is the relational
analysis of relative gains of contract participants: instead of estimating intervals of
gains and losses for each participant independently, we would relate gains of one party
relative to those of others. This would allow us to perform a more sophisticated fairness
analysis.

We recognize that the style of analysis presented here has its limitations. While
we can define an analysis of a universally-quantified property (definite participation
can be one example), the approximation we get might not always be satisfactory. It
might therefore be worth investigating a more direct approach, defining properties for
whole sets of traces. Another limitation worth addressing in future developments is
the inability to reason about failing traces. While we can quite often work around this
caveat by using dual statements, we again risk loosing precision.

An orthogonal line of work is to get the existing analysis incorporated into Deon
Digital’s [14] contract specification language, a more expressive variant of CSL allowing,
among other things, for user-defined events beyond a simple Transfer.
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