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Abstract. There are many aspects to the safe use of artificial intelli-
gence. To date, comparatively little attention has been given to the spe-
cialist computational hardware that is used, especially within embedded
systems. Consequently, there is a need to identify evidence that would
support a compelling assurance argument for the safe use of off-the-shelf,
large scale, complex system-on-chip designs. To that end, we summarise
issues related to the use of multi-core processors in aviation, which con-
textualises our problem. We also discuss a collection of considerations
that provide evidence to support a compelling assurance argument.
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1 Introduction

Artificial Intelligence (AI), especially that enabled by Machine Learning (ML),
is being used in an increasing number of applications, some with potential safety
impacts. This has motivated a large body of work aimed at specific aspects of Al,
including: susceptibility to adversarial examples [21]; explainability [19]; formal
specification [16]; through-lifecycle assurance [4]; and ML safety engineering [24].
Less attention has been paid to the assurance of the computational hardware that
supports Al. Correct functioning of this hardware is necessary for the correct
functioning of AI. This hardware is also significantly more complex than anything
that is currently being used in other safety-critical domains (e.g. aviation).

We briefly discuss (in Sect. 2) the introduction of Multi-Core Processors
(MCPs) into the aviation domain, which provides helpful context. We then (in
Sect. 3) present a structured set of evidence-generating activities that support
the hardware-related portion of an assurance argument. Since it represents the
most common case, we focus on the use of large-scale, complex, off-the-shelf
hardware, in the form of System-on-Chips (SoCs). For brevity, we refer to this
as Al-enabling hardware. A sumary is provided (in Sect. 4).
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2 Multi-core Processors in Aviation

Before discussing modern Al-enabling hardware it is informative to review the
introduction of MCPs in the aviation domain.

Use of MCPs is beneficial because they provide increased computational
power. It is necessary because many single-core processors are becoming obso-
lete. However, the introduction of MCPs has faced challenges and proceeded at a
controlled, relatively slow pace. A review of relevant guidance material suggests
that the two main challenges were interference and non-determinism [9]. Inter-
ference happens when one application unintentionally (and, typically, adversely)
affects the behaviour of another. Use of shared resources, for example, inter-
connects and lower-level caches is a typical cause. Unless it is understood and
mitigated, interference will make behaviour non-deterministic.

There are four main aspects to assuring the use of MCPs in aviation:

— Control the configuration of the MCP;

— Understand and mitigate potential interference paths;

— Verify behaviour of software applications running on the MCP;

— Implement architectural protections (beyond the level of the MCP).

3 Al-Enabling System-on-Chip

Approaches that support use of MCPs are insufficient to support the assurance
of Al-enabling hardware. There are two main reasons for this. Firstly, SoCs are
significantly more complex than MCPs. Secondly, aviation-related MCP guid-
ance takes a traditional approach to safety, protecting against random chance
events. We adopt a wider view that incorporates both safety and security.

We follow the aviation domain guidance in asserting that a SoC should be
assured in the context of the software associated with a particular deployment.
Providing generally-applicable assurance that a SoC can be used for all possible
software applications is practically impossible.

The following subsections discuss topics that would be expected to contribute
to an assurance argument for Al-enabling hardware. The subsections follow the
four main aspects of MCP use in the aviation domain, as shown in Table 1;
italics show cases where the subsection is of indirect relevance to the aspect.

Due to space limitations, the subsections do not cover all aspects of hardware
assurance. Our focus on off-the-shelf, physical items means that considerations
applied during design and manufacturing considerations are outside our scope.

3.1 Configuration

Configuration settings can significantly change hardware behaviour, for exam-
ple, by controlling cache allocations and changing power management strategies.
Consequently, it is important that configuration settings are documented, justi-
fied, controlled and monitored (including at run time).
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Table 1. Considerations and relationships to main aspects of MCP use in the aviation
domain (italic text shows an indirect relationship).

Aspect of MCP use Consideration (Subsection)

Control configuration Configuration (3.1)

Host and Target (3.3)

Manage interference paths | Interference paths (3.2)
Worst-Case Execution Time (3.5)
Verify behaviour Host and Target (3.3)

Test Coverage (3.4)

Worst-Case Execution Time (3.5)
Logging (3.6)

Safety Islands (3.7)
Hardware-Based Trojans (3.8)
Architectural protections | System-Level Architecture (3.9)

Microcode updates, can significantly change detailed behavioural aspects, for
example, speculative execution [22]. Consequently, management of configuration
settings needs to include management of microcode updates.

Particular attention also needs to be paid to debug features. These features
are not intended to be used in operational settings, so they may be developed
with less rigour. Debug features also provide access to low-level information,
which should not generally be exposed during operational use.

3.2 Interference Paths

Initially, potential interference paths should be identified from a theoretical per-
spective. Buses, caches and interconnects are obvious candidates; interrupt han-
dling routines may also be relevant. This theoretical investigation should inform
an empirical investigation, which relies on software. Applications intended to be
run on the system should be considered, as well as “enemy processes”, which are
deliberately designed to try and cause interference [13].

Much of the literature related to interference paths considers multiple soft-
ware applications interfering with each other, with effects on timing. Al-enabling
hardware may introduce the possibility of “self-interference”, with an effect on
computation results. For example, the order in which floating point numbers are
summed can change the result of the summation. Unless care is taken, this effect
could occur in parallelised calculations [23].

3.3 Host and Target

AT is often developed on “host” hardware, before deployment on to “target”
hardware, embedded within the operational system. Differences between host
and target hardware can lead to unexpected effects.
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We note that some Al-enabling hardware may be suitable for developing neu-
ral networks. This may allow the same hardware to be used for development and
operation. Provided the same configuration settings were used in both settings,
this would largely mitigate the concerns discussed in this subsection.

Numerical precision may differ between host and target (e.g. to allow deploy-
ment on constrained hardware [12]). Exhaustively running all samples (from the
Training, Test and Verification (TTV) data sets) through operational software
on the target hardware protects against consequences of this difference. Whilst
conceptually simple, this may be impractical. If so, a sampling-based approach
may be used, provided samples are chosen with care. Useful inspiration may be
drawn from approaches used to design computer-based experiments [18].

The approaches discussed above are focused on the performance of the final
ML-trained model on the target hardware. From an engineering perspective,
this can lead to increased risk late in a project, with host-target differences only
becoming apparent towards the end of the activity. To reduce this risk there
may be benefit in using simple models, that are quick to develop and analyse,
to identify key differences between host and target hardware.

Large-scale, on-chip integration can increase the importance of Process Varia-
tion (PV), which occurs as a result of manufacturing imperfections. These imper-
fections can lead to significant variations in power consumption and timing viola-
tions [17]. Consequently, there is value in supplementing the generally-applicable
testing outlined above with some level of test on each and every SoC.

3.4 Test Coverage

A complete discussion of software assurance issues is outside the scope of this
paper, but a brief discussion of test coverage is relevant. Here, we follow [4], which
also provides an overview of general ML assurance issues. When considering test
coverage, it is helpful to consider four different domains, or sets of inputs:

1. The input domain space, Z, which is the set of inputs that the model can
accept.

2. The operational domain space, @ C I, which is the set of inputs that the
model may be expected to receive when used operationally.

3. The failure domain space, F C Z, which is the set of inputs the model may
receive if there are failures elsewhere in the system.

4. The adversarial domain space, A C Z, which is the set of inputs the model
may receive if it is being attacked by an adversary.

Separate coverage arguments should be provided for all of these domains.
The argument relating to Z should consider the number of inputs tested and
their distribution across the input space (potentially informed by designs for
computer experiments [18]); situation coverage [2] may be useful when thinking
about O; coverage of F should be informed by analysis of system architecture,
focusing on subsystems that acquire data that is subsequently used as an input
to an ML model; and coverage of A should be based on an understanding of
possible attacks [10].
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3.5 Worst-Case Execution Time

One reason MCPs are of concern in aviation is their potential effect on Worst-
Case Execution Time (WCET). This could be important if an Al-enabling SoC
is being used as part of a vehicle control loop, for example. Activities discussed
above, notably understanding interference paths and test coverage, should pro-
vide helpful information to support assurances related to WCET.

In addition, particular inputs may affect execution time. For example, it is
well-known that poorly-implemented cryptographic routines can show significant
timing differences depending on inputs [15]. This may not be apparent for typical
neural networks, where each input follows the same path through the program
code. However, input-dependent timing may be apparent in some algorithms
(e.g. bypassing later layers of a neural network [11]).

Specific bit patterns may also affect timing. For example, in traditional (i.e.
non-Al) computing, subnormal numbers can have a significant effect on execu-
tion time [3]. If the operational software is based on floating point numbers then
bit patterns provide another aspect of measuring coverage across Z.

3.6 Logging

Learning from incidents is an important part of a good safety culture. Sufficient
Al-related information needs to be logged to support this learning. From our
perspective, logging raises two key questions.

Firstly, whether logging relies on features of the SoC or whether it uses other
system features (e.g. recording inputs and outputs at the SoC boundary). If SoC
features are used then logging may create a new interference path, or emphasise
a previously-identified one.

Secondly, (assuming SoC features are used), whether logging-related demands
are constant, or whether they vary depending on the prevailing situation. Varying
logging demands are another factor that can affect WCET.

3.7 Safety Islands

A large-scale, complex SoC intended for embedded use within a safety-related
context may include a “safety island”. This is a specific set of isolated hardware
that is dedicated to fault handling [7].

In the case of off-the-shelf hardware, full details of any safety island are
unlikely to be available. Nevertheless, areas of potential interference between
the safety island and the rest of the SoC should be identified. This is a special
case of interference path analysis.

The safety island would be expected to detect and respond to failures else-
where on the SoC. This functionality should be examined as part of test activities
(e.g. by inducing failures in different parts of the SoC).
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3.8 Hardware-Based Trojans

Hardware-based Trojans are an acknowledged potential vulnerability in software
systems [1]. Consequently, they present a notable threat to the use of AI in
safety-related systems.

Theoretically, full control of the entire supply chain is sufficient to protect
against hardware-based Trojans. In reality, the size and dynamic nature of the
supply chain mean this level of control is impossible. Supply chain monitoring
is important, but a multi-layered argument is needed.

Thinking about the standard cyber security Confidentiality, Integrity and
Availability (CIA) triad, availability should be detectable and manageable by
traditional safety measures. From a system perspective, this is the same sit-
uation as a hardware failure of the SoC. Handling this situation will require
system-level architectural features. If there is a means of checking the Al output
then traditional safety measures should also be able to detect loss of integrity. If
the output cannot easily be checked then, as before, system-level architectural
features should protect against the hazard that “Al provides an undetectable
incorrect result”. Confidentiality is very difficult to protect. System-level archi-
tectural designs, which, from a confidentiality perspective, treat the SoC as an
untrusted “black box” may be the most appropriate way of mitigating this risk.

3.9 System-Level Architecture

Activities to support the use of computational hardware in safety-related
domains can be split between fault prevention and fault tolerance, with the
latter subdividing into fault detection and fault recovery. (This represents a sig-
nificantly simplified view of the concepts and taxonomy of dependable and secure
computing [6].) Much of the previous discussion has focused on prevention. Tol-
erance is typically achieved through system-level architectural design.

Tolerance can be achieved by using some form of diversity. Historically, one
option involved using multiple, independent software teams. Experience has
shown there are difficulties with this approach: it is costly; and it is difficult
to quantify its benefits, which might not be as much as first appears [14]. ML
development approaches change the cost-profile of software development [5].
They replace some expensive human effort for potentially less-expensive com-
pute power. This may make diversity cheaper to achieve. Furthermore, the large
number of samples in the TTV data sets may make it easier to measure diversity.

Diversity could also be achieved by using different ML development tools
[20] or using different Al-enabling hardware. Another form of diversity could
be achieved by combining an Al channel with a monitor channel implemented
using traditional software techniques [8]. This would reduce the assurance burden
borne by the AI channel (and the Al-enabling hardware). However, defining a
suitable monitor is a non-trivial task.
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4 Summary

Some form of assurance argument will be needed to support the use of Al in
safety-related applications. Considerations related to Al-enabling hardware, typ-
ically large-scale, complex, off-the-shelf SoCs, will be an important part of that
argument. This argument needs to investigate the hardware in the context of
the hosted software applications. In loose terms we require confidence that:

— It will work, in general;

— It will work, in unlikely situations;
— Errors (i.e. failures to work) will be detected,;
— Information will be protected (i.e. security).

Information to support those assertions should be generated from a variety
of activities. Examples (mapped to subsections of this paper) are indicated in
Table 2: % marks activities that directly support an assertion; v marks activities

where support is indirect.

Table 2. Support provided by activities to assertions (% indicates direct support, ¥¢

indicates indirect support).

Activity (Subsection)

Work,
in general

Work,
in unlikely

Detect
errors

Protect
information

History of previous use (3-Intro)

W

Document and justify config. (3.1)

*

Run-time checks on config. (3.1)

Microcode updates (3.1)

Control debug features (3.1)

Theoretical interference (3.2)

* k|| |

Empirical interference: apps (3.2)

Empirical interference: enemy procs (3.2)

Self-interference (3.2)

Effects of numerical precision (3.3)

Exhaustive coverage of TTV data sets (3.3)

Sampled coverage of TTV data sets (3.3)

Simple host-target comparisons (3.3)

Test coverage of Z (3.4)

Test coverage of O (3.4)

*

Test coverage of F (3.4)

LR B R R SRR D S AR e

Test coverage of A (3.4)

Testing on each and every SoC (3.4)

Effect of specific inputs on WCET (3.5)

Effect of specific bit patterns on WCET (3.5)

Potential effect of logging (3.6)

| % | %

Safety island independence (3.7)

Safety island functionality (3.7)

Partial control of supply chain (3.8)

Monitoring SoC manufacturer errata (3.8)

PR R AR R S SR P B S IR I

*

Wrapping Intellectual Property (IP) cores (3.8)

Multiple AI channels (3.9)

*

AI and non-Al channels (3.9)
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Collectively, these activities cover the assertions we wish to make. This pro-
vides some confidence that a compelling assurance argument can be made to
support the use of Al-enabling hardware in a safety-related system. However,
there is a danger that Table 2 can be interpreted too favourably. There is much
work to be done before all of the activities are well understood and routinely
implemented as part of general engineering practice. Whilst this paper provides
a signpost towards a compelling argument, we still have some way to go before
we reach that destination.
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