
The University of Manchester Research

Formalisation and Implementation of Road Junction Rules
on an Autonomous Vehicle Modelled as an Agent
DOI:
10.1007/978-3-030-54994-7_16

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Vaz Alves, G., Dennis, L., & Fisher, M. (2020). Formalisation and Implementation of Road Junction Rules on an
Autonomous Vehicle Modelled as an Agent. In Formal Methods. FM 2019 International Workshops. FM 2019.
(Lecture Notes in Computer Science; Vol. 12232). Springer Nature. https://doi.org/10.1007/978-3-030-54994-7_16

Published in:
Formal Methods. FM 2019 International Workshops. FM 2019.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1007/978-3-030-54994-7_16
https://research.manchester.ac.uk/en/publications/47f92b76-6e92-43c4-8bad-48da2bbdef69
https://doi.org/10.1007/978-3-030-54994-7_16

Formalisation and Implementation of Road
Junction Rules on an Autonomous Vehicle

Modelled as an Agent

Gleifer Vaz Alves1[0000−0002−5937−8193], Louise Dennis2[0000−0003−1426−1896],
and Michael Fisher2[0000−0002−0875−3862]

1 UTFPR - Universidade Tecnológica Federal do Paraná - Brazil
gleifer@utfpr.edu.br

2 Department of Computer Science, Univ. Liverpool, UK
{L.A.Dennis, MFisher}@liverpool.ac.uk

Abstract. The design of autonomous vehicles includes obstacle detec-
tion and avoidance, route planning, speed control, etc. However, there
is a lack of an explicitely representation of the rules of the road on an
autonomous vehicle. Additionally, it is necessary to understand the be-
haviour of an autonomous vehicle in order to check whether or not it
works according to the rules of the road. Here, we propose an agent-
based architecture to embed the rules of the road into an agent repre-
senting the behaviour of an autonomous vehicle. We use temporal logic
to formally represent the rules of the road in a way it should be possible
to capture when and how a given rule of the road can be applied. Our
contributions include: i. suggestion of changes in the rules of the road;
ii. representation of rules in a suitable way for an autonomous vehicle
agent; iii. dealing with indeterminate terms in the Highway Code.

Keywords: Agent · Autonomous Vehicles · Temporal Logic · Rules of
the Road.

1 Introduction

Usually, the design of current control software in autonomous vehicle does not
explicitely implement the rules of the road. Here, we propose an architecture,
where an agent represents the behaviour of an autonomous vehicle and temporal
logic is used to formally specify a subset from the rules of the road. With this,
we aim to formally verify that an agent endowed with the rules of the road
actually respects the flow of traffic without any sort of conflicts, inconsistency
or redundancies in the use of the rules.

Autonomous Vehicles and the Rules of the Road: One can easily enumerate pos-
sible advantages the deployment of autonomous vehicles may bring to cities, e.g.
reduce indices of traffic congestion, driver inactivity, and also the number of
accidents [11]. With this in mind, several companies have been working towards
the goal of launching (fully) autonomous vehicles on our roads on a daily basis.

2 Alves et al.

Predictions as to when (fully) autonomous vehicles will appear on our roads vary
(e.g., [2] and [16]), but it expected to be within the next 5 years. However, there
are plenty of questions which should be addressed in order to have these vehicles
driving safely on the roads. The design of an autonomous vehicle must consider
obstacle detection and avoidance, route planning, safety, speed control, etc. But,
how about the road rules: is an autonomous vehicle behaviour adapted to the
road rules? Prakken mentions in [15], that his work seems one of the first towards
the comprehension of how an autonomous vehicle design should be established
in accordance with the road rules. Nevertheless, Prakken’s approach is a concep-
tual approach without addressing either implementation or formal verification.
Previously [1], we have presented the first steps towards the formalisation of
the rules of the road. In [17], Vellinga also discusses the necessity to understand
how the road rules should be adapted into an autonomous vehicle. The author
presents road rules from California (USA), the UK and the Netherlands.

In the UK, the government has also shown concern about the regulation of
autonomous vehicles. That is why the Law Commission in the UK has released
(Nov. 2018) a consultation paper in order to review the regulatory framework for
the safe deployment of autonomous vehicles [12]. In this review, different topics
are addressed, including the Highway code which is responsible for determining
the so-called Rules of the Road in the UK. This set of rules establishes how one
should use the road for overtaking, road junctions, pedestrian crossing, and so
on [8]. Moreover, in June 2019, the Law Commission made available a summary
of the responses concerning the aforementioned consultation paper [12]. Among
the presented topics we highlight the adaption of the road rules, which according
to the document should address the following issues (among others):

1. Apply analogue driving rules into a digital highway code (section 6.1 in [12]).
2. Struggle to determine a digital highway code that sets precise rules for every

instance. In the document, it is mentioned that: “is impossible to predict
all future scenarios in advance . . . it is not desirable nor realistic to ask
developers to deterministically prescribe the behaviour of automated driving
systems in advance for every scenario” (section 6.5 in [12]).

3. Establish a forum on the application of road rules to autonomous vehicles,
some possible scenarios which should be considered are (section 6.7 in [12]):

(a) interpretation of indeterminate terms in legislation and in the Highway
code, e.g., road users should take extra care, or there is a safe gap large
enough.

(b) identify possible additions to the Highway code to resolve conflicts in-
volving autonomous vehicles. As mentioned in [12] (footnote 7 on page
12), usually conflicts are resolved through human communication. As an
example, a human driver may use hand and arm gestures to give way
for another human driver in a road junction.

Autonomy, Agents and Formal Verification: According to Herrmann et al. [11]
an automated vehicle includes several stages of automation, where there is a
person in the loop, at least in order to handle specific traffic scenarios, e.g. an

Road Junction Rules on an Autonomous Vehicle 3

emergency situation. On the other hand, in an autonomous vehicle, a person is
out of the loop and the system is responsible for all driving tasks everywhere and
at all times. For the sake of clarity, in our paper we use the term autonomous
vehicle to represent the vehicle modelled in our system, which indeed is described
by means of an intelligent agent [18]. An intelligent agent can be easily used
to represent the behaviour of an autonomous vehicle, as we have previously
presented in [9], where an agent is endowed with strategies to avoid obstacles in
a simulated environment.

Agent-based modelling is a suitable approach to represent high-level decisions
of an autonomous system. As illustrated by Marks, in [13], there are several layers
in an autonomous vehicle stack. Here we are mainly concerned with the Reason-
ing and Decision Layer. As a result, the low-level layers, like Sensor, Localization
and Control layers are out of our scope. Moreover, an agent programming ap-
proach is indeed a reasonable technique when we take into account the code
complexity for vehicles. In 2010, some vehicles had ten million software lines of
code (SLOC). In 2016, the SLOC number has increased to around 150 million
[4]. Thus, agent-oriented programming could be seen as a suitable approach for
the high-level decisions of an autonomous vehicle. Usually, a program written in
an agent programming language has fewer lines than (the same program written)
in other general-purpose languages and also an agent language is a good choice
for prototyping.

In our work we use the Gwendolen agent programming language [6] in order
to implement a BDI (Belief-Desire-Intention) agent [3] to capture the behaviour
of an autonomous vehicle. By using Gwendolen, we can also take advantage
of the Model Checking Agent Programming Language (MCAPL) framework [7],
where the Agent Java Path Finder (AJPF) model checker can be used to formally
verify the behaviour of an intelligent agent. When comparing to other techniques,
like machine learning, by using a model checking agent-based architecture, we
intend to avoid the so-called black box problem [5], i.e. the lack of transparency
to control and understand the decision-making process. Notice that by doing
the formal verification of a Gwendolen agent is possible to give the explicit
reasons that the agent has used to select a given decision.

BDI Agent: An agent program language which implements a BDI agent usually
has the following structure for an agent plan:

trigger_event : guard <- body

Where a given agent may have different plans in order to achieve a certain
goal. Using our translation we may establish the following mapping:

– Goal is determined by the specific road junction rule.

– The trigger_event is given by a new belief or a goal.

– The guard is defined by a set of beliefs.

– The body is represented as a set of actions.

4 Alves et al.

Contributions: Our major goal is the proposal of an agent-based architecture
in order to embed the rules of the road in an agent representing the high-level
decisions of an autonomous vehicle. With this in mind, we point out the following
questions: i. How can we handle the use of ambiguous terms in the road rules,
when embedding these rules into an autonomous vehicle? ii. How can we formally
verify the behaviour of an autonomous system endowed with the rules of the
road? iii. By having a simple and direct mapping of the Highway code into a
digital highway code, can we say it is enough to have an autonomous vehicle
driving safely on the roads? Notice that here we only address the first question.

In this paper, we extend the formalisation proposed in [1] by setting up a
language and a grammar for the road junction rules together with an agent-
based architecture capable of capturing the behaviour of an autonomous vehicle
in an urban traffic environment. Moreover, we establish a translation of road
junction rules written in Temporal logic into a BDI agent plan. As an instance
of our architecture, we present the formalisation and implementation of a given
road rule from the UK Highway Code.

2 Road Junction Rules: language and grammar

In this section we present the so-called RoR language and grammar created to
represent the Rules of the Road. The RoR language is used in the next section
to formalise the Rules of the Road. We intend that our language should be
expressive enough to represent the rules of the road (specifically the road junction
rules), but also as simple as possible. As it follows we present the operators,
terms, and actions from the RoR language, which is based on Linear Temporal
Logic (LTL) [10].

2.1 Operators and Constants

– Operators from LTL:
∧, ∨, →, ¬.
�, ♦, ◦, ∪.

– where:

�: always
♦: eventually
◦: next
∪: until

– Constants: True, False.

2.2 Terms: agent and objects

Terms in the RoR language are used together with actions. We have two kinds
of terms: Agent and Objects.

– Agent (Ag) defines the agent who has an active role in a given action (and
road junction rule).

Road Junction Rules on an Autonomous Vehicle 5

– Objects (Obj) represents the different objects that can be used in an action to
represent the elements of a given road junction rule. There are four different
kinds of objects. The first three concrete and the last is an abstract object:

Space: establishes the environment where a given road rule occurs.
Dynamic: determines the dynamic objects used in a rule that are situated
in an environment.
Static: defines the static objects used in a rule that are situated in an
environment.
Abstract: represents the abstract notions which are related to a road rule.

As it follows, we present the Agent and Objects in the RoR language.

Agent

– Autonomous Vehicle: represents an intelligent agent conducting the vehicle.
Abbreviation: AV.

Objects

– Concrete Space Objects

Junction: a junction between two or more roads. Abbreviation: JC.
Road: a road that usually has a single traffic direction. Abbreviation: RO.
Main Road: the main road has both traffic directions. Abbreviation: MR.
Lane: a road or the main road may be divided by two or more lanes.
Abbreviation: LA.
Filter Lane: a filter lane is a special lane used to guide the driver to turn
in a road. Abbreviation: FL.
Central Reservation: a central reservation on a dual carriageway is used
by a car to wait for the safe moment to cross a road. Abbreviation: CR.
Box Junction: a box junction has criss-cross yellow lines painted on the
road. Abbreviation: BJ.
Box Junction at Signalled Roundabouts: Similar to Box Junctions, but
with signalled roundabouts. Abbreviation: BJS.

– Concrete Dynamic Objects

Road User: a road user can be any of the following, another vehicle, pedes-
trians, cyclists, motorcyclists, powered wheelchairs, mobility scooters or
horse rider. Abbreviation: RU.
Long Vehicles: a long vehicle can be a bus, a lorry or a truck. Abbrevia-
tion: LV.

– Concrete Static Objects

Stop sign or Solid white line across the road: both are signs which means
that you should stop at a junction. Abbreviation: ST.
Give way sign or Triangle marked on the road: both are signs which means
you should give way to traffic. Abbreviation: GW.

6 Alves et al.

Broken white lines across the road: also means to give way traffic, but
when you are emerging from a junction on the main road. Abbreviation:
BWL.
Traffic light: a Traffic light which may have a Green, Red or Amber light.
Abbreviation: TL.
Green Light: on a traffic light. Abbreviation: GL.
Amber Light: on a traffic light. Abbreviation: AL.
Red Light: on a traffic light. Abbreviation: RL.
Advanced stop line: some signal-controlled junctions have advanced stop
lines to allow cycles to be positioned ahead of other traffic. Additionally,
an Advanced stop line has two lines marking its area, the so-called: First
White Line and Second White Line. Abbreviation: AD.
First White Line. Abbreviation: FWL.
Second White Line. Abbreviation: SWL.
Mirrors: a driver is supposed to use the mirrors of his vehicle to observe
the traffic. Abbreviation: MI.

– Abstract Objects
Safe Gap: usually when turning on a junction a driver is supposed to
verify if there is a Safe Gap for the vehicle on the road. Abbreviation:
SG.
∗ NB: for the sake of simplicity of RoR language, it is used SG to

represent not only the previous description, but also any situation
where the AV needs to take extra care when turning on any kind of
junction, crossing roads, crossing a box junction, waiting in a lane
for turning right or left, among others. That is why SG is used in
several road junction rules.

Blind Spot: when waiting to cross the main road it may be necessary to
check for blind spots. Abbreviation: BS.
Possible Collision: in some very specific rules some exceptions are allowed
but if and only if a collision may occur in a given road junction environ-
ment. Abbreviation: PC.
Oncoming Traffic: in some scenarios, it might be necessary to look for
oncoming traffic in a corresponding environment. Abbreviation: OT.
Behind: when preparing to turn into a junction it is necessary to look
behind (possibly using the mirrors) for oncoming traffic. Or the driver
can also be turning right behind another vehicle which is also turning
right in the same junction. Abbreviation: BH.
Front: the driver can turn right in front of another vehicle which is also
turning right at the same junction. Abbreviation: FR.
Both Directions: when waiting to cross the main road it may be necessary
to watch out for traffic in both directions on the main road. Abbreviation:
BD.

2.3 Actions

Definition 1 (Action). An Action is given by an action name followed by one
of two different tuples (with three or two elements) and optional pre and post-
conditions:

Road Junction Rules on an Autonomous Vehicle 7

<pre> action name (t1, t2, t3) <post>

– where,
t1 is an Agent.
t2 is a Concrete Space Object.
t3 can be a Concrete Static or Dynamic Object; or an Abstract Object; or it
can be empty.
<pre> some actions require the so-called pre-conditions which should be sat-
isfied for a given action to be applied. We use flags (True or False) to
represent a given pre-condition from an action, True means the action can
be applied, False means the action should not be applied.
<post> similarly there are the so-called post-conditions which represent the
application result from a given action. True means the action has been suc-
cessfully achieved, False means the action has not been successfully achieved.

Notice pre and post-conditions are both optional since not every rule demands
this sort of additional context related to the effect of a rule application.

<pre> action name (t1, t2) <post>

– where,
t1 can be a Concrete Static or Dynamic Object; or an Abstract Object.
t2 is a Concrete Space Object.

List of actions We have defined the following list of action names:

stop, wait, give-way, cross, enter, exit,

turn-right, turn-left, give-right-signal, give-left-signal,

exists, overtake, turn-keep-left-lane, watch.

Example of actions We present four examples of different kinds of actions.

enter(AV,JC)

• the action enter is given by a tuple with two elements: AV represents an
Autonomous Vehicle Agent and JC represents a Concrete Space Object,
the Junction. This action can be read as: “an AV is supposed to enter
when it is at the Junction”.

watch(AV,JC,RU)

• the action watch is given by a tuple with three elements: AV and JC

represent the same elements from previous action, and RU represents
a Concrete Dynamic Object, the Road User. This action can be read
as: “an AV is supposed to watch out for Road Users, when it is at the
Junction”.

cross(RU,JC) <False>

8 Alves et al.

• the action cross is given by a tuple with two elements and a post-
condition: RU represents a Concrete Dynamic Object, the Road User;
and JC a Concrete Space Object, the Junction. The flag “False” is used
as a post-condition. This action can be read as: “A Road User is supposed
to cross, when it is at a Junction. According to the post-condition, there
is no Road User crossing at the Junction”.

exists(SG,JC) <True>

• the action exists is also given by a tuple with two elements and a
post-condition: SG represents an Abstract Object, the Safe Gap; and JC

represents the Junction. The flag “True” is used as a post-condition.
This action can be read as: “A Safe Gap is supposed to exist, and it is
at the Junction. According to the post-condition, there is indeed a Safe
Gap at the Junction”.

2.4 Grammar

As it follows we present the grammar for RoR language. The grammar is defined
to represent the road junction rules and it is presented using Extended Backus-
Naur Form (EBNF) style [14].

road_junction_rule = context "->" result ;

context = "�" [op_unary] action { op_binary [op_unary] action } ;

result = ["♦"] [op_unary] action |

["♦"] [op_unary] action op_binary [op_unary] ["♦"] action ;

op_binary = "∧" | "∨" | "∪" ;

op_unary = "¬" | "◦" ;

action = ["<"pre">"] action_name tuple ["<"post">"] ;

– Notice that in this EBNF style grammar the following notation is used:

= represents definition.
; represents termination.
[...] represents optional.
{ ... } represents repetition.
" ... " represents terminal string.

The grammar determines that a road junction rule has a context, followed
by the “→” operator and terminated by a result. A context always starts with
the operator “�” followed by at least one action. While a result may have the
“♦” operator with a single action, or a pair of actions.

3 Formalising the Road Junction Rules

The UK Highway code presents the road rules [8]. Here, we address a subset
representing the road junction rules. This subset comprises 14 rules which deal
with stop signs, traffic lights, turning right and left, crossroads and also watching

Road Junction Rules on an Autonomous Vehicle 9

out for a road user. As an example, we show rule 1703, which establishes the
requirements for a driver to enter or wait at a road junction. As it follows, a
fragment of rule 170 is described as seen in [8]. Next, a formal representation
is given using LTL.

– Rule 170 from Road Junction Highway Code:

• You Should watch out for road users (RU) (cyclists, motorcyclists, pow-
ered wheelchairs/mobility scooters and pedestrians).

• watch out for pedestrians crossing a road junction (JC) into which you
are turning.

• look all around before emerging4. Do not cross or join a road until there
is a safe gap (SG) large enough for you to do so safely.

– Rule 170: represented in LTL, when the autonomous vehicle (AV) may enter
the junction (JC):

� (watch(AV, JC, RU) ∪ cross(RU, JC) <False> ∧
exists(SG, JC) <True>) → ♦enter(AV, JC)

• Rule 170 - description: it is always the case that the AV is supposed
to watch for any road users (RU) at the junction (JC) until there are no
road users crossing the junction (JC) and also there is a safe gap (SG).
As a result, at some time the AV may enter the junction.

4 From a Road Junction rule towards a BDI agent plan

In this section, we describe how the formalisation presented in Section 3 can be
used in the translation towards BDI agent plans. Through such a translation,
we intend to better bridge the gap between the rules of the road and the agent
implementation. Additionally, this translation could be used as a first step in the
implementation of these rules in a BDI agent programming language different
from Gwendolen.

Our translation process is executed through different cases according to the
possible actions used to describe the road junction rules.

Here <pre> and <post> are used as an effect on the given action. In the
case of a pre-condition it indicates there is a previous belief that should be
satisfied for the given action to be applied. In the case of a post-condition, the
application of the action will result in a new belief. Thus, both pre and post-
conditions represent beliefs when translated into BDI plans, as shown in the
following definitions.

<pre> action name (t1, t2, t3) <post>

3 LTL representation of road junction rules: https://github.com/laca-is/SAE-RoR.
4 For the sake of clarity of the rules of the road language, we choose to use the term
enter as an action which represents not only a driver entering a road junction, but
also emerging from a road junction to another road.

10 Alves et al.

<pre> action name: the action becomes a belief for the agent.
t1 as an Agent is translated as an agent.
t2 as a Space Object is translated as a belief from the environment.
t3 as an Abstract or Static or Dynamic Object is translated as a belief
from the environment.
<post> action name: the action result becomes a belief for the agent.
action name: is the own action which should be part of the body plan
in the agent.

<pre> action name (t1, t2) <post>

<pre> and <post> will be translated in the same way of the previous
case.
t1 as an Abstract or Static or a Dynamic Object is translated as belief
from the environment.
t2 as a Space Object is translated as a belief from the environment.
action name: is the own action which should be part of the body plan
in the agent.

Now, to illustrate the translation, we show an example using the Rule 170,
previously seen in Section 3.

– The Goal is given by Rule 170, which is to enter at the junction.
– From the four actions written in the formalisation of Rule 170, we extract

the following elements, which will be used to create different agent plans
with the corresponding trigger events, guards, and body plans.

– We consider that a LTL rules of the road is a flow of actions when translated
into agent plans:

• The flow of action starts with those actions from the “Context” (see
Grammar at subsection 2.4), action-1 will obtain new beliefs (from the
agent environment) that will be used as guards for action-2 ; action-2
will obtain new beliefs used as guards for action-3 ; this goes on until the
“Result” action , which can use all beliefs obtained by previous actions.

– Our translation target is the BDI structure (trigger event, guards, body)
previously seen in Section 1.

– First action (from the Context):
watch(AV, JC, RU)

AV is the Agent.
JC is a belief at Junction from the environment.
RU is a belief there is a road user.
watch is the action watch implemented in the environment.

• Translation target:

enter-junction : (empty) <- watch

the trigger event is named enter-junction, this is the AV-agent goal
(this same trigger event is used for all plans).
since this is the first action (in the flow of actions), there is no beliefs
obtained from the environment, that is the reason the guards are empty.

Road Junction Rules on an Autonomous Vehicle 11

• watch is the action used in the body of agent plan (all following actions
will be used similarly).

– Second action (from the Context):
cross(RU, JC) <False>

RU is a belief there is a road user.
JC is a belief at Junction from the environment.
cross(RU, JC) <False> is a belief related to RU and JC that there is
no road user crossing at the junction.
cross is the action cross implemented in the environment.

• Translation target:

enter-junction : JC <- cross

now, the second action (cross) has obtained a belief (JC - Junction)
from the environment, which is used as guard in the plan.

– Third action (from the Context):
exists(SG, JC) <True>

SG is a belief on safe gap from the environment.
JC is a belief at Junction from the environment.
exists(SG, JC) <True> this flag has effect in the action and in both
elements from the tuple, thus we say: “there is a new belief that exists a
Safe Gap at the Junction.”
exists is the action exists implemented in the environment

• Translation target:

enter-junction : JC, RU <- exists

next, the third action (exists) still has the same previous guard (JC)
and obtains a new belief (RU, there is no road user), used as a second
guard in the agent plan.

– Fourth action (from the Result):
enter(AV, JC)

AV is the Agent.
JC is a belief at Junction from the environment.
enter is the action enter implemented in the environment.

• Translation target:

enter-junction : JC, RU, SG <- enter

at last, the “Result” action (enter) keeps the previous guards and adds
a third one, SG (Safe Gap), obtained from the third action application.

Notice that when implementing the agent plans in Gwendolen (as next
section will present), we have changed some details in the code, but only to have
a clear BDI syntax code. The main target objects obtained from the translation
are all used in the agent BDI plans.

12 Alves et al.

5 Simulated Automotive Environment for the Rules of
the Road

Our proposed architecture (see Fig. 1) is named SAE-RoR (Simulated Automotive
Environment for the Rules of the Road).

In Fig. 1, the semantics of the arrows represent data. The road junction
rules are formally represented using a grammar. With this representation we
are able to embed the rules into a Gwendolen agent and also formally verify
related properties written in LTL using AJPF. Moreover, the agent updates
its beliefs from perceptions obtained from the Urban Traffic Environment. This
will determine the set of plans that should be executed and sends back to the
environment the corresponding actions, e.g. watch and enter (a road junction).

As an example of a property that could be formally verified is given below
(in natural language):

“It is always the case that when there is a road user crossing a road junction
and/or there is no safe gap at the junction, then the AV-agent will not enter
the junction.”

Notice that our intention is not simply checking this property considering the
rule 170, but also verify it according to the whole set of road junction rules.
In a way we could check if there is any conflict, inconsistency or redundancies
among the road junction rules.

Code 1.1 presents a fragment of our AV-agent, which implements a subset
of plans from rule 170, and is responsible for achieving the goal of entering a
road junction (as seen in Section 3).

Listing 1.1. AV-agent plans for Rule 170

: I n i t i a l Goals :

want en t e r junc t i on [ach i eve]

: Plans :

+! want en t e r junc t i on [ach i eve] : { B to watch (X,Y) } <−
watch (X,Y) ;
+! want en t e r junc t i on [ach i eve] : { B junc t i on } <−
c h e c k c r o s s (X,Y) ;
+! want en t e r junc t i on [ach i eve] : { B junct ion ,
B road use r (X,Y) } <− wait , give way , c h e c k c r o s s (X,Y) ;
+! want en t e r junc t i on [ach i eve] : { B junct ion ,
B no road use r (X,Y) } <− che ck sa f e gap (X,Y) ;
+! want en t e r junc t i on [ach i eve] : { B junct ion ,
B no road use r (X,Y) , B sa f e gap (X,Y) } <− ente r ;

Notice the AV-agent has a sequence of five plans representing the stages of
rule 170.

Road Junction Rules on an Autonomous Vehicle 13

Fig. 1. SAE-RoR Architecture

1. When the agent believes that it should watch for something in the environ-
ment (represented by (X,Y)), then it should watch out for road users.

– want-enter-junction is the agent goal it should be achieved.

– (X,Y) represents a position in the environment; the agent receives per-
ceptions placed at this position.

– B in Gwendolen stands for an agent Belief.

– watch(X,Y) is an action taken by the agent, which has an effect in the
environment (notice that all actions have some effect in the environ-
ment).

2. When the agent believes that it is at the junction, it should check if there is
a road user crossing the junction.

– check-cross(X,Y) is an action taken by the agent.

3. When the agent believes that it is at the junction and there is a road user
crossing it, then it shoud wait, give way and check the junction again.

– wait, give-way are actions taken by the agent.

4. When the agent believes that it is at the junction and there is no road user
crossing it, then it needs to check for a safe gap.

– check-safe-gap(X,Y) is an action taken by the agent.

5. When the agent believes that it is at the junction, there is no road user
crossing it, and there is a safe gap, then it may enter the junction.

– enter is an action taken by the agent.

14 Alves et al.

6 Final Remarks

We have proposed an agent-based architecture which represents the rules of the
road (a subset including the road junction rules) from the UK Highway Code.
The rules are formalised using LTL and implemented in a Gwendolen agent.
Notice that it is an ongoing work and we intend to produce a complete imple-
mentation and formal verification of the road junction rules in a forthcoming
work, where we will use the MCAPL model checker in order to formally verify
the behaviour of the AV-agent.

The Highway Code uses different terms to represent the same sort of concepts.
An example can be given with the Safe Gap term (an Abstract Object as seen
in subsection 2.2), which indeed is used as a meaning for different terms in the
rules of the road. This sort of abstraction is necessary to create a language simple
enough and suitable for an AV-agent.

Some rules from the Highway Code overlap each other. An example is the
rules 175 and 176, both of which handle traffic lights scenarios. With the LTL
formalisation it is possible to analyse such rules and find out that the desired
outcome for a digital highway code should include a new rule which combines the
main elements from rules 175 and 176. This is suggested because an AV-agent
requires consistent and non-ambiguous information in order to build the agent
plans (which includes beliefs and actions).

With the SAE-RoR architecture we shall be able to answer the three ques-
tions previously presented in the first section: i. Use a (formal) grammar and
LTL to represent the objects and actions from the Highway Code in order to
deal with ambiguity issues. ii. Apply model checking with AJPF in order to
formally verify the behaviour of the AV-agent, in a way one can check the agent
acts according to the expected flow of traffic without conflicts, inconsistency or
redundancies when using the rules of the road. iii. The direct mapping of the
Highway code into a digital version of it does not seem to be enough because
some rules may overlap (e.g., rules 175 and 176) and also the AV-agent requires
(in some scenarios) additional road context in order to implement a decision-
making process. (Notice that we intend to properly answer questions ii and iii
in a forthcoming work.) Indeed, as mentioned in [13], the road context can be
used, for example, to determine when a vehicle is nearby a school at a specific
time, then it should watch out for children. As future work, we aim to include
in our architecture a component responsible for perceiving and extracting the
relevant road context in a way that the AV-agent can obtain a new set of beliefs
from the road junction rules plus a given road context.

Acknowledgements

Work partially supported through EPSRC research project Verifiable Autonomy
[EP/L024845].

The authors kindly thank the anonymous reviewers for the insightful sugges-
tions which have considerably improved the quality of our paper.

Road Junction Rules on an Autonomous Vehicle 15

References

1. Alves, G.V., Dennis, L., Fisher, M.: Formalisation of the Rules of the Road for
embedding into an Autonomous Vehicle Agent. In: International Workshop on
Verification and Validation of Autonomous Systems. pp. 1–2. Oxford, UK (Jul
2018), https://sites.google.com/site/wsvavas2018/home/proceedings

2. BBC News: UK wants fully autonomous cars on road (Feb 2019),
https://www.bbc.com/news/technology-47144449

3. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press
(1987)

4. Burkacky, O., Deichmann, J., Doll, G., Knochenhauer, C.: Re-
thinking car software and electronics architecture | McKinsey,
https://www.mckinsey.com/industries/automotive-and-assembly/our-
insights/rethinking-car-software-and-electronics-architecture

5. Davey, T.: Towards a Code of Ethics in Artificial Intelligence with Paula Bod-
dington (Jul 2017), https://futureoflife.org/2017/07/31/towards-a-code-of-ethics-
in-artificial-intelligence/

6. Dennis, L.A.: Gwendolen semantics: 2017. Tech. Rep. ULCS-17-001, University of
Liverpool, Department of Computer Science (2017)

7. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model Checking Agent Pro-
gramming Languages. Automated Software Engineering 19(1), 5–63 (Mar 2012).
https://doi.org/10.1007/s10515-011-0088-x, https://doi.org/10.1007/s10515-011-
0088-x

8. Department for Transport: Using the road (159 to 203) - The Highway Code - Guid-
ance - GOV.UK (2017), https://www.gov.uk/guidance/the-highway-code/using-
the-road-159-to-203

9. Fernandes, L.E.R., Custodio, V., Alves, G.V., Fisher, M.: A Rational Agent Con-
trolling an Autonomous Vehicle: Implementation and Formal Verification. In: Bul-
wahn, L., Kamali, M., Linker, S. (eds.) Proceedings First Workshop on Formal
Verification of Autonomous Vehicles. Electronic Proceedings in Theoretical Com-
puter Science, vol. 257, pp. 35–42 (2017). https://doi.org/10.4204/EPTCS.257.5

10. Fisher, M.: An Introduction to Practical Formal Methods Using Tem-
poral Logic. Wiley (2011). https://doi.org/10.1002/9781119991472,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470027886.html

11. Herrmann, A., Brenner, W., Stadler, R.: Autonomous driving: how the driverless
revolution will change the world. Emerald Publishing, first edition edn. (2018)

12. Law Commission - UK: Automated Vehicles: Summary of the Anal-
ysis of Responses to the Preliminary Consultation Paper (Jun 2019),
https://www.lawcom.gov.uk/project/automated-vehicles/

13. Marks, J.: How to ensure the safety of Self-Driving Cars: Part 1/5 (Jun 2018),
https://medium.com/@olley io/how-to-ensure-the-safety-of-self-driving-cars-part-
1-5-2fcc891ea90b

14. Pattis, R.E.: Teaching EBNF First in CS 1. In: Proceedings of the Twenty-fifth
SIGCSE Symposium on Computer Science Education. pp. 300–303. SIGCSE ’94,
ACM, New York, NY, USA (1994), http://doi.acm.org/10.1145/191029.191155,
event-place: Phoenix, Arizona, USA

15. Prakken, H.: On the problem of making autonomous vehicles
conform to traffic law. Artificial Intelligence and Law 25(3),
341–363 (Sep 2017). https://doi.org/10.1007/s10506-017-9210-0,
https://link.springer.com/article/10.1007/s10506-017-9210-0

16 Alves et al.

16. Southworth, P.: Driverless cars to be on Britain’s roads by the
end of the year, government reveals. The Telegraph (Feb 2019),
https://www.telegraph.co.uk/news/2019/02/06/driverless-cars-britains-roads-
end-year-government-reveals/

17. Vellinga, N.E.: From the testing to the deployment of self-driving cars: Le-
gal challenges to policymakers on the road ahead. Computer Law & Security
Review 33(6), 847–863 (Dec 2017). https://doi.org/10.1016/j.clsr.2017.05.006,
http://www.sciencedirect.com/science/article/pii/S0267364917301334

18. Wooldridge, M., Rao, A.: Foundations of Rational Agency, Applied Logic Series,
vol. 14. Springer Netherlands (1999). https://doi.org/10.1007/978-94-015-9204-8,
http://www.springer.com/gp/book/9780792356011

