Skip to main content

Identification of Antimicrobial Peptides from Macroalgae with Machine Learning

  • Conference paper
  • First Online:
Book cover Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020) (PACBB 2020)

Abstract

Antimicrobial peptides (AMPs) are essential components of innate host defense showing a broad spectrum of activity against bacteria, viruses, fungi, and multi-resistant pathogens. Despite their diverse nature, with high sequence similarities in distantly related mammals, invertebrate and plant species, their presence and functional roles in marine macroalgae remain largely unexplored. In recent years, computational tools have successfully predicted and identified encoded AMPs sourced from ubiquitous dual-functioning proteins, including histones and ribosomes, in various aquatic species. In this paper, a computational design is presented that uses machine learning classifiers, artificial neural networks and random forests, to identify putative AMPs in macroalgae. 42,213 protein sequences from five macroalgae were processed by the classifiers which identified 24 putative AMPs. While initial testing with AMP databases positively identifies these sequences as AMPs, an absolute determination cannot be made without in vitro extraction and purification techniques. If confirmed, these AMPs will be the first-ever identified in macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zasloff, M.: Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389–395 (2002)

    Google Scholar 

  2. Hancock, R.E., Lehrer, R.: Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16(2), 82–88 (1998)

    Google Scholar 

  3. Powers, J.P.S., Hancock, R.E.: The relationship between peptide structure and antibacterial activity. Peptides 24(11), 1681–1691 (2003)

    Google Scholar 

  4. Bahar, A.A., Ren, D.: Antimicrobial peptides. Pharmaceuticals 6(12), 1543–1575 (2013)

    Google Scholar 

  5. Fernandes, J.M., Smith, V.J.: A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem. Biophys. Res. Commun. 296(1), 167–171 (2002)

    Google Scholar 

  6. Fernandes, J.M., Kemp, G.D., Molle, M.G., Smith, V.J.: Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J. 368(2), 611–620 (2002)

    Google Scholar 

  7. Patat, S.A., Carnegie, R.B., Kingsbury, C., Gross, P.S., Chapman, R., Schey, K.L.: Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271(23–24), 4825–4833 (2004)

    Google Scholar 

  8. Seo, J.K., Kim, D.G., Oh, R., Park, K.S., Lee, I.A., Cho, S.M., Lee, K.Y., Nam, B.H.: Antimicrobial effect of the 60S ribosomal protein L29 (cgRPL29), purified from the gill of pacific oyster, Crassostrea gigas. Fish Shellfish Immunol. 67, 675–683 (2017)

    Google Scholar 

  9. Amsler, C.D.: Algal Chemical Ecology. Springer, Berlin (2008)

    Google Scholar 

  10. Coelho, S.M., Rijstenbil, J.W., Brown, M.T.: Impacts of anthropogenic stresses on the early development stages of seaweeds. J. Aquat. Ecosyst. Stress Recovery 7(4), 317–333 (2000)

    Google Scholar 

  11. Lee, E.Y., Lee, M.W., Fulan, B.M., Ferguson, A.L., Wong, G.C.: What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7(6), 20160153 (2017)

    Google Scholar 

  12. Chou, K.C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2004)

    Google Scholar 

  13. Gupta, V., Jain, M., Reddy, C.: Macroalgal functional genomics: a missing area. In: Systems Biology of Marine Ecosystems, pp. 3-12. Springer, Cham (2017)

    Google Scholar 

  14. Wang, G., Li, X., Wang, Z.: APD3 - the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016)

    Google Scholar 

  15. Lata, S., Sharma, B.K., Raghava, G.P.S.: Analysis and prediction of antibacterial peptides. BMC Bioinform. 8, 263 (2007)

    Google Scholar 

  16. Veltri, D., et al.: Deep learning improves antimicrobial peptide recognition. Bioinformatics 34, 2740–2747 (2018)

    Google Scholar 

  17. The UniProt Consortium: UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018)

    Google Scholar 

  18. Li, H.: Smile - statistical machine intelligence & learning engine (2016)

    Google Scholar 

  19. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Briefings Bioinform. 18(5), 851–869 (2017)

    Google Scholar 

  20. Heaton, J.: Introduction to Neural Networks with Java. Heaton Research, St. Louis (2008)

    Google Scholar 

  21. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design. Martin Hagan, USA (2014)

    Google Scholar 

  22. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: International Workshop on Machine Learning and Data Mining in Pattern Recognition, pp. 154-168. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  23. Nakai, K., Kidera, A., Kanehisa, M.: Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng. 2, 93–100 (1988)

    Google Scholar 

  24. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202–D205 (2008)

    Google Scholar 

  25. Li, B.Q., Zhang, Y.C., Huang, G.H., Cui, W.R., Zhang, N., Cai, Y.D.: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS One 9(1), e86729 (2014)

    Google Scholar 

  26. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One 12(6), e0177678 (2017)

    Google Scholar 

  27. Pidutti, P., Federici, F., Brandi, J., Manna, L., Rizzi, E., Marini, U., Cecconi, D.: Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03. J. Appl. Microbiol. 124(2), 398–407 (2018)

    Google Scholar 

  28. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  29. Waghu F., Barai R., Gurung P, Idicula S.: CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. (2015)

    Google Scholar 

  30. Hazlett, L., Wu, M.: Defensins in innate immunity. Cell Tissue Res. 343(1), 175–188 (2011)

    Google Scholar 

  31. Cho, J.H., Sung, B.H., Kim, S.C.: Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta Biomembr. 1788(8), 1564–1569 (2009)

    Google Scholar 

  32. Sathyan, N., Philip, R., Chaithanya, E., Anil Kumar, P., Sanjeevan, V., Singh, I.: Characterization of Histone H2A derived antimicrobial peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata and its evolutionary divergence with respect to CO1 and Histone H2A. ISRN Mol. Biol. (2013)

    Google Scholar 

  33. Jodoin, J., Hincke, M.T.: Histone H5 is a potent antimicrobial agent and a template for novel antimicrobial peptides. Sci. Rep. 8(1), 1–15 (2018)

    Google Scholar 

  34. Tang, S.S., Prodhan, Z.H., Biswas, S.K., Le, C.F., Sekaran, S.D.: Antimicrobial peptides from different plant sources: isolation, characterisation, and purification. Phytochemistry 154, 94–105 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Enterprise Partnership Scheme, the Ireland Research Council (IRC) and This is Seaweed (https://thisisseaweed.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Caprani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caprani, M., Slattery, O., O’Keeffe, J., Healy, J. (2021). Identification of Antimicrobial Peptides from Macroalgae with Machine Learning. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_1

Download citation

Publish with us

Policies and ethics