
On the performance impact of using JSON,
beyond impedance mismatch

Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

Universitat Politècnica de Catalunya (BarcelonaTech), Barcelona, Spain
{moditha,snadal,aabello}@essi.upc.edu

Abstract. NOSQL database management systems adopt semi-structured
data models, such as JSON, to easily accommodate schema evolution and
overcome the overhead generated from transforming internal structures
to tabular data (i.e., impedance mismatch). There exist multiple, and
equivalent, ways to physically represent semi-structured data, but there
is a lack of evidence about the potential impact on space and query
performance. In this paper, we embark on the task of quantifying that,
precisely for document stores. We empirically compare multiple ways
of representing semi-structured data, which allows us to derive a set of
guidelines for efficient physical database design considering both JSON
and relational options in the same palette.

1 Introduction

The relational model was defined as an abstraction level to gain independence
of the file system and any internal storage structure [6]. Thus, we could gain
flexibility and interoperability without losing efficiency by following a tabular
representation and some normal forms. Indeed, the first normal form (1NF)
established that attribute domains had to be atomic (i.e., they could be neither
compound-complex structures nor arrays). However, a rigid tabular structure
is not adequate in modern agile software development, where the schema is
under continuous evolution. Moreover, a well-known problem of RDBMS is the
impedance mismatch, defined as the overhead generated by transformations from
internal structures to tables, and then into programming structures [3].

The development of NOSQL systems, which adopt more flexible data rep-
resentations, allowed to overcome the impedance mismatch [14]. Such data for-
mats (e.g., JSON), are directly mapped from disk to memory.This is additionally
achieved by breaking 1NF, allowing typical programming nested structures and
arrays in the attribute values (e.g., MongoDB encourages denormalization1).
Furthermore, such semi-structured formats, also allow to skip schema declara-
tion, which is beneficial in highly evolving applications [13]. Nevertheless, it is
not clear whether denormalization and schemaless is a conscious design choice,
or merely a paradigm imposed by the limitations of NOSQL systems. Yet, the

Partly funded by the European Commission through the programme “EM IT4BI-DC”.
We thank Braulio Blanco for assisting on the first version of the experiments.

1https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2

Hewasinghage, M.; Nadal, S.; Abelló, A. On the performance impact of using JSON, beyond impedance mismatch. A: Conference on
Advances in Databases and Information Systems. "New Trends in Databases and Information Systems, ADBIS 2020 short Papers: Lyon,
France, August 25–27, 2020: proceedings". Berlín: Springer, 2020, p. 73-83. ISBN 978-3-030-54623-6.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-54623-6_7.

2 Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

flexibility offered by NOSQL comes at a price, where each one of the associated
design choices may widely change their physical representation, and thus pro-
foundly impact performance. Practitioners have ignored this, and today make
binary design decisions based on rules, and programming needs with no over-
all view of the system needs [12]. Thus, it is vital to consider the benefits and
drawbacks posed by these different alternatives during the design process [5].
Relational and semi-structured data models, are not a simple binary choice, but
a continuum of options with different degrees of (de)normalization.

In this paper, we quantify the performance impact of physical database design
choices on NOSQL systems, focusing on the JSON data model. To this end, dif-
ferent design choices (i.e., equivalent representational differences) related to both
metadata (i.e., schema), such as attribute embedding or optionality, and data,
such as nested objects or arrays, are quantitatively scrutinized. We acknowledge
that many DBMS features can affect performance (i.e., concurrency control and
recoverability mechanism, distribution and parallelism management, connection
pools and setup, etc.).Nevertheless, we only study the impact of design decisions
on a semi-structured data model, being agnostic of the technological choice. Our
main contributions are as follows: 1. We identify the main physical design charac-
teristics of semi-structured data and compare them to their structured counter-
part. 2. We empirically quantify the impact of design choices in semi-structured
data. 3. We evaluate the different designs in a relational and NOSQL DBMS.

The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 presents design differences. Section 4 shows experimental results.
Sections 5 and 6 discuss the experimental findings and conclude the paper.

2 Related Work

[4] abstracts and homogenizes the modeling commonalities of NOSQL systems.
It considers databases as sets of collections, which in turn are sets of blocks,
finally represented by sets of entries. Similarly, [9] proposes a subject-oriented
methodology to design NOSQL databases. A conceptual model of the system is
converted into an equivalent hypergraph representation, such that hyperedges
identify specializations or aggregations among entities. For each hyperedge, an
specific data model, either relational or co-relational. [7] proposes a method to
generate NOSQL databases from a high-level conceptual model automatically.
The authors propose the UML-like Generic Data Metamodel, integrating struc-
tural and data access patterns. Then, a set of transformation rules generate the
specific constructs for the target model (e.g., document or column-family).

Regarding performance, [8] benchmarks PostgreSQL and MongoDB. An OLAP-
like workload is evaluated in both systems on real-world data from Github. The
benchmark concludes that PostgreSQL yields higher performance results, but
different design alternatives are not explored. [11] explores the impact of nor-
malized collections w.r.t. embedded objects in MongoDB, and empirically shows
that querying embedded objects is orders of magnitude faster than their normal-
ized counterpart using joins. Similarly, [15] benchmarks systems in the NOSQL
realm (i.e., MongoDB and CouchDB) as well as RDBMSs with built-in JSON

On the performance impact of using JSON, beyond impedance mismatch 3

support (i.e., PostgreSQL and MySQL). This work differs from our setting, as
it focuses on CRUD transactions for a simple document structure.

3 Representational Differences

The term semi-structured describes data that have some structure but is neither
regular nor known a priori [1]. For example, a JSON document consists of a
nested hierarchy of key-value pairs with a single root. Child documents are an
unordered sequence list of pairs with optional presence. Hence, JSON documents
are self-descriptive, and do not require a schema declaration, despite a known
structure facilitates storage and encourages queries [2]. Conversely, a structured
database distinguishes schema and instances. The former is a set of attributes,
each with a concrete domain, while the later is a tuple of values that belong to the
corresponding domain in the previously declared schema. Hence, here, we present
representational differences between semi-structured and structured data (i.e.,
equivalent alternatives to represent some datum exploiting the characteristics
offered by each of both models), and discuss their potential impact on storage
size, data insertion, and query performance. For each representational difference,
we present patterns used in the empirical validation in Section 4.

3.1 Schema variability

A common schema is defined for all instances in structured databases, but in
JSON, there may exist potentially different document schemata inside the same
collection. Here, we focus on comparing alternative ways to represent the schema.

3.1.1 Metadata representation

Representing different schemata across JSON documents entails embedding their
metadata into each instance (Fig. 1). This clearly impacts negatively the size
of the database and consequently query performance. The more attributes are
present, the more metadata (i.e., attribute names) will be embedded into each
document. Additionally, the ratio between the size of data and metadata is
clearly an important factor to consider (i.e., attribute name length w.r.t. its
values). Thus, we need to consider (a) the absolute amount of metadata by
analysing different number of attributes (from 1 to n), and (b) the relative
amount of metadata by analysing different ratios (by increasing the value length
from 1 to m, while at the same time that decreases the attribute name length
in the same number of characters).

JSON
{ _id: 123,
A1: "x",

. . .
An: "x" }

. . .

{ _id: 123,
64-m︷ ︸︸ ︷

A . . . A1: "

m︷ ︸︸ ︷
x . . . x", . . .

64-m︷ ︸︸ ︷
A . . . An: "

m︷ ︸︸ ︷
x . . . x" }

Tuple

_id A1 . . . An
123 "x" . . . "x"

. . . _id

64-m︷ ︸︸ ︷
A . . . A1 . . .

64-m︷ ︸︸ ︷
A . . . An

123 "

m︷ ︸︸ ︷
x . . . x" . . . "

m︷ ︸︸ ︷
x . . . x"

Fig. 1: Alternative representations of Metadata

4 Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

3.1.2 Attribute optionality

Another feature of the semi-structured data model is the possibility to skip the
representation on an attribute in the absence of its value (as the case of J-Abs,
Fig. 2). However, it also supports to, either use a special value outside the domain
(as in J-NULL) or use a specific value inside the attribute domain (as in J-666).
Notice that in a relational representation, as the schema is fixed and common to
all instances, only the last two options are possible (as in T-NULL and T-666,
respectively). The impact on space and performance of these representations will
vary depending on the percentage of absent/present values for the attribute.

J-Abs
{ _id: 123 }

J-NULL
{ _id: 123,
A1: null , . . .
An: null }

J-666
{ _id: 123,
A1: 666, . . .
An: 666 }

T-NULL
_id A1 . . . An
123 null . . . null

T-666
_id A1 . . . An
123 666 . . . 666

Fig. 2: Alternative representations for optional attributes

3.2 Schema declaration

In order to benefit from Schema declaration and validation in semi-structured
databases, one must adopt additional constructs. JSONSchema is a JSON-based
schema language that allows to constrain the shape, types and values of JSON
documents. Here, we will evaluate the impact of both structure plus data type
declaration, and integrity constraint (IC) validation separately.

3.2.1 Structure and data types

To validate structure and data types, JSONSchema uses the properties key.
For each attribute, it is possible to specify its data type, which can be either a
primitive or complex object. Furthermore, the required key represents an array
enumerating the list of expected attributes. Fig. 3 depicts the exemplary docu-
ment patterns considered. Clearly, this declaration has no impact on database
size, since it does not grow with instances. However, it has a cost on insertion,
corresponding to validating presence and domain, and on the other hand, it could
potentially benefit query time by saving an explicit casting and type conversion.

J-Typ
{ _id: 123,
A1: k, . . .
A64: k }

{ "type": "object", "properties ": {
"A1 ": {"type": "number"}, . . .
"An ": {"type": "number"},
required: ["A1 ",...,"An "] } }

T-Typ
_id A1 . . . A64
123 k . . . k

Fig. 3: Alternative representations of structure and data type validation

J-IC
{ _id: 123,
A1: k,

. . .
A64: k }

{ "type": "object", "properties ": {
"A1 ": {
"type": "number",

"minimum ":−k′ ,"maximum: k′}, . . .
"An ": {
"type": "number",

"minimum ":−k′ ,"maximum: k′} }

T-IC

_id A1 . . . A64
123 k . . . k

ALTER TABLE T ADD CONSTRAINT
val_A1 CHECK

(A1 BETWEEN −k′ AND k′);
. . .
ALTER TABLE T ADD CONSTRAINT
val_An CHECK

(An BETWEEN −k′ AND k′);

Fig. 4: Alternative representations of Integrity Constraints (IC) validation

On the performance impact of using JSON, beyond impedance mismatch 5

3.2.2 Integrity constraints

Besides the data type validation mechanisms, JSONSchema also offers means to
represent integrity constraints for attributes. Here, as depicted in Fig. 4, we focus
on enforcing ranges of values. In relational databases, this is achieved via CHECK
constraints. As above, this has no impact on the size of the database but will
have some on the insertion since it has to be checked before accepting the data.
Despite this, it might also be used to perform some semantic optimization at
query time; we consider this is technology-specific (i.e., not directly dependent
on the data representation) and will not be evaluated in Section 4.

3.3 Structure complexity

An RDBMS conforms to 1NF, yet a semi-structured one relaxes such restriction,
which allows storing nested and multi-valued data. Here, we study the impact
of different complexity degrees on data according to that.

3.3.1 Nested structures

Documents allow to explicit into a data structure conceptually independent ob-
jects, which are accessed using dot notation. Yet, it is unclear what is the impact
regarding size (i.e., with an increasing number of brackets in the document), and
on querying such structures. To explore this, we will experiment with a range of
levels and attributes (Nest-one and Nest-all in Fig. 5). Precisely, we will eval-
uate (a) increasing document sizes (i.e., Nest-one), and (b) constant document
sizes (i.e., Nest-all); both w.r.t. the number of nesting levels. Nest-1 indicates
that there is only one attribute in the lowest level, while Nest-all contains less
attributes the more levels we have. For instance, with 32 nesting levels, Nest-one
has only A33, while Nest-all has attributes A33 to A64. Thus, in the latter, for
every level we add together with the required extra characters (i.e., :, {, and }),
we remove an attribute. Consequently, the overall size remains constant in terms
of document length, but not in physical storage space due to the encoding of
integer values being used.

Nest-one
{ _id: 123,

L1: { . . .
Ln: {

An+1: k }

. . . }}

Nest-all
{ _id: 123,

L1: { . . .
Ln: {

An+1: k, . . .

A64: k }. . . }}

J-Arr
{ _id: 123,
A: [1,. . . ,n]

}

J-Att
{ _id:

123,
A1: k,

. . .
An: k }

T-Arr
_id A
123 [1,. . . ,n]

T-Att
_id A1 . . . An
123 k . . . k

Fig. 5: Representations of nesting structures and multi-valued attributes

3.3.2 Multi-valued attributes

Only modern object-relational DBMSs have adopted variable-length multidi-
mensional arrays as data type, an aspect present in JSON by definition. Yet, it
is unclear what is the impact of managing such types. On bounded arrays, one
could argue that it might be better to store each position as an independent
attribute, as depicted in Fig. 5, where we distinguish, for both JSON and tu-
ples, array and multi-attribute alternatives. Multi-valued attributes could also be
stored in a separate normalized table, however such independent structure would
compete for resources, heavily impacting insertion and query [10]. We consider
such eviction policies are technology-specific, thus they will not be evaluated.

6 Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

4 Experimental evaluation

We conducted experiments to evaluate the choices discussed in Section 3, using
PostgreSQL v12 (which supports native JSON storage) to compare the differ-
ences between relational and JSON alternatives. We also used MongoDB v4.2
(nowadays, the most popular document store) to validate the consistency of re-
sults. Note our objective is not to perform a technological comparison, but to
evaluate the impact of document design choices. No specific tuning was per-
formed for any system, using the default parameters. We disabled compression
in MongoDB to facilitate its comparison with PostgreSQL, and cleared the op-
erating system cache and restarted the DBMS between each execution to clear
caches. We got three metrics: (a) storage size in MB;(b) overall runtime of in-
sertions in seconds; and (c) median runtime to aggregate a numeric attribute
in seconds over 20 repetitions. To store JSON in PostgreSQL, we created a ta-
ble with two attributes: a CHAR(24) to store the ID (equivalent to Object_ID
in MongoDB) and a JSONB to store the document. Then, we generated 1 mil-
lion random documents according to each schema pattern in Section 3, over an
exponentially increasing parameter, which were inserted in 100 batches of 10K
documents. Due to space limits, we omit the individual figures2. To minimise
impedance mismatch, queries return a single value aggregating numerical at-
tributes. Note that MongoDB stores 32-bits integers3, while PostgreSQL uses
64-bits4, which in the end causes differences on storage size and consequently in
insertion and query performance.

4.1 Schema variability

For schema variability, we conducted three experiments overall because we al-
ready had two patterns regarding metadata embedding (Section 3.1.1): (i) change
the number of numeric attributes in a document; and (ii) change the data-
metadata ratio, keeping a fixed number of attributes.
Varying document size. According to our experiments JSON always requires
more space than tuples, due to metadata being replicated in every document.
We can observe the same trend in insertion times. However, although storage
space for a tuple is smaller in all cases, insertion time is shorter only for few
(i.e., four) attributes. Beyond that, JSON insertion is faster (due to no type
checking, as shown later in Section 4.2). At query time the runtime increases
with the number of attributes. However, oppositely to insertion, tuples perform
faster (since they benefit from the work done at insertion time). In all cases, we
can see that PostgreSQL and MongoDB follow the same trend on storing JSON.
They only differ in the physical format, which requires less space in the latter
(64-bit vs. 32-bit integers). Thus, MongoDB generates less I/O (roughly half),
improving insertion and query time.
Constant document size. Aiming to stabilise the overall size of the document,
we keep constant the sum of characters between attribute name and value. Thus,

2Source code and all graphs available at https://github.com/dtim-upc/MongoDBTests
3https://docs.mongodb.com/manual/reference/bson-types
4https://www.postgresql.org/docs/12/datatype-json.html

On the performance impact of using JSON, beyond impedance mismatch 7

we have one numerical attribute for the queries and consider nine other string at-
tributes, changing at once their data to metadata ratio by changing the length of
attribute name and value keeping a constant of 64 characters for both together.
The number is chosen based on PostgreSQL having a limit of 63 characters for
attribute names, so the attribute name length ranges from 1 to 63 and the value
length from 63 to 1. Since attribute name is only stored once, independently
of the number of tuples, the storage space taken by the tuples decreases with
the growth of the attribute name length. Oppositely, attribute names are redun-
dantly stored in all documents in JSON, so the overall size remains constant
except for 63 characters, seemingly due to the presence of a step function in
physical storage allocation. This is confirmed in MongoDB, where the gradual
growth in space is more apparent. Interestingly, PostgreSQL and MongoDB stor-
age size for JSON is much closer in this experiment as most of the attributes
are strings instead of integers. Insertion and query times follow the same trend
as the attribute length grows indicating I/O is always the dominant factor.
Optional attributes. Regarding attribute optionality, we consider five alter-
natives to represent the absence of values in the attributes (Section 3.1.2). Thus,
the pattern consists of 64 integer attributes (potentially removed all at once),
and one fixed-length string of size 64 to guarantee a minimal document size
when the former are removed. Thus, we varied the percentage of documents
without value for their integer attributes. Regarding storage space, the worst
option to represent absence of data is using a value inside the domain (i.e., T-
666 and J-666), which keeps a constant size. In both tuples and JSON, we can
use a null special value (i.e., T-NULL and J-NULL), which clearly saves space
as attribute values disappear. However, the complete absence of the attribute in
JSON (namely J-Abs), reduces the storage space the most due to the saving also
in the metadata. As before, storage space in MongoDB follows the same trend as
in PostgreSQL, but with smaller values due to the different encoding of integers.
Regarding insertion time, the trend coincides with that of the storage used for
JSON in both systems. However, tuples in PostgreSQL keep a constant insertion
time, because the dominant factor is not I/O, but validation and formatting of
data, which is not even compensated by the saving in metadata storage. When
querying the data, we tested both summing and counting their presence with
similar results. In all cases, the dominant factor of the query time is I/O, and
consequently follows the trends and proportions of storage space.

4.2 Schema declaration

As discussed, schema declaration does neither affect the overall storage size nor
query time. Thus, we measure insertion time for both data types and ICs.

Type and constraint validation. Regarding type and IC checking (Sec-
tions 3.2.1 and 3.2.2), we generated documents with 64 attributes and declared
type and ICs in an incremental manner (from 1 to 64). To enforce JSON schema
declaration in PostgreSQL, we used the postgres-json-schema5 extension. In

5https://github.com/gavinwahl/postgres-json-schema

8 Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

MongoDB, this is a built-in feature that can be simply enabled with the op-
erator $jsonSchema, which is provided at creation time of the collection. In
tuples, all data types must always be declared, leading to constant insertion
time. Oppositely, when inserting JSON, time increases with data types declara-
tion, confirming the consequent overhead. Checking concrete ICs on top of data
types, substantially increases the overhead. Both systems confirm trends, the
only difference being that built-in mechanism of MongoDB being faster.

4.3 Structure complexity

Finally, we analyse the impact of breaking first normal form by either nest-
ing documents (Section 3.3.1) or storing multi-valued attributes (Section 3.3.2).
Notice that only the latter is available in relational implementations.
Nested structures. The storage size of nesting one attribute increases the
document size with the increasing number of levels. MongoDB slightly increases
the physical storage when the number of levels increases, even with constant
document size. The integer encoding difference (64-bits vs. 32-bits) explains this
opposite behavior. The insertion time follows the same trend of the storage
size. We noticed an extra overhead in MongoDB beyond that of purely I/O.
PostgreSQL performs better than MongoDB (despite having higher I/O), and
MongoDB have a clear upward trend with the increasing number nesting levels
as opposed to constant runtime in PostgreSQL confirms the overhead nesting
generates in MongoDB.
Multi-valued attributes. Regarding the storage of multi-valued attributes
(Section 3.3.2), we generated documents with the number of values per attribute
ranging from 2 to 64 for the different options. For tuples, we used either Post-
greSQL native array storage or separate attributes for each value , and similarly
for JSON either as an array in the document, or as separate attributes. Regard-
ing storage size, both systems take more space for JSON than tuples, because of
the saving of tuples on metadata replication. While in tuples both options use the
same space, in JSON arrays are clearly more efficient, since separate attributes
require more characters (the same behavior is confirmed in MongoDB, but mit-
igated by its smaller encoding of integers). despite insertion time in JSON is
dominated by I/O, in tuples inserting to an array is faster than inserting multiple
attributes, due to the overhead of parsing and validating independent attributes
in front of one single array. Nevertheless, the extra processing at insertion time
pays off at query time, where processing the independent attributes is faster than
digging inside the array. For JSON, we appreciate the same benefit of querying
independent attributes in PostgreSQL, but surprisingly the opposite behavior in
MongoDB, where processing the array is systematically faster. When summin
indivudual attributes, MongoDB has a built-in function that sums the content
of the array, which is more efficient, and on the contrary, PostgreSQL needs to
unwind the array in order to calculate the sum, which is more expensive.

5 Discussion

Fig. 6 summarizes all results with regard to storage space, load time, and query
time. For this, we calculated the average of all measurements per representational

On the performance impact of using JSON, beyond impedance mismatch 9

difference for each of the three options (i.e., Tuples, and JSON in both systems).
Since data follows different patterns in each case, we separately min-normalize
per case (e.g., divide the minimum of the three averages for nested data by the
average for Tuples) and plot them all in the corresponding radar chart. This
means values further away from the center of the radar are better than the ones
closer, and the bigger the area of the polygon, the better the system performs.

Metadata.representation

Attribute.optionality

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(a) Storage

Metadata.representation

Attribute.optionality

Data.type.validation

IC.validation

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(b) Insertion time

Metadata.representation

Attribute.optionality

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(c) Query time
Fig. 6: Multidimensional view of experimental results

According to Fig. 6a, storing tuples takes the least amount of space in all
cases except metadata representation. On interpreting this, we acknowledge the
impact of the ratio between metadata and data, which is fixed to be relatively
high in all experiments. Thus, attribute names should always be encoded in
JSON to shorten them as much as possible and improve that ratio. Obviously,
this is more relevant, for example, if values are numeric than if they are strings
(the former requiring less space, in general). Within JSON, PostgreSQL storage
size is much larger than MongoDB in all the cases, due to the different encoding
of integers (64-bits vs. 32-bits).

According to Fig. 6b, it is clear looking at PostgreSQL that loading JSON
is faster than tuples, except for data type and integrity constraint validations.
However, it is important to note that the validation of JSON was carried out
through a third-party plugin, which definitely impacts the results. MongoDB
being a native document store, has a clear advantage over PostgreSQL JSON
storage in loading data (at the end of the day, JSON is stored as a column in
a PostgreSQL table), beating even tuple storage in the validation dimensions.
This, however, can come not only from using JSON format but from other DBMS
characteristics (e.g., lack of ACID transactional support).

Finally, Fig. 6c depicts that tuples, in general, perform better in queries.
This is so because they use less space, in general, and benefit from validation at
insertion time. Thus, we can see that when the space-saving is lost depending
on the data-metadata ratio, so the benefit is mostly lost at query time, as well.
Nonetheless, JSON representation is at a disadvantage, as each of the documents
needs to be parsed and processed on demand. Consequently, we should consider
the trade-off between the pressure of fast ingestion and the long term benefit of
recurring queries. It is also interesting to see that even though the storage size of
JSON is larger in PostgreSQL, this is still faster than MongoDB. We believe this
fact results from the differences in how query engines handle the calculations.

10 Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló

PostgreSQL benefits here from the well-optimized aggregation operations in the
relational engine, which data stored in JSON format also have access to.

6 Conclusions and future work

In this paper, we studied the impact of physical design choices for NOSQL
databases according to six different characteristics. We conclude that there is no
ace of spades, when designing JSON documents. However, we identified a crucial
trade-off between insertion and query performance. Nowadays, organizations are
shifting their data repositories to flexible representations following a schema-on-
read approach, but we have empirically shown that such an approach might have
several shortcomings in front of query-intensive workloads. As future work, we
aim to extend our experiments taking into account more features from the DBMS
in use. This involves considering caching mechanisms or indexing structures.

References

1. S. Abiteboul. Querying Semi-Structured Data. In ICDT, 1997.
2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web - From Relations to

Semistructured Data and XML. Morgan Kaufmann, 2000.
3. S. Ambler. Agile Database Techniques: Effective Strategies for the Agile Software

Developer. Wiley& Sons, 2003.
4. P. Atzeni, F. Bugiotti, L. Cabibbo, and R. Torlone. Data modeling in the NoSQL

world. Comput. Stand. Interfaces, 67, 2020.
5. A. Badia and D. Lemire. A call to arms: revisiting database design. SIGMOD

Rec., 40(3):61–69, 2011.
6. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Comm.

ACM, 13(6):377–387, 1970.
7. A. de la Vega, D. García-Saiz, C. Blanco, M. E. Zorrilla, and P. Sánchez. Mortadelo:

Automatic generation of NoSQL stores from platform-independent data models.
Future Gener. Comput. Syst., 105:455–474, 2020.

8. A. Hernández, F. Santiago, E. Calvo, G. Herzig, S. A. Ostapowicz, M. Melli, and
J. D. Fernández. Performance Benchmark PostgreSQL/MongoDB (Tech. R.). 2019.

9. V. Herrero, A. Abelló, and O. Romero. NOSQL design for analytical workloads:
Variability matters. In ER, 2016.

10. M. Hewasinghage, A. Abelló, J. Varga, and E. Zimányi. DocDesign: Cost-Based
Database Design for Document Stores. In SSDBM, 2020.

11. A. Kanade, A. Gopal, and S. Kanade. A study of normalization and embedding
in MongoDB. In IACC, 2014.

12. C. Mohan. History repeats itself: sensible and NonsenSQL aspects of the NoSQL
hoopla. In EDBT, 2013.

13. S. Scherzinger and S. Sidortschuck. An Empirical Study on the Design and Evo-
lution of NoSQL Database Schemas. CoRR, abs/2003.00054, 2020.

14. P. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional, 2012.

15. C. Truica, F. Radulescu, A. Boicea, and I. Bucur. Performance Evaluation for
CRUD Operations in Asynchronously Replicated Document Oriented Database.
In CSCS, 2015.

