Skip to main content

DeepACPpred: A Novel Hybrid CNN-RNN Architecture for Predicting Anti-Cancer Peptides

  • Conference paper
  • First Online:
Book cover Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020) (PACBB 2020)

Abstract

Anti-cancer peptides (ACPs) are a promising alternative to traditional chemotherapy. To aid wet-lab and clinical research, there is a growing interest in using machine learning techniques to help identify good ACP candidates computationally. In this paper, we describe DeepACPpred, a novel deep learning model composed of a hybrid CNN-RNN architecture for predicting ACPs. Using several gold-standard ACP datasets, we demonstrate that DeepACPpred is highly effective compared to state-of-the-art ACP prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

  2. 2.

    https://maxpumperla.com/hyperas/.

References

  1. Boopathi, V., Subramaniyam, S., Malik, A., Lee, G., Manavalan, B., Yang, D.C.: Macppred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Molecular Sci. 20(8), 1964 (2019). https://doi.org/10.3390/ijms20081964. https://pubmed.ncbi.nlm.nih.gov/31013619, 31013619[pmid]

  2. Chen, W., Ding, H., Feng, P., Lin, H., Chou, K.C.: iacp: a sequence-based tool for identifying anticancer peptides. Oncotarget 7(13), 16895–16909 (2016). https://www.ncbi.nlm.nih.gov/pubmed/26942877[pmid]

  3. Coates, A., Abraham, S., Kaye, S., Sowerbutts, T., Frewin, C., Fox, R.,Tattersall, M.: On the receiving end — patient perception of the side-effects of cancer chemotherapy. Euro. J. Cancer Clinical Oncol. 19(2), 203–208 (1983).https://doi.org/10.1016/0277-5379(83)90418-2,http://www.sciencedirect.com/science/article/pii/0277537983904182

  4. Gaspar, D., Veiga, A.S., Castanho, M.A.: From antimicrobial to anticancer peptides a review. Front. Microbiol. 4, 294 (2013). https://doi.org/10.3389/fmicb.2013.00294

    Article  Google Scholar 

  5. Grisoni, F., Neuhaus, C.S., Gabernet, G., Muller, A.T., Hiss, J.A, Schneider, G.: Designing anticancer peptides by constructive machine learning. ChemMedChem, 13(13), 1300–1302 (2018). https://doi.org/10.1002/cmdc.201800204, https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201800204

  6. Grisoni, F., Neuhaus, C.S., Hishinuma, M., Gabernet, G., Hiss, J.A., Kotera, M., Schneider, G.: De novo design of anticancer peptides by ensemble artificial neural networks. J. Molecular Model. 25(5), 112 (2019). https://doi.org/10.1007/s00894-019-4007-6

    Article  Google Scholar 

  7. Harris, F., Dennison, S.R., Singh, J., Phoenix, D.A.: On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev. 33(1), 190–234 (2013). https://doi.org/10.1002/med.20252

    Article  Google Scholar 

  8. Hoskin, D.W., Ramamoorthy, A.: Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778(2), 357 – 375 (2008). https://doi.org/10.1016/j.bbamem.2007.11.008

  9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  10. Longley, D., Johnston, P.: Molecular mechanisms of drug resistance. J. Pathol. 205(2), 275–292 (2005). https://doi.org/10.1002/path.1706. https://onlinelibrary.wiley.com/doi/abs/10.1002/path.1706

    Article  Google Scholar 

  11. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  12. Mahmud, M., Kaiser, M.S., Hussain, A.: Deep learning in mining biological data (2020)

    Google Scholar 

  13. Manavalan, B., Basith, S., Shin, T.H., Choi, S., Kim, M.O., Lee, G.: Mlacp: machine-learning-based prediction of anticancer peptides. Oncotarget 8(44), 77121–77136 (2017)

    Article  Google Scholar 

  14. Meher, P.K., Sahu, T.K., Saini, V., Rao, A.R.: Predicting antimicrobialpeptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into chou’s general pseaac. Scientific Reports 7(42362) (2017)

    Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

  16. Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., Raghava, G.P.S.: In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 3(2984), 2045–2322 (2013)

    Google Scholar 

  17. Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., Raghava, G.P.S.: In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 3(1), 2984 (2013). https://doi.org/10.1038/srep02984

    Article  Google Scholar 

  18. Wu, C., Gao, R., Zhang, Y., De Marinis, Y.: PTPD: predicting therapeutic peptides by deep learning and word2vec. BMC Bioinform. 20(1), 456 (2019). https://doi.org/10.1186/s12859-019-3006-z

    Article  Google Scholar 

  19. Yi, H.C., You, Z.H., Zhou, X., Cheng, L., Li, X., Jiang, T.H., Chen, Z.H.: ACP-DL: a deep learning long short-term memory model to predict anticancerpeptides using high-efficiency feature representation. Molecular therapy. Nucleic acids 17, 1–9 (2019).https://doi.org/10.1016/j.omtn.2019.04.025,https://www.ncbi.nlm.nih.gov/pubmed/31173946, 31173946[pmid]

Download references

Acknowledgments

This work was made possible by the publicly available datasets by Balachandran et al.  [13], Yi et al.  [19], and Meher et al.  [14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lane, N., Kahanda, I. (2021). DeepACPpred: A Novel Hybrid CNN-RNN Architecture for Predicting Anti-Cancer Peptides. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_7

Download citation

Publish with us

Policies and ethics