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Reasoning about shared-variable concurrency:

interactions between research threads

C. B. Jones

December 14, 2019

1 Introduction

This paper addresses the important topic of reasoning formally about concurrent
computer programs that execute with variables that are shared between threads.
The approach is to attempt to trace the key “insights” that have shaped
the research. There have been some relatively linear sequences of ideas where
research contributors build on preceding work; there have also been periods
of strong interaction and friendly competition between adherents of different
approaches.

Where dates are useful, they will normally be related to publication dates.
In addition to publications, there have been a number of places where real
progress has been made with researchers interacting face-to-face: the most in-
fluential venue might have been IFIP’s Working Group WG2.3 on Programming
Methodology,1 further venues include meetings of lecturers at the Marktoberdorf
Summer Schools, Schloss Dagstuhl and the UK Concurrency Working Group.

Some avenues of concurrency research focus on the avoidance of shared vari-
ables — Process Algebras and other approaches not addressed in the body of this
paper are mentioned in Section 5.2. Despite the challenges that shared-variable
concurrent programs present to developers, such programs are both historically
important and remain in widespread use.

Even with primitive operating systems, the attempt to keep a CPU busy
–whilst slower external devices consumed or delivered data– required care in
program design. When there was a single CPU, programs could switch between
threads in a way that gave rise to most issues about shared variables. As
input/output processors became more independent from the CPU, flags could
be set, interrupts generated and buffers filled independently of the program
actually written by a developer.

Concurrency issues have become more important over time because of the
creation of full-blown time-sharing systems, the emergence of applications that
interact with a world external to the computer and multi-core hardware.

1With respect to the topics considered in this paper, the most productive period was
probably the 1970s/80s but the whole history of WG2.3 deserves closer study.
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Developing concurrent software poses many challenges including data races,
deadlock and “livelock”2 — the common cause of these issues is interference:
the behaviour of the program that is actually written is influenced by external
activities.

1.1 Refresher on reasoning about sequential programs

The key steps in research on reasoning about sequential (non-concurrent) soft-
ware are described in [Jon03]: Hoare’s Axiomatic basis paper [Hoa69] is taken
as key;3 Hoare acknowledges the influence of Floyd [Flo67], van Wijngaar-
den [vW66] and Naur [Nau66]. The trace in [Jon03] back to Turing [Tur49]
and von Neumann [GvN47]4 shows a surprising hiatus in progress of this re-
search area between 1949 and 1967.

Fig. 1 comes from a mimeographed draft of Floyd’s 1967 seminal paper;5

it shows that his annotations were attached to arcs in flowcharts. In contrast,
Hoare introduced judgements –now referred to as “Hoare triples”– (now written
as {P} S {Q}) in which P and Q are assertions (predicates) and S is a
program text; Q is a post condition that expresses what the program text
achieves providing the pre condition P holds before execution of S .

One reason that the move away from flowcharts was so important is that it
points towards a development method instead of a way of checking completed
programs. Hoare’s approach lends itself to starting with a specification and de-
composing it into smaller and smaller sub-problems until each can be achieved
by statements of the desired programming language.6 This “top-down” descrip-
tion might be viewed as idealistic in an environment where most programs evolve
over time and were unlikely to have been designed initially in a systematic way
but understanding an “ideal” can throw light on other methods.

Hoare axioms (or rules of inference) for a very simple language are given in
Fig. 2; the issues in the remainder of this paper can be explained by focussing on
the first rule. Such inference rules permit the conclusion of the triple below the
horizontal line providing any judgements above the line can be proved. The rule

2This term is attributed to Ed Ashcroft whose contributions are covered in Section 2.1.
3Hoare is one of the most highly cited computer scientists — although his “CSP” paper

has even more citations, [Hoa69] has over 7,000 (GS) citations and has maintained an almost
constant level for many years.

4Mark Priestly’s invited talk at Porto suggests a revision of the assessment of von Neu-
mann’s contribution. In particular, Priestly’s archive research has precisely identified the
letter to Goldstine in which von Neumann proposes “assertion boxes”.

5Floyd acknowledges Gorn and Perlis as the originators of the ideas — Knuth suggested
that this was overly modest.

6This only became clear in the published version of [Hoa71b]: an early draft offered a post
facto proof of the final program and these proofs were extremely hard to check — Hoare revised
the paper to show a stepwise development that was much more convincing (the title of the
paper was not changed). It is worth noting that Hoare argued at the 1964 Formal Language
Description Languages conference at Baden-bei-Wien [Ste66] for a language definition style
that could leave things undefined. Also [Hoa69, §6] talks about language definition. It could be
argued that what has become the cornerstone of 50 years of research into formal development
of programs was found during an attempt to solve a different problem (i.e. that of writing a
semantic description of a language).
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[Floyd67]

44

Figure 1: Floyd’s hand drawn flowchart (with assertions) of division by succes-
sive subtraction

;

{P} S1 {Q}
{Q} S2 {R}
{P} S1; S2 {R}

if

{P ∧ b} S1 {Q}
{P ∧ ¬ b} S2 {Q}

{P} if b then S1 else S2 fi {Q}

while
{P ∧ b} S {P}

{P} while b do S od {P ∧ ¬ b}

← {P [e/x ]} x ← e {P}

consequence

P ′ ⇒ P
Q ⇒ Q ′

{P} S {Q}
{P ′} S {Q ′}

Figure 2: Hoare’s axioms
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for sequential composition can be viewed as supporting problem decomposition,
it can inform the decomposition of the problem below the line indicated by pre
condition P and post condition R into finding S1 and S2 with their respective
pre and post conditions. A useful early survey of Hoare’s approach is given
in [Apt81, Apt83] a comprehensive and up-to-date survey is [AO19].

Crucially the approach is “compositional” in the sense that the developer
of S1 need only consider the specification P/Q — no awareness is needed of
the sibling specification nor that of the overall statement. Later sections below
make clear that compositionality is not easily achieved for concurrent programs
precisely because of interference between threads. But, for sequential programs,
pre and post conditions suffice: they record everything that the developer of a
(sub-)program needs to achieve.

For concurrent programs, non-compositional methods were discovered first
and they have a significant role in providing tools that analyse finished code.
Apart from the ideal of top-down problem decomposition, compositional meth-
ods indicate how descriptions of complex systems can be decomposed into un-
derstandable pieces. Ideas from compositional methods can also provide useful
abstractions for bottom-up approaches.

1.2 Useful background reading on concurrency

There are many technical challenges that have to be faced when designing con-
current programs. These include data races, atomicity, deadlocks, livelocks and
fairness. Various programming language constructs have been proposed to help
overcome these challenges. Semaphores were an early idea and higher level con-
structs such as conditional critical sections have been put forward. Readers
unfamiliar with these ideas would learn enough from [BA90] to follow the rest
of the current paper; [AO91], [Sch97] or [MK99] go much further into formal
material.

1.3 Beyond the sequential case

Following on from the success of [Hoa69], Hoare and colleagues looked at a range
of extensions to the axiomatic approach (e.g. [Hoa71a, CH72]). His first foray
into applying the approach to parallel programs resulted in [Hoa72]. Looking
back at the rule for sequential combination discussed here in Section 1.1, the
dream would be to find a rule that permitted some simple combination of the
pre and post conditions of two threads such as:

?

{P1} S1 {Q1}
{P2} S2 {Q2}

{P1 and P2} S1 || S2 {Q1 and Q2}

As one would expect, Hoare gives a clear outline of the issues and notes
that the above rule works (with logical conjunction in the conclusion) providing
that S1 and S2 refer only to disjoint variables. The paper [Hoa72] goes on to
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investigate ways in which interference can be ruled out (notably by “critical
regions”); tackles a number of examples (including a bounded buffer, “dining
philosophers” and a parallel version of Quicksort); and includes an extremely
generous acknowledgement to the stimulus of Edsger W. Dijkstra.

The first insight then is that separation limits interference — with hindsight
this might sound obvious but, in addition, an ideal form of parallel inference
rule is given against which other proposals can be judged.

This sets the scene for an interesting split in research directions:

• one line of research is to look at explicit ways of reasoning about interfer-
ence — this avenue is discussed in Section 2

• alternatively, researchers have investigated reasoning about separation
even in the more complicated arena of heap variables — Section 3 reviews
this approach

Both approaches are clearly important and have spheres of applicability; Sec-
tions 2 and 3 discuss the two avenues in roughly historical order; Section 4
outlines fruitful interactions between researchers pursuing the two avenues.

2 Reasoning about interference

Only with the benefit of hindsight did the criterion of compositionality became
a key issue (see [dR01]) but, since there is also a historical development, the
distinction is used to separate Sections 2.1 and 2.2. Sections 2.3 and 2.4 mention
two important –but somewhat orthogonal– detailed issues.

The phrase “non-compositional” might sound negative but “bottom-up”
methods that work with finished code have given rise to many useful tools (see
below in Section 4) — part of the attraction of tools that work with finished
programs is that they can do useful work relatively automatically.

2.1 Non-compositional approaches

A first step7 towards reasoning formally about interfering threads was made by
Ed Ashcroft and Zohar Manna in [AM71].

• Ashcroft had done his PhD at Imperial College (London) under the su-
pervision of John Florentin.8 Ashcroft was also known for his work on
the “Lucid” language with Bill Wadge. Interestingly, Ashcroft supervised
Matthew Hennessy’s PhD — Hennessey’s main research area is process
algebras.

7A reader who is tempted to view this section in particular as too “linear” should remember
that in the 1970s there were fewer active researchers than there are today. Furthermore, this
paper is deliberately limited to shared-variable concurrency — subjects like process algebras
were progressing in parallel (see Section 5.2).

8Florentin and the current author had extensive contacts during the 1960s/70s when the
latter worked for IBM.
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• Manna’s Carnegie PhD was supervised by Floyd (which fact is important
below). He made huge contributions to many areas9 including Temporal
Logics. A beautiful technical obituary is [DW19].

The 1971 paper was preceded by a Stanford Tech Report [AM70]. The ideas
build mainly on the Floyd approach including an assumption of flowcharts as a
presentation of the programs to be justified. There is, in fact, a rather offhand
reference to “see also [Hoa69]”. Manna proposed the idea of “non-deterministic
programs” in [Man70]10 and the 1971 paper translates concurrent threads into
such a non-deterministic program. The state of a computation is essentially
the memory plus a program counter. As the authors of [AM71] concede, this
program can be exponentially larger than the original concurrent text because
it has to handle all mergings of the threads ([AM71, p 37] gives some actual
sizes for the examples).

The approach is non-compositional in the sense that it does not support de-
velopment from specifications because it relies on having full texts (flowcharts)
of all threads. Furthermore, it makes the assumption that assignment state-
ments can be executed atomically (this point is returned to below).

A number of ways of constraining the size of the generated non-deterministic
program are explained in [AM71, Part 3]:

• nested parallelism is not allowed

• blocks are used to increase “granularity”

• “protected bodies” can be marked on the flowchart by dotted lines

The examples covered are all abstract programs rather than solutions to
specified problems.

The insight is that shared-variable concurrency (without separation) cre-
ates huge non-determinacy because of the potential interleaving of statements
in threads. Furthermore, a specific way of representing an equivalent non-
deterministic is given.

The next step was taken by Ashcroft alone in [Ash75]. The paper starts
with the prescient observation that reasoning formally about programs will be-
come more popular with concurrency (because concurrent programs defeat a
programmer’s mental ability to consider all possible mergings).

Ashcroft commented on the exponential number of proof obligations required
by the approach in [AM70] and set out to tackle this issue. He proposed em-
ploying “control states” which record the statements to be executed in each
concurrent thread.11

9The current author was present at the 1968 Mathematical Theory of Computation con-
ference at IBM Yorktown Heights where John McCarthy strongly advocated Manna’s devel-
opments of Floyd’s approach.

10Since this paper was published in an AI journal, the examples are mainly about search
algorithms but McCarthy’s “91 function” is also tackled.

11As an aside, this bears a strong resemblance to the Control Trees that are part of the
“grand state” in early Vienna operational semantic descriptions of the semantics of program-
ming languages (see [LW69] for more on VDL and [JA16] for a discussion of the problems
with these descriptions).
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324 s. Owicki and D. Gries 

or more processes are waiting for the same condition B, any one of them may  be 
allowed to proceed when B becomes true, while the others continue waiting. 
In some applications it is necessary to specify the order in which waiting processes 
are scheduled, but  for our purposes any scheduling rule is acceptable. Note that  
evaluation of B is part  of the indivisible action of the await  statement;  another 
process may  not change variables so as to make B false after B has been evaluated 
but  before S begins execution. 

The await statement  can be used to turn any statement S into an indivisible 
action : 

await  true then S 
or it may  be used purely as a means of synchronization: 

await "some condition" then skip 
Note that  the await is not proposed as a new synchronization statement to 

be inserted in the next programming language; it is too powerful to be implemented 
efficiently. Rather, it is provided as a means of representing a number of standard 
synchronization primitives such as semaphores. Thus to verify a program which 
uses semaphores, one first expresses the semaphore operations as awaits, and 
then applies the techniques given here. 

We now turn to formal definitions of these statements, in (3.2) and (3.3). The 
definition of the await is straightforward, but (3-3) will require an explanation, 
along with a definition of "interference-free": 

(3.2) await  {P A B} S {Q} 
{P} await B then S {Q} 

(3.3) cobegin {PI} $1 {Qt} . . . .  , {Pn} Sn {Qn) are interference-free 

{PI A. . .  ^ Pn} cobegin $1 / / . . . / /Sn  coend {Qt ^ . . .  ^ Qn} 

Definition (3.3) says that  the effect of executing $1 . . . . .  Sn in parallel is the 
same as executing each one by itself, provided the processes don' t  "interfere" 
with each other. The key word is of course "interfere". One possibility to obtain 
non-interference is not to allow shared variables, but this is too restrictive. A 
more useful rule is to require that  certain assertions used in the proof {Pi} Si 
{Qi) of each process are left invariantly true under parallel execution of the other 
processes. For if these assertions are not falsified, then the proof {Pi)  Si {Qi} 
will still hold and consequently Qi will still be true upon termination ! For example, 
the assertion {x =>y} remains true under execution of x : =  x + t ,  while the as- 
sertion {x----y} does not. The invariance of an assertion P under execution of a 
s tatement  S is explained by the formula 

{P ^ pre (S)) S {P} 
We now give the definition of "interference-free". 

(3.4) Definition. Given a proof {P} S {Q} and a statement T with precondition 
pre (T), we say that  T does not inter]ere with {P} S {Q} if the following two 
conditions hold: 

Figure 3: Proof rules from [OG76]

Ashcroft’s 1975 approach reduces the proof obligation count to the product
of the control points. It is still the case that the approach is non-compositional
because it is based on complete flowcharts of all threads and it retains the
unrealistic assumption that assignment statements can be executed atomically.

In contrast to the 1971 joint paper, Ashcroft’s 1975 paper tackles a rather
ambitious “Airline Reservation System” example.

The next step is far more widely known (than the foregoing) and was made
by Susan Owicki — her thesis is [Owi75] and a more accessible source is the
paper co-authored with her supervisor David Gries [OG76].12 Commonly re-
ferred to as the “Owicki-Gries” approach, a proof rule is given for an await
statement (see rule 3.2 in Figure 3). Furthermore the approach offers a sem-
blance of compositionality. The first task is to prove that the threads satisfy
their independent pre and post conditions. It is important for the next phase
that these proofs contain complete proof outlines with assertions between every
statement. The rule labelled 3.3 in Figure 3 looks close to the ideal rule in
Section 1.3. The snag is that the “interference free” proof obligation (elsewhere
“einmischungsfrei”13) requires proving that every assignment in one thread does
not invalidate any proof step in another thread.

The Owicki-Gries method contributes the insight that interference can be
judged by its impact on the proof steps of other threads. it proposes a specific
proof obligation as a check.

In addition to a small technical example, [OG76] introduces a FindPos ex-
ample that employs two threads to find the least index of an array A such
that some predicate p holds at p(A(i)); a producer/consumer problem is also
addressed.

As indicated in [dR01], this is non-compositional because the correctness
of each thread can only be established with respect to the finished code of all
threads. It would clearly be possible that all threads were developed according
to their specifications but that the final einmischungsfrei proof obligation fails
and the development has to be completely restarted.

The [OG76] paper contains a specific acknowledgement to IFIP Working

12This paper indicates that it was intended to be “Part I” but there is no trace of subsequent
parts and a recent private contact with Owicki confirmed that none was written.

13Gries obtained his PhD from what is now known as Technische Universität München
under supervision of Bauer which is the explanation of a German adjective for the key proof
obligation in the approach.
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Group WG2.3: Gries first observed14 at the meeting in December 1974 and was
elected a member in September 1975; Owicki was an observer at the July 1976
meeting. These contacts possibly increased the incentive to relate the Owicki-
Gries approach to [Hoa69] but it is possible to see the Owicki-Gries approach as
more strongly linked to the flowcharts of [Flo67]. Owicki’s thesis [Owi75] pro-
vides soundness proofs for the proof obligations and cites Peter Lauer’s research
with Hoare [HL74].

A more subtle objection to the Owicki-Gries approach is the assumption
that single statements can be executed atomically (recall that this is also the
case with the two approaches above). The problem is that this assumption does
not hold for any reasonable compiler. There is an argument given that the
assumption holds if there is only one shared variable per assignment.15 This
would prompt splitting any assignment x ← x + 1 into two assignments using a
temporary variable but this still leaves the programmer needing to reason about
the interference between the statements.16

Another interesting discussion concerns “auxiliary” (or “ghost”) variables –
this topic is taken up in Section 2.4.

2.2 Recovering compositionality

It is clear that finding a compositional approach to the design of concurrent
programs is challenging: because threads interfere, they can potentially be af-
fected by statements in environmental threads; the code of all threads provides
maximal information but is not available at the point when a developer suggests
a split into parallel threads. Although it would be judgemental to class the need
for code in the methods described in Section 2.1 as a flaw, it must be conceded
that it makes it impossible to achieve the sort of top-down separation that was
observed in Section 1.1 for the sequential composition of statements.

One challenge therefore was to find a useful level of abstraction that faced
up to interference without having the code of all threads. The key step in the
Rely/Guarantee approach [Jon81, Jon83a, Jon83b] was to characterise interfer-
ence by relations.17 Figure 4:

• shows pre and (relational) post conditions as in their standard VDM use

• marks that any environment interference can be thought of as an interfer-
ing step that satisfies a rely condition — it functions like a post condition
of the interfering state transition

14IFIP working groups have a process of inviting observers (sometimes several times) before
considering people for membership.

15This is sometimes referred to as “Reynolds’ rule” but John Reynolds disowned it in a
conversation with the current author.

16Another venue where useful exchanges on these topics occurred was Schloss Dagstuhl:
there were two events on “Atomiciy” in April 2004 [BJ05, JLRW05] and spring 2006 [CJ07].

17VDM had consistently employed relations as post conditions — in fact, this goes back to
before the name “VDM” was coined [Jon72b]. Use of data abstraction was also a key arrow in
VDM’s quiver [Jon72a] with [Jon80] being an early book to emphasise its use. This becomes
important with Rely/Guarantee ideas — see Section 2.3.
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pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

pre/rely are assumptions the developer can make
guar/post are commitments that the code must achieve

Figure 4: A trace of states made by execution of a component and its context

• shows that the guarantee condition is also a relation and records the inter-
ference that the component being specified will inflict on the environment.

The pre, rely, guarantee and post conditions fit into the generic picture in
Figure 4 and this moves the discussion on to finding an appropriate proof rule
that can be used to justify steps of development that introduce concurrency.
Pre, rely, guarantee and post conditions can be written as a quintuple wrapped
around the program text that is to be executed: {P ,R} S {G ,Q}.18 To indicate
how the rely/guarantee rules relate to the non-interfering version of the parallel
rule at the beginning Section 1.3, a slight simplification of the actual rule can
be written:19

|| -R/G

{P1,R ∨ G2} S1 {G1,Q1}
{P2,R ∨ G1} S2 {G2,Q2}

{P1 ∧ P2,R} S1 || S2 {G1 ∨ G2,Q1 ∧Q2 ∧ · · ·}

One example of the use of R/G in development can be based on the “Sieve of
Eratosthenes” for finding all primes up to some specified number. The specifica-
tion of the interesting part of the algorithm is to remove all composite numbers
from a set. Several papers [Jon96, HJ18] show how to tackle the design decision
to achieve this by executing instances of Rem(i) processes concurrently. The ex-
ample indicates how the formulation of rely and guarantee conditions interacts
with post conditions: The prime sieve example above uses symmetric (Rem)
processes but this rule also caters for examples in which concurrent threads
have different specifications (e.g. producer/consumer processes have asymmet-
ric specifications).

Proof rules of the above form are proved sound with resect to a model-
oriented semantics in [Jon81, Col08, Pre01]. The oldest of these proofs is fairly
ugly having been based on a VDL semantics; Coleman’s soundness argument
is much nicer but is not machine checked; Prensa-Nieto’s proof is checked on
Isabelle but does not cover nested concurrency. Peter Aczel introduced a form
of trace (now referred to as “Aczel traces”) as a semantic model [Acz83]; they

18This quintuple version of rely-guarantee obviously follows Hoare triples (see Section 1.1).
there are other ways of conveying the same information (see Section 5.2).

19The simplification is that a stronger post condition can use information from the guarantee
conditions.
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are employed in [dR01]. There are over twenty PhD theses around the Rely-
Guarantee approach they include:

• both [Stø90, Xu92] consider progress arguments

• [Mid90] uses Temporal Logic to encode rely and guarantee conditions

• Dingel’s [Din00] is an early attempt to combine refinement calculus ideas
with the Rely/Guarantee approach

• [Pie09] tackles the challenging task of producing a clear formal develop-
ment of the implementation by Hugo Simpson of “Asynchronous Commu-
nication Mechanisms”

• Hongjin Liang’s20 thesis [Lia14] proposes “RGSim” whose interference
predicates also address ownership.

There are many examples of Rely/Guarantee developments in the literature
including Owicki’s FindPos, a concurrent cleanup addition to the Fisher-Galler
implementation of “union-Find”, Simpson’s “four slot” algorithm, the Treiber
stack and the concurrent prime sieve.

The insight here is that interference can be specified and reasoned about
if relations are used to abstract information about interference; based on this,
inference rules for parallelism can avoid the need for code of contextual threads.
There are related approaches described in [dR01] under names such as “assume-
commit”.

The research described in this section sounds sufficiently linear that histo-
rians might fear a retrospective tidying up of the story. Two points are worth
remembering: the linearity concerns only this narrow thread of research and
Section 5.2 widens the viewpoint; strong interaction with other threads of re-
search have arisen more recently and are mentioned in Section 4.

2.3 Role of data abstraction/reification

Abstract objects make it possible to write specifications which are far shorter
than if the same task was specified in terms of the restricted data types of
a programming language. Specifications can also postpone much algorithmic
detail by employing data types that match the problem rather than efficient
implementation. The process of (formally) designing a representation is referred
to variously as “refinement” or “reification” (making concrete). The use of data
abstraction in the specification of systems can be studied as a subject quite
separate from concurrency; its origins are traced in [dRE99] and related to
other aspects of program specification and development in [Jon03].

The reason for adding this subsection to the discussion of reasoning about
interference is that the use of abstract data types appears to be particularly
important in specifying and developing concurrent programs. It is certainly

20The supervisor was Xinyu Feng whose own research on “SAGL” is mentioned below.
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the case that nearly all examples of Rely/Guarantee developments benefit from
the use of abstract data types. To enlarge on one specific example, Simpson’s
“four slot” implementation of “Asynchronous Communication Mechanisms” is
tackled in [JP11] where an abstract object of many “slots” is a shared variable
but the rely conditions on this abstraction facilitate working out exactly what
constraints need to be respected on Simpson’s (four) “race free” slots.

2.4 Auxiliary variables

An issue that clouds a number of specifications and designs of concurrent pro-
grams is the use of “auxiliary” (or “ghost”) variables. The idea is that variables
can be inserted into a thread that do not influence its behaviour but make it
easier to reason about a thread because the auxiliary variables record some
information about the environment. In the extreme, such auxiliary variables
could record everything about the environment including the steps to be taken
by other threads. This would clearly subvert compositionality. Most uses of
auxiliary variables are more constrained than this and the current author has
argued that nearly all cases can be avoided if a more appropriate abstraction is
found.

A delicate on-the-fly garbage collector is studied in [JY19] and the tentative
conclusion is that the intimate connections between the mutator and collector
threads force the use of an auxiliary variable. At the time of writing that paper,
the authors were unaware of [dGR16] which might throw further light on the
topic.

3 Avoiding/constraining interference

This section outlines the background of –and research in– what are termed “Con-
current Separation Logics” (CSL). There are in fact many forms of separation
logic making this a large subject; here only the central points are covered and
this facilitates the discussion in Section 4 on the interaction between research
threads makes sense.

There are two distinguished parents of CSL research: John Reynolds’ work
on Separation Logic and Hoare’s study [Hoa72] of how variable separation ad-
mits the use of the idealised parallel rule from the beginning of Section 1.3.21

A key summary of Reynolds’ work on Separation Logic is [Rey02] in which
he looks at the tricky topic of reasoning about programs that use dynamically
allocated “heap” variables. Such programs are notoriously difficult to design and
debug because mistakes can have effects that range far beyond the immediate
code.

Many presentations of reasoning about such programs start with the code
itself (rather than an abstract specification). Although they are in a formal

21Peter O’Hearn emphasised the debt to [Hoa72] during his talk in Cambridge honouring
Tony Hoare in April 2009.
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system, the discussions tend to be “bottom-up” in that they abstract a specifi-
cation from code. (Recall that the point is made above that this offers a route
to useful tool support for detecting errors in finished code.)

CSL itself also focusses on programs that employ heap variables. In a concur-
rent context, interaction between threads often involves an exchange of owner-
ship of addresses between threads. To take the more obvious case of controlling
which thread has ownership to write to and address, data races are avoided by
making sure that only one thread has write ownership at any point in time but
the logic must make it possible to reason about exchange of ownership between
threads.22

The key reference to CSL is [O’H07] which records a talk given by Peter
O’Hearn at the 2005 MFPS-XXI in honour of John Reynolds. A detailed and
personal history of the evolution of CSL is available as [BO16].

Arranging that assertions cover heap addresses requires an extension of the
idea of the state of a computation to include a mapping from addresses to values.
Based on this it is then possible to build the notion of two assertions as having
disjoint heap accesses: P1 ∗ P2 can only hold if the addresses in P1 and P2
are disjoint but otherwise the asterisk functions as a logical conjunction. It is
therefore easy to relate the following central CSL rule:

|| -CSL

{P1} S1 {Q1}
{P2} S2 {Q2}

{P1 ∗ P2} S1 || S2 {Q1 ∗Q2}

to the idealised rule at the beginning of Section 1.3 but it is important to
remember that Hoare’s rule dealt with (normal) stack variables and that the
key to the above || -CSL is handling heap variables.

Another rule that is considered important for CSL is the “frame rule” that
makes it possible to apply an assertion on a limited set of variables to a larger
state providing the variables are disjoint. This can be compared with the way
that frames are defined for stack variables in Morgan’s “refinement calculus”
[Mor90] or even VDM’s keyword oriented definition or read and write variables.

Having attributed the insight about separation to Hoare in Section 1.3, it
could be thought that CSL “only” contributes its employment on heap variables.
The current author’s view is that the key insight is actually that CSL makes
it possible to reason about ownership of heap addresses.

One issue with studying or reporting on separation logics for concurrency is
their proliferation — a point made by Matthew Parkinson in the title of [Par10]
(“The next 700 Separation Logics”). O’Hearn reproduces in [O’H07, Fig. 1] a
chart (generated by Ilya Sergey) of developments that relates many of these log-
ics. More recently, Parkinson and colleagues have proposed “Views” [DYBG+13]
as a common semantic underpinning of such logics. This at least reduces the
burden of establishing the soundness of the many logics.

22At the MFPS-XXI conference referred to below, the current author suggested that the
adjective “ownership” might describe the logic better than using “separation”. The link back
to Reynolds’ research was too strong for this suggestion to be followed.
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Research related to CSL has led to extremely successful tools that are ap-
plied in industry. Notably, O’Hearn and colleagues formed a company called
“Monoidics” that was then acquired by FaceBook and reports of the impact of
their tools (e.g. [DFLO19]) are extremely encouraging.

4 Productive interactions (between groups)

The title of the current paper talks about interactions between research groups
and it is only for simplicity of presentation that the separation is made to
appear strong between Sections 2 and 3. (Furthermore, the focus in this paper
on shared-variable concurrency sidesteps discussion of many research avenues
some of which are touched on in Section 5.2).

Researchers have had many interactions including:

• Both Peter O’Hearn and the current author spoke at MFPS-XXI in honour
of John Reynolds — O’Hearn’s [O’H07] tried to distinguish between CSL
as reasoning about “race freedom” and Rely/Guarantee as tackling “racy
programs”;23 Jones’ contribution to the proceedings is [Jon07].

• An informal (mainly) UK Concurrency Working Group has met about
once every nine months for over a decade

• Several of the prominent researchers involved in CSL(s) have been awarded
prestigious Fellowships by the Royal Academy of Engineering — the cur-
rent author has been the official “mentor” of most of the CSL-related
awards and has found it an invaluable way of keeping in touch. In particu-
lar there were many fruitful visits to Cambridge to see Matthew Parkinson
and his doctoral students.

Specific fruits of these interactions include:

• A friendly rivalry around getting clear specifications and justifications of
Simpson’s “four slot” implementation of “Asynchronous Communication
Mechanisms” — see [JP08, BA10, JP11, BA13, JH16]

• Important attempts to bring Rely/Guarantee and CSL ideas into one
framework [Vaf07, VP07, FFS07].

• Deny-Guarantee reasoning [DFPV09]

• Local Rely/Guarantee reasoning [Fen09]

• RGITL [STE+14] which combines Moskowski’s [Mos85] “Interval Tempo-
ral Logic” with Rely/Guarantee ideas.

23The current author suspects that the negative flavour of the adjective was no accident. It
does ignore the fact that there are examples where races on abstract variables are a stepping
stone to designing race free representations (see [JP11]).
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5 Concluding comments

The current paper has focussed on shared-variable concurrency and has iden-
tified key insights that have shaped 50 years of research in this arena. This
is only one aspect of the broader subject of concurrency and this concluding
section pinpoints some of the items that remain to be covered.

5.1 Recent references

This brief sub-section leaves some recent markers for researchers who might be
tempted to extend this study. The work on “Views” [DYBG+13] is referenced
earlier but its full impact has yet to be worked out. For example Matthew
Windsor’s PhD [Win19] looks at tool support directly for Views.

Section 2.3 discusses the use of data abstraction and reification in developing
concurrent programs. A more recent paper [JY15] makes the point that many
cases of separation can be handled by viewing separation as an abstraction. Two
examples are presented where abstract variables that can be thought of as nor-
mal (disjoint) stack variables that can then be reified onto heap structures with
the obligation that the disjointness must be established on the representation.
It would be fruitful to examine many more examples.

Recent collaboration with Australian colleagues centred around Ian Hayes
has led to a complete reformulation of the Rely/Guarantee approach that em-
phasises its algebraic properties — see [HJ18] and the references therein.

5.2 Further topics

There are many aspects of research on concurrency that have not been addressed
in the body of this paper. These include:

• Process Algebras such as CSP [Hoa85], CCS [Mil89], ACP [BW90] and
the π-calculus [MPW92, SW01], Hoare credits discussions with Dijkstra
at the Marktoberdorf summer schools for some of the inspirations that led
to CSP.

• Temporal Logics [MP91, MP95, Fis11] including TLA+ [Lam02]

• model checking — see [CHVB18]

• considerations of real time

• Petri net theory [BDK01, Old05, Rei12, Rei13]

A Leverhulme grant awarded to the current author will hopefully make it
possible to cover many of these avenues.

14



Acknowledgements

This paper is a post-conference version of the talk given at the History of For-
mal Methods meeting in Porto in October 2019. The author is grateful to the
organisers for the event and the audience for their feedback. Furthermore, Troy
Astarte kindly commented on a draft of the current paper.

Past research has been funded by the EPSRC “Strata” Platform grant and
earlier EPSRC Responsive mode funding on the Rely/Guarantee research. On
the purely technical front, I am a Partner Investigator on Ian Hayes’ ARC grant
which is closely related to my concurrency research.

Our three-year Leverhulme provides funding to address more topics in the
history of concurrency research.

References

[Acz83] P. H. G. Aczel. On an inference rule for parallel composition.
(private communication) Manuscript, Manchester, 1983.

[AM70] E. A. Ashcroft and Z. Manna. Formalization of properties of par-
allel programs. Technical Report AIM–110, Stanford Artificial In-
telligence Project, February 1970. Published as [AM71].

[AM71] E. A. Ashcroft and Z. Manna. Formalization of properties of par-
allel programs. In B. Meltzer and D. Michie, editors, Machine
Intelligence, 6, pages 17–41. Edinburgh University Press, 1971.

[AO91] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Se-
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