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Abstract

Nowadays software architects face new challenges. The Internet has grown to a point
where popular websites are accessed by hundreds of millions of people on a daily basis.
One powerful machine is no longer economically viable and resilient in order to handle such
outstanding traffic. Architectures have since been migrated to horizontal scaling. How-
ever, traditional databases, usually associated with a relational design, were not ready for
horizontal scaling. Therefore, NoSQL databases have proposed to fill the gap left by their
predecessors. This new paradigm is proposed to better serve currently massive scaled-up
Internet usage when consistency is no longer a top priority and a high available service is
preferable. However, based on the CAP theorem when in a distributed environment where
network partition events occur, only one of the two properties, consistency or availability,
can be guaranteed. When one increases the other must decreases. Dynamo-based databases
are designed to run in a cluster while offering high availability and eventual consistency to
clients when subject to network partition events. Therefore, this thesis proposes CBench-
Dynamo, the first consistency benchmark for NoSQL databases. The proposed benchmark
correlates properties, such as performance, consistency, and availability, in different consis-
tency configurations while subjecting the System Under Test (SUT) to network partition
events. This enables us to better comprehend how the SUT handles the trade-off between
these properties.

Keywords

Consistency, Availability, Network Fault Tolerance, NoSQL Databases, Benchmark, Dy-
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Resumo

Hoje em dia arquiteturas de software encaram novos desafios. A Internet cresceu tal que
existem sitios na Internet que sao acedidos por centenas de milhoes de pessoas diariamente.
Uma tnica maquina poderosa nao é mais economicamente viavel e resiliente de forma a
lidar com a imensidao de trafego e as arquiteturas tém desde entao sido migradas para es-
calagem horizontal. No entanto, bases de dados tradicionais, mais associadas ao paradigma
relacional, nao estao preparadas para a escalagem horizontal. Desta feita, as base de da-
dos NoSQL vieram propor preencher essa limitagao. O paradigma NoSQL propoe melhor
servir a atual massificagdo de uma Internet com alto trafego de dados onde a consisténcia
nao é uma prioridade de topo, mas sim a alta disponibilidade para muitos projetos. No
entanto, de acordo com o teorema de CAP entre as duas propriedades, disponibilidade ou
consisténcia, s6 uma delas pode ser totalmente garantida. A especificacado Dynamo con-
siste num cluster de bases de dados que oferecem alta disponibilidade enquanto relaxam
a consisténcia ao nivel de consisténcia eventual ao mesmo tempo que toleram eventos de
particao na rede. Consequentemente, esta tese propoe CBench-Dynamo, a primeira frame-
work de benchmark para bases de dados NoSQL. O benchmark proposto correlaciona pro-
priedades, como performance, consisténcia e disponibilidade, em diferences configuracoes
de consisténcia enquanto sujeitamos o sistema em testes a eventos de particao na rede.
Consequentemente, permitindo-nos compreender melhor como o sistema em testes gere os
trade-offs entre estas propriedades.

Palavras-Chave

Consisténcia, Disponibilidade, Tolerancia a Particoes na Rede, Bases de Dados NoSQL,
Benchmark, Dynamo, Cassandra.
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Chapter 1

Introduction

The Internet has grown to a point where billions of people have access to it, not only from
a desktop but also from smartphones, smartwatches, and even other servers and services.
Nowadays systems need to scale. The monolithic database architecture, based on a power-
ful server, does not guarantee the high availability and network partition tolerance required
by today’s web-scale systems, as demonstrated by the CAP (Consistency, Availability, and
Network Partition Tolerance) theorem [8]|. Strong consistency is a property that has been
relaxed to achieve more scalable database systems. Relational databases were designed
to support strong consistency. Each transaction must be immediately committed, and all
clients will operate over consistent data states. Reads from the same object will present
the same value to all client requests. Although strong consistency is the ideal require-
ment for a database, it deeply compromises horizontal-scalability. Horizontal scalability
is a more affordable approach when compared to vertical scalability. It enables higher
throughput and data distribution across multiple database nodes. On the other hand,
vertical scalability relies on a single powerful database server to store data and answer
all requests. Although horizontal scaling may seem preferable, CAP theorem states that
when network partitions occur, one has to opt between availability and consistency [9].
Horizontal scaling has inspired a new category of databases called NoSQL. These systems
have been created with a common requirement in mind, scalability. Several NoSQL designs
prioritize high-availability over a more relaxed consistency strategy, an approach known as
BASE (Basically Available, Soft-state and Eventually consistent) [10].

Although frameworks, such as YCSB [11], have been developed for benchmarking NoSQL
databases, they lack a consistency tier to fully compare the tradeoffs described by the CAP
theorem.

This thesis proposes CBench-Dynamo, a benchmark for testing consistency and availability
on a horizontal-scaled system. It also defines the main quality attributes of a benchmark,
i.e. Relevance, Reproducibility, Fairness, Verifiability, and Usability [12]. This thesis’ main
goal is to propose a consistency benchmark framework and extract different measurements
on performance, consistency, and availability with different consistency configurations of
the System Under Test (SUT) while subjecting this system to network partition events.

1.1 Thesis Goals

This thesis aims to build a NoSQL Consistency Benchmarking Framework that compares
and analyses how consistency is affected by other quality attributes such as availability and
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performance when subjecting the target system to network partition events. This thesis
also aims to take advantage of this new framework and test it on Cassandra. Cassandra
can be configured to be Eventual Consistent or Strong Consistent as they implement the
dynamo blueprints first introduced by Amazon. This work will enable Software Architects
to better assert what NoSQL database will better suit their application requirements based
on different consistency configurations and how it influences performance and availability
while subjecting the system to network partition events.

1.2 Main Contribution

This study differentiates from all the work in this field by purposing the first NoSQL
consistency benchmark while subjecting the SUT to network partition events. This work
also tests the proposed benchmark on Cassandra.

To the best of our knowledge, there is no other work that empirical compares the three
vertices of the CAP theorem, consistency, availability and network partition tolerance.

This thesis extends the work done by Bermbach and Tai [13] on long-term benchmarking
on S3 by introducing network partition events and a framework approach that can be used
on dynamo-based databases such as Cassandra.

All the codebase is openly available on GitHub [14] [15] [16].

1.3 Work Recognition and Publication

This thesis has resulted in two papers, hence contributing to the scientific community
within this field. Future Internet published a resulting survey from this thesis work [17]
(see Appendix B) about consistency models on NoSQL databases and served as a theoret-
ical introduction to the proposed benchmark framework, CBench-Dynamo, published (see
Appendix C) and presented at TPCTC/VLDB 2019 conference in Los Angeles, USA (see
presentation in Appendix D).

1.4 Report Structure

The remainder of this report is structured as follows. Section 2 presents the background
knowledge. Section 3 presents the related work. Section 4 presents the proposed benchmark
framework, CBench-Dynamo, followed by the testing results in Section 5. In Section 6,
we present the work plan. Finally, in Section 7, the current thesis’ conclusion and future
work.
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Chapter 2

Background Knowledge

In this chapter, the main concepts are introduced. Section 2.1 presents the CAP theorem
as the main theorem that supports our problem and motivation. Then, Section 2.2 gives
a brief explanation about the different consistency models in the NoSQL databases realm.
Finally, in Section 2.3 we introduce the Dynamo design first introduced by Amazon. This
specification will allow us to better understand Eventual Consistency and Availability. This
is the design that our System Under Test (SUT) is based on for the proposed benchmark.

2.1 CAP Theorem

In 2000, Eric Brewer introduced CAP theorem [8|, Consistency, Availability, network par-
tition tolerance. The CAP theorem states that in a distributed system three properties
cannot be fulfilled simultaneously, but only two. According with CAP a preliminary clas-
sification of NoSQL databases presents as follows [1]:

e CA (Concerned about consistency and availability). The database’s bottom priority
is network partition tolerance, and it uses replication as the main approach to ensure
data consistency and availability. Traditional relational database are CA.

e CP (Concerned about consistency and partition tolerance). The database’s bottom
priority is availability. Such database stores data in distributed nodes, while en-
suring the consistency of these data. Examples of this configuration are MongoDB
(document-based), and Redis (key-value).

e AP (Concerned about availability and partition tolerance). The database’s bottom
priority is consistency. Such database ensure availability and partition tolerance
primarily while relaxing consistency. AP systems are Voldemort (key-value), Riak
(document-based), and Cassandra (column-based)

2.2 Consistency Models

In the past, almost all architectures of databases systems were strong consistent. In these
cases, most architectures would have a single database instance only responding to a few
hundred clients. Nowadays, many systems are accessed by hundreds of thousands of clients,
so there was the need to scale database architectures. However, considering the CAP
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Auvailability

Figure 2.1: CAP Theorem |[1].

theorem, high-availability and consistency do conflict on distributed systems when subject
to a network partition event. The majority of the projects that have been experiencing
such high-traffic have chosen to adopt high-availability over a strong consistent architecture
by relaxing the consistency level.

There are two perspectives on consistency, the data-centric consistency and the client-
centric consistency, as illustrated in Figure 2.2. Data-centric consistency is the consistency
analyzed from the replicas’ point of view. Client-centric consistency is the consistency
analyzed from the clients’ point of view [2].
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Figure 2.2: Data-centric and Client-centric consistencies [2]

In the next sections, we will review the main consistency models implemented in storage
systems: Strong consistency, weak consistency, eventual consistency, causal consistency,
read-your-writes consistency, session consistency, monotonic reads consistency, and mono-
tonic writes consistency. Figure 2.3 synthesizes these consistency models.

2.2.1 Strong Consistency

Strong Consistency or Linearization is the strongest consistency model. Each operation
must appear committed immediately, and all clients will operate over the same data state.
A read operation in an object must wait until the write commits before being able to
read the new version. There is also a single global order of events accepted by all storage
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Consistency Models
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Figure 2.3: Consistency Models based on Reference [3].

systems’ instances [18|. Strong Consistency leads to a high consistency system, but it
compromises scaling by decreasing availability and network partition tolerance.

2.2.2 Weak Consistency

As the name implies, this model weakens the consistency. It states that a read operation
does not guarantee the return of the latest value written. It also does not guarantee a
specific order of events [18|. The time period between the write operation and the moment
that every read operation returns the updated value is called the inconsistency window
[19]. This model leads to a highly scalable system because there is no need to involve more
than one replica or node into a client request.

2.2.3 Eventual Consistency

Eventual Consistency strengths the Weak Consistency model. Replicas tend to converge to
the same data state. While this convergence process runs, it is possible for read operations
to retrieve an older version instead of the latest one. The inconsistency window will depend
on communication delays between replicas and its sources, the load on the system and the
number of replicas involved [19].

This model is half-way a strong consistency model and a weak consistency model. Eventual
Consistency is a popular feature offered by many NoSQL databases. Cassandra is one of
them, and it can offer availability and network partition on such a level that it does not
compromise the usability of the most accessed websites in the world that uses Cassandra.
One of them is Facebook, the company that initially developed Cassandra.

2.2.4 Causal Consistency

If some database client updates a given object, all the clients that acknowledge the update
on this object will consider the updated value. However, if some other client (e.g. other
database) does not acknowledge the write operation, they will follow the eventual consis-
tency model [19]. Causal consistency is weaker than sequential consistency but stronger
than eventual consistency.

Strengthening the Eventual Consistency model to be Causal Consistency decreases avail-
ability and network partitioning properties of the system.
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2.2.5 Read-your-writes Consistency

Read-your-writes consistency allows ensuring that a replica is at least current enough to
have the changes made by a specific transaction. Because transactions are applied serially,
by ensuring a replica has a specific commit applied to it, we know that all transaction
commits occurring prior to the specified transaction have also been applied to the replica. If
some database client updates a given object, this same database client will always consider
the updated value. Other clients will eventually read the updated value. Therefore, read-
your-writes consistency is achieved when the system guarantees that, once a record has
been updated, any attempt to read the record will return the updated value [20].

2.2.6 Session Consistency

If some database client makes a request to the storage system in the context of a session,
it will follow a read-your-writes consistency model as long as this session exists. Using
session consistency, all reads are current with writes from that session, but writes from
other sessions may lag. Data from other sessions come in the correct order, just isn’t
guaranteed to be current. This provides good performance and good availability at half
the cost of strong consistency [21].

2.2.7 Monotonic Reads Consistency

After a database client reads some value, all the successive reads will return that same value
or a more recent one [22|. In other words, all the reads on the same object by the same
database client follow a monotonic order. However, this does not guarantee monotonic
ordering on the read operations between different clients on the same object. Therefore,
monotonic reads ensure that if a client performs read r1, then ro, then ro cannot observe a
state prior to the writes which were reflected in r1; intuitively, reads cannot go backward.
Monotonic reads do not apply to operations performed by different clients, only reads by
the same client. Monotonic reads can be totally available: Even during a network partition,
all nodes can make progress [23].

2.2.8 Monotonic Writes Consistency

A write operation invoked by a database client on a given object needs to be completed
before any subsequent write operation on the same object by the same database client [22].
In other words, all the writes on the same object by the same client follow a monotonic or-
der. However, this does not guarantee monotonic ordering on the write operations between
different clients on the same object. Therefore, monotonic writes ensure that if a database
client performs write wy, then ws, then all clients observe wy before ws. Monotonic writes
do not apply to operations performed by different clients, only writes by the same client.
Monotonic writes can be totally available: Even during a network partition, all nodes can
make progress [24].

2.3 Dynamo

Dynamo design and implementation were first introduced by Amazon as a highly available
key-value storage system [4]. Since then, Amazon has built many cloud services imple-
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menting this design such as Amazon DynamoDB and Amazon S3.

Dynamo prioritizes eventual consistency, targeted to applications that need an “always
writeable” data store where no updates are rejected due to failures or concurrent writes.

Dynamo was designed to scale incrementally, hence it was designed with a partition mecha-
nism in mind. Dynamo’s partition mechanism is based on a consistent hashing to distribute
the load across multiple data nodes. The output of this hashing function can be illustrated
as a ring as seen in Figure 2.4, in which the highest output wraps around the smallest one.
Each node is assigned a random value within the range of the hashing function. To know
which node will store a given data value, the correspondent key of this value is hashed.
Then, we walk the ring clockwise, from the smallest to the largest number, to find the first
node with a position larger than the hashing result.

/ Key K
P @ ~ -
(&) (
l/ y : NodesB,C

\ i and D store

keys in
\ /o
\ @ @ / ::::

range (A,B)
including
Figure 2.4: Partitioning and replication of keys in Dynamo ring [4].

2.3.1 Consistency Configurations

Amazon’s Dynamo based databases such as Cassandra, all use the same variant of quorum-
style replication [25]. Quorum-style replication is associated with a replication factor N,
i.e. the number of replicas that some data eventual will be in. Read and write consistency
can be configured as follows, ONE, QUORUM, or ALL.

The following configurations describe the differences between the three write consistency
levels for Dynamo-based database systems [17]:

e ALL. Data is written on all replica nodes in the cluster before the coordinator node
acknowledges the client. Therefore, this configuration has: Strong Consistency and
High latency.

e QUORUM. Data is written on a given number of replica nodes in the cluster
before the coordinator node acknowledges the client, where this number is called
the quorum. This configuration has: Eventual Consistency and Low latency.

e ONE. Data is written in at least one replica node. This configuration has: Eventual
Consistency and Low latency.
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Analogous to the write consistency levels, the following configuration constants describe the
differences between the three read consistency levels for Dynamo-based database systems

[17]:

e ALL. The coordinator node returns the requested data to the client only after
all replicas have responded. This configuration has: Strong consistency and Less
availability.

e QUORUM. The coordinator node returns the requested data to the client only after
a quorum of replicas has responded. This configuration has: Eventual consistency
and high-availability.

e ONE. The coordinator node returns the requested data to the client from the closest
replica node. This configuration has: Eventual consistency and High availability.

Under normal operation, i.e. without network partition events, given the number of replicas
required for a read operation as R, the number of replicas required for a write operation as
W, and the replication factor as N, Dynamo-based databases guarantee consistency when
[25]:

R+W >N (2.1)

Given Rguorum and Wouorum, as Read Consistency and Write Consistency set to QUO-
RUM, respectively, and the floor function that takes as input a real number and round it
down to the closest integer. The conversion from the QUORUM notation to the R, W
notation is as follows:

N
Rquorum, Wouorum = R, W = floor (2 + 1) (2.2)

2.3.2 Consistency Faults

Under abnormal operations where a network partition event had occurred, if consistency
is set to strong, i.e. ALL, availability is compromised as the Figure 2.5 illustrates.

The scenario illustrated by Figure 2.5 describes a situation where a read operation needs to
involve the total number of replicas NV in order to retrieve the data to the client. In case of
a network partition, e.g. node C crashes, the coordinator of the request, node A, was not
able to serve data, hence the total number of replicas had been involved in the operation,
and the coordinator had no other option than announcing a lack of service availability to
the client, resulting in a TIMEOUT response.

Under abnormal operations where a network partition event had occurred, if consistency is
set to eventual configuration (ONE), we achieve service availability even in the presence of
a node crash as the Figure 2.6 illustrates. The scenario illustrated by Figure 2.6 describes
a situation where a read operation only needs to involve one replica in order to retrieve
the requested data to the client. Because only one replica had been involved, the response
may not contain the latest data as this example suggests. Although consistent responses
are not ensured, this configuration results in a high-available service.

For Dynamo-based databases, high availability does not necessarily ensures write persis-
tence. When addressing the concept of availability, in terms of service availability and not
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data availability, i.e. when a request is made, a successful response is given even if such
key does not exist anymore. The response is successful, even if the response refers to the
inexistent of such resource. There may be the case when, for instance, a configuration
of W =1 (ONE) is set and the same node crashes right afterward, the data is lost and
there is no acknowledgment to the client that such abnormality had happened. To avoid
such events, W values greater than 1 increase data redundancy and, consequently, the
probability of all replicas that contain the data fail is diminished.

TIMEQUT

1111

X » Client

|

!

!

‘_T_' |
TIMEQUT. !-

i

LL11)

Dynamo Cluster

Figure 2.5: Data request on abnormal operation where a node fails, and strong read
consistency is set (i.e. ALL).

~ ~ Client

T OK, v=T.

Dynamo Cluster

Figure 2.6: Data request on abnormal operation where a node fails, and eventual read
consistency is set (i.e. ONE).
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Chapter 3

Related Work

This chapter presents the current state of the art related to consistency comparison and
benchmarking in NoSQL databases.

3.1 NoSQL Background

Consistency models are analyzed in various works using different assumptions. Bhamra in
Reference [5] presents a comparison between the specifications of Cassandra and MongoDB.
The author focuses only on a theoretical comparison based on the databases specifications.
The objective of this work is to help the reader choosing which database is more suitable
for a particular problem. Bhamra starts by making a comparison between Cassandra and
MongoDB specifications.

A cluster of nodes in Cassandra is visualized as a ring (see Figure 3.1). Cassandra dis-
tributes all the data from the keyspace evenly across all the nodes. Each Cassandra node
in the cluster stores a subset of the data and is responsible for an interval of hashes. When
some data is inserted into the database, the key of that data is sent to the partitioner.
The partitioner is a hash function based on that key. The resulting hash determines which
node contains that data’s value. Randomness is obtained by using hashing, therefore a fair
load is attained across nodes [5]. Data replication is defined per keyspace and follow two
parameters; the replication strategy and replication factor. The replication strategy defines
the algorithm that decides at which nodes to store copies of rows. In the other hand, the
replication factor represents the number of copies of each row have to be persisted.

MongoDB is a schema-less document-oriented database, hence documents are used as the
primary structure for persisting data. MongoDB data model is based on documents. These
documents are represented in BSON (Binary JSON). This format extends the well-known
JSON (JavaScript Object Notation). Documents that represent a similar class of objects
are organized as collections. For example, a collection could be the Car collection while
a document could be the data item of a single car. Making the analogy with RDBMS,
collections are similar to tables. Documents are similar to rows. Fields are similar to
columns. MongoDB allows configuring a replica set. A replica set has primary replica set
members and secondary replica set members (see Figure 3.2). There are two configurations
based on the desired consistency level:

e Strong consistency. Applications write and read from the primary replica set member.
The primary member will write all the operations that made it transact to the new
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150—199@ 50~99

100 - 149

Figure 3.1: Cassandra ring [5].

state. These operations are idempotent and constitute the oplog (operations log).
After the primary member acknowledges the application of the committed data and
operations logging, secondary replica set members can now read from this log and
replay all operations so that they can be on the same state of the primary member.

e Eventual consistency. Applications can read from secondary replica set members if
they do not prioritize reading the latest data.

Oplog has a configurable back-limit history (default: 5% of the available disk space). If a
secondary member fails longer enough to need operations that are no longer available in
the oplog, all the databases, collections, and indexes directives are copied from the primary
member or another secondary member. This process is called initial synchronization. The
same one that is used when adding a new member to the replica set [5].

{ Application ]

Primary
A

Replication
- = = - Heartbheat

i : h A
Secondary |- -\ - «{ Secondary

Arbiter

Figure 3.2: MongoDB replica set example [5].

The author compiles the whole comparison between Cassandra and MongoDB into a single
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table (see Table 3.3) at the end of the article and concludes that MongoDB offers a more
versatile approach, querying, and ease of use than Cassandra. The author makes a valuable
theoretical analysis. However, it is not presented an experimental evaluation comparing
Cassandra and MongoDB databases.

Cassandra

MongoDB

Written in

Development
model
Release year

NoSQL type

Data storage model

Schema
Replication

Sharding

Consistency model
CAP classification
Query language

Query model

Query abilities

Supporting

resources

Security features

Language and
platform
compatibility

Java

Open-source

2008

Column-oriented

A keyspace consisting
of column-families,
and column-families
consisting of rows.
Flexible schema
Peer-to-peer

Each server is a shard
with its datz
across other servers in
the ring.

Eventual consistency
AP
CQL (similar to SQL)

Differs slightly compared
to the data model (ab-
straction layer)

Supports predictable
queries, and are
restricted to row keys.

Official documentation is
lacking, but has a large
community and support.

Authentication,
authorization, and
encryption.

There are currently 13
community-driven lan-
guage drivers available,
and Cassandra distribu-
tions only support Linux
and macOS.

C++

Open-source

2009
Document

Databases consisting
of collections, and
collections containing
documents.

No schema
Master-slave

Each shard is a replica
set. Thus, replicated
data is stored on the
same shard.

Strong consistency
Cp
JS-like syntax

Identical to data model

Rich structure, sup-
ports many indexing
options and dynamic
queries.
Comprehensive  doc-
umentation, commu-
nity, and support.

Authentication, autho-
rization, auditing, and
encryption.

MongoDB officially
offers 11 language
drivers, and is
available for all major
platforms (Linux,
macOS and
Windows).

Figure 3.3: Cassandra vs MongoDB [5].

3.2 Analytical Models to Study Consistency on NoSQL Databases

Bailis et al. [26] suggest an approach that predicts the expected consistency of an eventually
consistent Dynamo data store using models the authors developed called Probabilistically
Bounded Staleness (PBS). This approach lacks a benchmark framework.

To analyze how eventual consistency is affected by the write and read consistency config-
urations offered by Cassandra, UC Berkeley developed a simulator called Probabilistically
Bounded Staleness (PBS) [25]. Figures 3.4-8, show the resulting curves of a simulation
using PBS, given the number of available cluster hosts (NN), the read quorum (R) and the
write quorum (W). They represent the probability of a client request having the latest
version of the data over time (ms) for a given N, W and R combination. All the above
configurations assume a ReplicationFactor > 1. If the Replication Factor were 1, there
would be a single node storing a given data object, therefore the write operation and read
operation would only execute in that single node resulting in strong consistency (as seen
in Figure 3.4) for all configurations in Figures 3.4-8.
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3.2.1 ALL Write Consistency Level or ALL Read Consistency Level

From Figure 3.4, we can conclude that the probability of consistency over time is constant,
resulting in 100%. That is because each write or read operation is executed on every node
available before acknowledging the result to the client. Therefore, this configuration makes
the Cassandra cluster strong consistent.

v -
P(Consistency)

= 0.5, Pr=1.00

0.00 0.50 1.00 1.50 2.00 2.50

Time After Commit (ms)

Figure 3.4: PBS results for (N =5 R =1, W=N=5)and (N=5 R =N =5 W = 1).

3.2.2 ONE Read Consistency Level and QUORUM Write Consistency
Level

In Figure 3.5, the consistency of a given data object eventually gets to 100%. A write
operation needs three updated copies to acknowledge a successful write operation and a
read operation returns the first copy the coordinator finds. The time that it is needed to
reach 100% consistency is the time that the cluster needs to make all the number of copies
previously set on the Replication Factor. With Read Consistency Level ONE, Cassandra
will depend on the periodically Read Repair routines set by the Read Repair Chance to
update all the copies of the data object and return all the time the same latest version.

P(Consistency)

0.800 =0, Pr=0.788

0.0 5.0 0.0 15.0 20.0 250

Time After Commit (ms)

Figure 3.5: PBS results for (N=5, R=1, W=3).
3.2.3 QUORUM Read Consistency Level and ONE Write Consistency
Level
From Figure 3.6, we can conclude that the time needed to reach full consistency of a given

data object is the shortest of all configurations here (excluding the Figure 3.4 configu-
ration). Three nodes are approached by the coordinator and the most updated version
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among them is returned. For each read operation, Cassandra cluster uses its Read Repair
feature to propagate to all three nodes inside the Quorum (the three nodes), so that they
all have the most updated version of the requested data among them. Because Read Repair
is always triggered by a read, the cluster reaches full consistency faster on the given data
object.

P(Consistency)

Time After Commit (ms)

Figure 3.6: PBS results for (N=5, R=3, W=1).

3.2.4 ONE Read Consistency Level and ONE Write Consistency Level

In Figure 3.7, we have the strongest form of eventual consistency configuration in Cassan-
dra. We need just one node with the updated data to acknowledge the write operation.
For the reads, the first node the coordinator node chooses will retrieve the requested data.
This may or may not be the most updated version of the data object. Eventually, the
most updated version will be returned on all requests. The time needed to get to a 100%
probability of consistency will depend on the Read Repair Chance and the Replication
Factor. The higher the probability of the Read Repair Chance, the shorter the time to
get to full consistency. The lower the Replication Factor, the shorter the time to get to
full consistency. Modifying the Read Repair Chance and the Replication Factor to reach
consistency faster will result in higher latencies because more copies and nodes are involved
in the read and write operations for each client request.

P(Consistency)

=0, Pr = 0.633

5.0 10.0 15.0 200 250
Time After Commit (ms)

Figure 3.7: PBS results for (N=5, R=1, W=1).

3.3 Benchmark Consistency in NoSQL databases

This section presents the related work on building a consistency framework for NoSQL
databases.
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Cooper et al. [27] presents the YCSB (Yahoo! Cloud Serving Benchmark), a benchmarking
framework for cloud serving systems. It comes to fill the need for performance comparisons
between NoSQL databases and keep tracking of their tradeoffs such as read performance
versus write performance, latency versus durability, and synchronous versus asynchronous
replication. Although benchmark tiers such as performance and scaling are included in
YCSB, it lacks other tiers such as availability and consistency. The tiers supported by
YCSB are the following:

e Tier 1 - Performance. Performance tier focuses on the latency of requests when the
database is under load.

e Tier 2 - Scaling. The Scaling tier of the database studies the impact on performance
as more instances are added to the system.

Tudorica and Bucur present a critical comparison between NoSQL systems using mul-
tiple criteria [28]. The authors start to introduce multiple taxonomies to classify many
NoSQL databases groups, even though there is not an official classification system on this
type of databases. They define the following criteria to be used on the theoretical com-
parison: Persistence, replication, high availability, transactions, rack-locality awareness,
implementation, influencers/sponsors, and license type. Tudorica and Bucur concentrate
this theoretical comparison into one single table. Afterward, the authors make an empirical
performance comparison, between Cassandra, HBase, Sherpa, and MySQL, using YCSB
[11]. This article lacks other empirical metrics besides performance, such as consistency.

Patil et al. [29] propose a benchmark architecture that evaluates time to consistency. The
authors extend the YCSB framework and add support to distributed architectures by using
ZooKeeper for coordination. However, since 2011, development of the YCSB++ framework
has been discontinued, and Cassandra support is still in progress. Only HBase and Acumulo
support are available, but they are outdated as major releases of both databases have been
released. YCSB++ also does not fully evaluate consistency trade-offs based on the CAP
theorem as YCSB++ does not support network partition events.

Wang et al., in Reference [30], present a benchmarking effort on the replication and con-
sistency strategies used in two databases: HBase and Cassandra. Wang et al. motivation
are to evaluate tradeoffs, such as latency, consistency, and data replication. The authors
conclude that in the latency of read/write operations is hardly improved by adding more
replicas to the database. Higher levels of consistency dramatically increase write latency
and are not suitable for reading the latest version of data and heavy writes in Cassandra.
This paper lacks a more in-depth comparison of how consistency is affected in different con-
figurations. Instead, this work is more focused on studying how consistency levels influence
other properties in HBase and Cassandra databases.

The work of Bermbach and Tai [13] propose a benchmark methodology on Amazon’s cloud
database AWS S3. This is the closest work of what we aim to do in this thesis. Bermbach
and Tai project a long-term monitor system on AWS S3 to evaluate how this service changes
its consistency ability over time and the benchmark approach used can be easily extended
for other usages and databases as we aim to demonstrate in this thesis. Bermback and
Tai propose a benchmark methodology to study how Amazon S3 handles consistency over
a long time period. This long-term experiment proposes a sin-gle writer and a variable
number of readers as Figure 3.8 suggests. To achieve a uniformly load throughout the
cluster’s replicas and avoid always hitting the same replica, writer and readers interact with
the cluster through a load balancer. During a benchmark the writer periodically persists
a tuple (writeTimestamp;version) for each write operation and all readers record the tuple
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(read Timestamp;writeTimestamp;version) for each read operation. An offline analysis or
an online analysis lagging slightly behind can then detect consistency anomalies based on

the reader logs [13].

Table 3.1 summarizes all the previous related work an how they are different from what

we are proposing in this thesis.

Reader

Writer

Figure 3.8: Bermback and Tai’s propose benchmark architecture.

Reader

Reader

Reader

Reader

Reader

Reader
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CBench-Dynamo

A benchmark is a standardized tool to evaluate and compare competing systems or com-
ponents according to specific characteristics. These characteristics can be performance,
dependability, among others.

According to [12] the benchmarks can be categorized into three types: specification-based
benchmarks, kit-based benchmarks, and a hybrid based on the latest two. Specification-
based benchmarks are simulated based on a specific business problem by imposing certain
functions that must be achieved, such as required input parameters and expected out-
comes. This type of benchmark imposes a big development investment on presenting
multiple implementations for the same problem and proceed with an evaluation of that
set of development. While for specification-based benchmark, the specification is a set
of rules implemented by the third party to load and run the benchmark. The Kit-based
benchmarks use the specification as a guide for implementing the benchmark kit. A hy-
brid category can be provided mostly as a kit but allows some functions to be implemented
depending on each individual benchmark run.

In this section, we propose CBench-Dynamo, a consistency benchmark that is a standard
procedure to evaluate and compare consistency in the System Under Test (SUT). The
specification to present proposes a benchmark approach to test consistency and availabil-
ity in Dynamo-based NoSQL databases while subjecting these systems to network partition
events. Therefore, this thesis contributes towards standardizing consistency benchmark-
ing and lead vendors and buyers to better understand which system better suits their
requirements.

4.1 CBench-Dynamo Properties

Benchmark researching and industry participants describe a benchmark into the following
properties [12]: Relevance, Reproducibility, Fairness, Verifiability, and Usability.

Although the proposed benchmark, CBench-Dynamo, can be adapted to run in dedicated
instances it has only been tested with Amazon EC2 instances. Some orchestration play-
books, such as easy instance setup, must be adapted to work on dedicated machines.
However, as future work it is intended to make the framework more generic and versatile.
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4.1.1 Relevance

Relevance is the most important property when defining a benchmark [12]. The rele-
vance of a benchmark splits up into two dimensions, the spectrum of its applicability and
the degree of relevance in the given area. The CBench-Dynamo is designed to target all
Dynamo-based databases and the area of relevance is the study of the properties consis-
tency, availability and network partition tolerance, of a horizontal-distributed database
system. This benchmark aims to be a framework to facilitate the decision process of
choosing the most appropriate NoSQL database depending on the degree of performance,
availability, consistency, and network fault tolerance required for running a given applica-
tion.

NOSQL

Figure 4.1: Dynamo-based databases set within NoSQL realm.

4.1.2 Reproducibility

Reproducibility will be attained as CBench-Dynamo exports the instances’ hardware and
software facts via Ansible. In addition, the workload specs will be also exported at the
end of the associated run. The goal of this extensive and detailed description is for other
people to obtain identical results by configuring the whole system as described.

All the proposed benchmark modules are hosted on GitHub. There is a repository for each
of these modules, modified YCSB [14], analyzer |16], and orchestration playbooks [15].
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{

"ansible all ipv4 addresses": |

"REDACTED IP ADDRESS"
|

"ansible all ipv6 addresses": |

"REDACTED IPV6 ADDRESS"
E

"ansible apparmor": {
"status": "disabled"
}
"ansible architecture": "x86_ 64",
"ansible bios date": "11/28/2013",
"ansible bios version": "4.1.5",
"ansible cmdline": {
"BOOT IMAGE": "/boot/vmlinuz —3.10.0 —862.14.4.el7 .x86_64",
"console": "ttyS0,115200",
"no timer check": true,
"nofb": true,
"nomodeset": true,
"ro": true,
"root": "LABEL=cloudimg—rootfs",
"vga": "normal"

|

"ansible default ipv4": {
"address": "REDACIED",
"alias": "ethO",
"broadcast": "REDACTED",
"gateway ": "REDACTED",

"interface": "eth0",
"macaddress": "REDACTED",
"mtu": 1500,

"netmask": "255.255.255.0",
"network": "REDACTED",
"type": "ether"

(...)

Figure 4.2: Example of Ansible facts. [6]

4.1.3 Fairness

Fairness is the ability of the results being supported by the system merit without artificial
constraints. To reach fairness a set of artificial constraints must be consent and well defined.

CBench-Dynamo defines the following constraints:

e The SUT must be a Dynamo-based NoSQL database system, e.g. Cassandra;

e The SUT must have the same hardware, network and operating system components
when comparing benchmark test results targeting similar SUT;
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e The Workload Coordinator must support a JVM to run the benchmark test and
Python to analyze and translate the data into meaningful measurements;

e The fact that the Workload Coordinator uses Java and Python to coordinate the
benchmark and post-process all the data, respectively, makes the system highly
portable and therefore fair as JVM and Python based applications can run virtu-
ally in any system.

4.1.4 Verifiability

It is important that results are trustworthy. Results must be validated and decrease the
possibility of chance or manipulation. CBench-Dynamo results from academic work, all
the workloads presented here were subject to peer-review by other researchers.

4.1.5 Usability

Usability is the degree of how easy a system is to use. Several layers of abstractions were
taken into account so that only a minimum input is needed to start a benchmark test.

4.2 Methodology

This paper proposes a workload that evaluates how consistency, performance, and availabil-
ity are affected when consistency is configured either to prefer a high-available system or
a high-consistent system while in a distributed system, such as Dynamo-based databases,
where network partition events may occur. The proposed workload is a customized YCSB
workload and follows the method-ology proposed by Bermback and Tai [13]. Bermback
and Tai propose a benchmark methodology to study how Amazon S3 handles consistency
over a long time period. This long-term experiment proposes a single writer and a variable
number of readers. To achieve a uniformly load throughout the cluster’s replicas and avoid
always hitting the same replica, writer and readers interact with the cluster through a load
balancer.

Our benchmark is composed of two stages, the load, and run stages. The load stage is off the
record for benchmark purposes. This stage’s goal is to load all the objects into the database.
These objects are composed only of two fields, key, and version. During the benchmark run
phase, both update and read operations occur uniformly. When configuring a workload
run, the parameters threads indicate how much writers and readers will be running, as only
one writer is used, the number of readers is calculated as threads-1. Each write operation
increments a given object’s version and each read operation reads the version of a given
object. The writer and the readers each have their task plan pre-generated at the beginning
of the test and the benchmark ends when all the objects have been updated and read from
until the pre-configured final version. Each operation is registered into a common file (see
Figure 4.3).
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writer id:0, key:9345flbae61442dab3f167c02d19a4a8 ,
timestamp:17309459474301, version:1

reader id:2, key:9345flbae61442dab3f167c02d19a4a8 ,
timestamp:17309253174394, version:0

reader id:1, key:9345flbae61442dab3f167c02d19a4a8 ,
timestamp:17309253174398, version :UNAVAILABLE

(...)

Figure 4.3: Proposed benchmark’s results data structure.

The generated data is sufficient to infer whether a consistency anomaly had happened. For a given
object’s key, if a read operation returns a version inferior to a version already written by some
write operation in the past, there was a consistency anomaly. At the same time this occurs, there
is a module that is disconnecting from time to time one instance at a time from the cluster to
simulate network partition events. For every operation that the cluster was not able to retrieve
a successful answer, the version assumes the UNAVAILABLE value as 4.3 suggests. All consis-
tency anomalies are then processed and translated into the following measurements: availability
probability, consistency probability, write latency, and read latency.

4.3 Architecture Specification

CBench-Dynamo is composed of a Workload Coordinator, a Load Balancer and a Dynamo clus-
ter (SUT). All these components are orchestrated by the orchestrator via Ansible playbooks, as
illustrated in Figure 4.4.

LLLLL

]

—
—

LA Load |

Orchestrator Workload
(Ansible Playbooks) Coordinator \ oo o, o o

Dynamo Cluster (SUT)

Figure 4.4: CBench-Dynamo Architecture Specification.

4.3.1 Orchestrator

As we are benchmarking a distributed system and with a easy replication in mind, there are many
processes to manage and to sync up with one another. Hence, the Orchestrator is the module that
handle all this management and synchronization between all the existing modules from benchmark
preparation to benchmark final results.

The Orchestrator was developed as multiple Ansible playbooks. Ansible is an open source IT
configuration management, deployment, and orchestration tool. Ansible enables clear orchestration
of complex multi-tier workflows under a single point of management.
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Name « Instance ID Instance Type Availability Zone
coordinator i-0ec212a95302aba79  cb5n.xlarge eu-west-1a
node i-00c3cb8ae9b5b2f6e mb5d.large eu-west-1c
node i-0348fc8ebfd63daba mb5d.large eu-west-1c
node i-07ef2ee3c70d10d24 mb5d.large eu-west-1c
node i-0960e6433e7bbbd0c  mb5d.large eu-west-1c
node i-Oc2acea700ed9d42e  mb5d.large eu-west-1c
node i-0c6f2b05fc885edbd mb5d.large eu-west-1c
node i-0f29704eb72ae64978 mb5d.large eu-west-1c
node i-0ffb368e29edf2d86 mb5d.large eu-west-1c

Figure 4.5: Cassandra nodes and coordinator instances listed on AWS Management Con-
sole.

Ansible was used for automating the following tasks:

1. setup the SUT

2. setup de Workload Coordinator

3. prepare the SUT for testing

4. run benchmark test

5. clean SUT

6. trigger the analyser against the generated data

An Ansible project is composed by playbooks and roles. A playbook is a script file composed by
tasks targeting the remote host defined in hosts. Figure 4.6 represents an example of a playbook.
The hosts can be a group of IP addresses as long as they are defined in the file /etc/ansible/hosts
(see Figure 4.7), or a IP address or host name. A role is much alike a playbook. It is a way to
better organize an Ansible project as roles can be run by more than one playbook. Figure 4.8
illustrates a generic role.

— hosts: nodes

remote user: ubuntu

gather facts: yes

roles:

— run_this role.yml

— hosts: Add local hostname to /etc/hosts
remote user: ubuntu
gather facts: yes
roles:

— run_this second role.yml

Figure 4.6: Ansible generic playbook.
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[nodes |

node0l ansible host=34.244.127.84
node02 ansible host=54.72.103.106
node03 ansible host=34.244.237.236
node04 ansible host=18.202.36.92
node05 ansible host=52.49.176.148
node06 ansible host=18.202.253.1
node07 ansible host=34.253.9.164
node08 ansible host=52.48.5.184

[coordinator |
co ansible host=52.213.81.171

[load—balancer |
Ib —1108247867.eu—west —1.elb . amazonaws.com

[local]
127.0.0.1

Figure 4.7: Ansible hosts file.

# file: run this role.yml
— name: Description of the task here.
module:
argl: value
arg2: value
arg3d: value

become: yes|no

Figure 4.8: Ansible generic role.

The first three dashes in playbooks and roles indicate that we are in presence of a YAML file.
Ansible language of choice is YAML.

A task is composed by a name, a module call, and, besides other arguments, an argument called
become.

name. The name is a text that describes what we intend to do with the current task.

module. The module is some pre-made program that receives a variable number of arguments.
The modules run on the remote host.

become. The argument become allow us to run the module with administrator privileges (sudo)
on the remote host. This feature is enable when the value passed is yes. The default value is no.

In order to group the remote machines we want to target with our playbooks we need to edit the
file /etc/ansible/hosts (see Figure 4.7) with the IP addresses provided by AWS EC2 instances.

Setting up Cassandra

The code snippets in Figure 4.9 and Figure 4.3.1 represent the playbook and the role respectively
responsible for setting up Cassandra cluster. Here we assume that we are handling a clean EC2
machine from Amazon AWS and from scratch we configure a Cassandra cluster based on a cluster
configuration followed by previous configured machines so that they can join the same Cassandra
cluster. The setting up process goes from downloading and installing the required dependencies to
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finally run Cassandra service.

# file: setup.yml
— hosts: nodes
remote user: ubuntu
gather facts: yes
become: yes
roles:
— setup cassandra
— hosts: local
connection: local
roles:
— prepare_cassandra

Figure 4.9: Ansible playbook for setting up and preparing for testing a Cassandra node in
a AWS EC2 instance.

# file: setup_ cassandra.yml
— name: Add local hostname to /etc/hosts
lineinfile :
dest: /etc/hosts
line: "127.0.0.1 {{ansible hostname}}"
state: present
become: yes
— name: Add Cassandra repo to apt
apt _repository:
repo: deb http://www.apache.org/dist/cassandra/debian 311x main
filename: cassandra.sources.list
state: present
update cache: no
— name: Update apt
apt:
update cache: yes
upgrade: yes
allow—unauthenticated: yes
— name: install openjdk—8—jre
apt:
name: openjdk—8—jre
— name: install python
apt:
name: python
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— name: Install Cassandra
apt:
name: cassandra
allow—unauthenticated: yes
— name: Stop Cassandra service
service :
name: cassandra
state: stopped
— name: Remove all data files
shell: rm —rf /var/lib/cassandra/data/x
become: yes
— name: Override cassandra.yaml config file
template: src=cassandra.yaml dest=/etc/cassandra/
— name: run Cassandra service
service:
name: cassandra
state: started
become: yes

Figure 4.10: Ansible role for setting up a Cassandra node in a AWS EC2 instance.

Preparing Cassandra for testing

The code snippet in 4.11 represents the role for preparing a single Cassandra node. Here we have
two tasks targeting a single node that is responsible for propagating this configuration through out
all the nodes from the cluster. The first task creates the namespace ycsb with replication factor of
3, and the second one creates the table where the workload data is written.

# file: prepare cassandra.yml

— name: Create Cassandra Keyspace
shell: "cqlsh {{load balancer ip address}} —e \"CREATE KEYSPACE IF
NOT EXISTS ycsb WITH REPLICATION = { ’class’ : ’SimpleStrategy
’, ’replication factor’ : 3 };\""
— name: Create Workload Table
shell: "cqlsh {{load balancer ip address}} —e \"USE ycsb; CREATE
TABLE IF NOT EXISTS workload (y_id varchar primary key, version
varchar);\""

Figure 4.11: Ansible playbook for preparing a Cassandra node in a AWS EC2 instance.

Setting up the Workload Coordinator

The workload coordinator is responsible for running CBench-Dynamo workloads. The following
code snippets (Figure 4.12 and Figure 4.13) are the playbook and the role respectively for setting
up the coordinator.
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# file: coordinator.yml
— hosts: coordinator
remote user: ubuntu
gather facts: yes
become: yes
roles:
— setup coordinator

Figure 4.12: Ansible playbook for setting up the benchmark coordinator.

# file: setup_ coordinator.yml
— name: Add local hostname to /etc/hosts
lineinfile:
dest: /etc/hosts
line: "127.0.0.1 {{ansible hostname}}"
state: present
become: yes
— name: Update apt
apt:
update cache: yes
upgrade: yes
allow—unauthenticated: yes
— name: install openjdk—8—jdk
apt:
name: openjdk—8—jre
— name: install maven
apt:
name: maven
— name: install python
apt:
name: python

Figure 4.13: Ansible role for setting up the benchmark coordinator.

Running the benchmark

The following code snippet 4.14 represents de playbook that runs the benchmark. This playbook
calls the role run_ benchmark.yml (see Figure 4.15) that will be called for each map of variables
defined bellow the field with_items. All the arguments defined bellow vars will be common to all
benchmark iterations. In summary, we will have 5 workloads and they are represented in Table
4.1.
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# | Description | Driver ert.e Rea('i Threads | Objects | Versions
consistency | consistency
1 | cassandra fj;fandra ALL ALL 4 1000000 | 2
2 | cassandra _C?;S&ndra ONE ONE 4 1000000 | 2
3 | cassandra _Cj;fandra ONE QUORUM | 4 1000000 | 2
4 | cassandra _Cj;fandra QUORUM | ONE 4 1000000 | 2
5 | cassandra _C:;fandra QUORUM | QUORUM | 4 1000000 | 2
Table 4.1: Workload configurations.
# file: benchmark.yml
— hosts: coordinator
remote user: ubuntu
tasks:
— name: Use role in loop
include role:
name: run_benchmark
vars:
— description: "{{ item.description }}"
— db: "{{ item.db }}"
— write consistency: "{{ item.write consistency }}"
— read consistency: "{{ item.read consistency }}"
— threads: "{{ item.threads }}"
— objects _num: "{{ item.objects num }}"
— version _num: "{{ item.version num }}"
— host: "{{ groups|[’nodes’] | random }}"
with items:
— { description: cassandra, db: cassandra—cql,
write consistency: ALL, read consistency: ALL, threads: 4,
objects _num: 1000000, version num: 2 }
— { description: cassandra, db: cassandra—cql,
write consistency: ONE, read consistency: ONE, threads: 4,

objects _num: 1000000, version num: 2 }

{ description: cassandra, db: cassandra—cql,

write consistency: ONE, read consistency: QUORUM, threads:
4, objects num: 1000000, version num: 2 }

{ description: cassandra, db: cassandra—cql,

write consistency: QUORUM, read consistency: ONE,
4, objects num: 1000000, version num: 2 }

{ description: cassandra, db: cassandra—cql,

write consistency: QUORUM, read consistency: QUORUM,
threads: 4, objects num: 1000000, version num: 2 }

threads:

Figure 4.14: Ansible playbook for running a set of benchmark configurations.
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# file: run benchmark.yml
— name: Reboot AWS instances
local action:
module: ec2
aws_access_key: "{{aws access key}}"
aws_secret key: "{{aws secret key}}"
region: eu—west—1
wait: yes
instance tags:
Name: node
state: restarted

— name: With AWS instances started

local action:
module: ec2
aws_access_key: "{{aws access key}}"
aws secret key: "{{aws secret key}}"
region: eu—west—1
wait: yes
instance tags:

Name: node

state: running

name: sleep for 60 seconds and continue with play
wait _for:
timeout: 60

— name: "Load {{description}} write consistency={{write consistency}},

read consistency={{read consistency}}"

shell: "chdir="/ycsb ./bin/yesb load {{db}} —p hosts={{
load balancer ip address}} —p threadcount={{threads}} —p
objectversionlimit={{version _num}} —p numobjects={{objects num}}
—p cassandra.readconsistencylevel={{read consistency}} —p
cassandra. writeconsistencylevel={{write consistency}} —P
workloads /myworkload —s > 7 /load.log"

— name: "Run {{description}} write consistency={{write consistency}},
read consistency={{read consistency}}"
shell: "chdir="/ycsb ./bin/ycsb run {{db}} —p hosts={{

load balancer ip address}} —p threadcount={{threads}} —p
objectversionlimit={{version _num}} —p numobjects={{objects num}}
—p cassandra.readconsistencylevel={{read consistency}} —p
cassandra.writeconsistencylevel={{write consistency}} —P
workloads /myworkload —s > 7 /reports/ycsb/{{ansible date time.
epoch}} {{description}} w{{write consistency}} r{{
read consistency }}.dat"

Figure 4.15: Ansible role for running a single benchmark configuration.

4.3.2 Load Balancer

The load balancer is a basic AWS Network Load Balancer. Its purpose is to balance the database
calls coming from the benchmark testing evenly across the 8 nodes of the cluster. Figure 4.16
illustrates the load balancer instance used on AWS Management Console.
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[ ] Name ~ DNS name

® b 1b-1108247867 .eu-west-1.elb.amazonaws.com

Figure 4.16: Load balancer instance used listed on AWS Management Console.

4.3.3 Data Analyser

The workload coordinator is responsible for running CBench-Dynamo workloads. The role in
Figure 4.17 runs the python script (see code snippet in Figure 4.18) responsible for measuring the
data produced by the workload. The following measurements are calculated:

e Availability probability

e Consistency probability

e Latency (write)

e Latency (read)

— name: "Analyse {{filename}}"
shell: "chdir="/anayser python —m bin.main run ~/reports/ycsb/ 7/
reports/analyser//{{ansible date time.epoch}} analysis.csv"
register: out

— debug: msg="{{ out.stdout }}"

Figure 4.17: Ansible role for analysing data.

32




CBench-Dynamo

def calculate(self):
inconsistencies reads counter = 0
total reads = 0
for entry in self.data:
if entry.worker type = DataEntry.WRITER:
self .registry[entry.key] = (entry.timestamp, entry.version)
else:
total reads = total reads + 1
timestamp, version = self.registry.get(entry.key, (0, 0))
if int(entry.version) < int(version) and int(timestamp) <
int (entry.timestamp):
inconsistencies reads counter =
inconsistencies reads counter + 1
print (entry)

consistent reads counter = total reads —
inconsistencies reads counter

try:
self .ratio _read latency and _ consistency score = self.
read average latency / (
consistent reads counter / total reads)
except ZeroDivisionError:
self.ratio read latency and consistency score = 0
try:
self .ratio _write latency and consistency score = self.
write average latency / (
consistent reads counter / total reads)
except ZeroDivisionError:

self.ratio write latency and consistency score = 0
if consistent reads counter — 0:
self.consistency score = 0
else:
self . consistency score = consistent reads counter / total reads
* 100
if self.unavailable service counter = self.total operations:
self.availability score = 0
else:
self.availability score = (self.total operations — self.

unavailable service counter) / self.total operations % 100

Figure 4.18: Main logic to calculate the measurements evaluated.

4.3.4 Network partition events generator

The network partition events generator’s playbook (Figure 4.19) and role (Figure 4.20) are respon-
sible for calling the bash script that injects the fault (Figure 4.21) for each cluster node. This node
is randomly chosen and it stops operating, hence simulating a network partition event. The script
stops the Cassandra node represented by the IP address it receives from the arguments from the
playbook call and after stopping the node the script sleeps for a specific amount of time and then
restarts the node it just stopped. This repeats until the benchmark is over.
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— hosts: local
connection: local
tasks:
— name: Use role in loop
include role:
name: inject faults

vars:
— service: "{{ item.service }}"
— fault duration: "{{ item.fault duration }}"
— fault interval: "{{ item.fault interval }}"

with items:
— { service: cassandra, fault duration: 2
25 }

, fault interval:

Figure 4.19: Ansible playbook for initiating the network partition event generator.

— name: With AWS instances started
local action:
module: ec2
aws_access_key: "{{aws access key}}"
aws secret key: "{{aws secret key}}"
region: eu—west—1
wait: yes
instance tags:
Name: node
state: running

— name: gather facts from nodes
setup:
delegate to: "{{facts item}}"
delegate facts: True
remote user: ubuntu
loop: "{{groups|[’nodes’]|}}"
loop control:
loop var: facts item

— name: Interpolate fault injection.sh
template: src=fault injection.sh dest=fault injection.sh

— name: "Injecting network partition events in the background (see
script.log)"
shell: "sh fault injection.sh {{fault duration}} {{fault interval}}
{{service}} ubuntu > script.log"

Figure 4.20: Ansible role that randomly chooses the cluster node to fail and calls the
network partition event bash script.
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while true
do
RANDOM=$$$ (date +%s)
IP=${IPS [$RANDOM % ${#IPS[@]}]}
echo initiating service fault on ${IP}
ssh ${USER}@${IP} ’sudo_service_’${SERVICE}’ _stop’
echo service ${SERVICE} stopped on ${IP}
RANDOM_FAULT DURATION=$ (( ( RANDOM % ${FAULT DURATION MAX} ) + 1 )

echo sleeping ${RANDOM FAULT DURATION}s before starting ${SERVICE}
again on ${IP}...

sleep ${RANDOM_FAULT DURATION}

ssh ${USER}@Q${IP} ’sudo_service_’ ${SERVICE} _start’

echo service ${SERVICE} started

RANDOM_FAULT INTERVAL-$ (( ( RANDOM % ${FAULT INTERVAL MAX} ) + 1 )

echo sleeping ${RANDOM FAULT INTERVAL}s before next fault ...
sleep ${RANDOM FAULT INTERVAL}
echo

done

Figure 4.21: Bash script that stops Cassandra service on the cluster node received as
argument, sleeps for specific time, and recovers the cluster node back to life.

The output of the playbook will give details about the network partition events that are currently
taking place. Figure 4.22 illustrates a possible output.

initiating service fault on 34.244.127.84

service cassandra stopped on 34.244.127.84

sleeping 1s before starting cassandra again on 34.244.127.84...
service cassandra started

sleeping 7s before next fault...

initiating service fault on 34.244.237.236

service cassandra stopped on 34.244.237.236

sleeping 1s before starting cassandra again on 34.244.237.236...
service cassandra started

sleeping 16s before next fault ...

initiating service fault on 52.49.176.148

service cassandra stopped on 52.49.176.148

sleeping 2s before starting cassandra again on 52.49.176.148...
service cassandra started

sleeping 7s before next fault ...

initiating service fault on 34.244.237.236

service cassandra stopped on 34.244.237.236

sleeping 2s before starting cassandra again on 34.244.237.236...
service cassandra started

sleeping 4s before next fault ...

Figure 4.22: Network partition events generator output.
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Experimental Evaluation

As the first test of the proposed benchmark, Cassandra was the chosen SUT. Cassandra is a
database system built with distributed systems in mind, like almost every NoSQL systems out
there. Following the CAP theorem, Cassandra by default is on the AP (Availability and Network
Partition Tolerance) side, hence prioritizing high-availability when subject to network partitioning.
As we will further see, Cassandra’s consistency can be tuned to be a CP (Consistency and Network
Partition Tolerance) database system, so it becomes a strong consistent database when subject to
network partitioning [17].

5.1 Cassandra

Cassandra is a column NoSQL database [31]. It was initially developed by Facebook to fulfill the
needs of the company’s Inbox Search services. In 2009, it became an Apache Project.

Cassandra is a database system built with distributed systems in mind, like almost every NoSQL
systems out there. Following the CAP theorem, Cassandra will be on the AP (Availability and
Network Partition Tolerance) side, hence prioritizing high-availability when subject to network
partitioning. As we will further see, Cassandra’s consistency can be tuned to be a CP (Counsistency
and Network Partition Tolerance) database system, so it becomes a strong consistency database
when subject to network partitioning. Cassandra system is a column based NoSQL database [5].
In other words, Cassandra describes data by using columns. A keyspace is the outermost container
for the entire dataset, corresponding to the entire database, and it is composed of many column-
families. A column-family represents the same class of objects, like a Car or a Person, and each
column-family has different entries of objects called rows. Each row is uniquely identified by a row
key or partition key and can hold an arbitrarily large number of columns. A column contains a
name-value pair and a timestamp. This timestamp is necessary when solving consistency conflicts.

Cassandra scales up by distributing data across a set of nodes, designated as a cluster. Each node
is capable of answering client requests. When a node is working on a client request, it becomes
the coordinator for that request. It will be responsible for asking to other nodes for the requested
data and answering back to the application.

Cassandra partitions data across the cluster by hashing the row key. Each node on the ring stores
a subset of hashes, in such a way that "the largest hash value wraps around the smallest hash
value" [31]. Because of the randomness of the hash functions, data tends to be evenly distributed
across the ring.

Replication is the strategy Cassandra uses to achieve a high-available system. Two concepts de-
scribe a replication configuration in Cassandra, replication strategy and replication factor [32].
The Replication strategy determines which nodes replicas are placed. The replication factor de-
termines how many different nodes have the same data. If the replication factor is R, the node
that is responsible for that specific key range copies the data it owns to the next R — 1 neighbors,
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clockwise as in Figure 2.4.

Cassandra was initially designed to be eventually consistent, high-available and low-latency. How-
ever, its consistency can be tuned to match the client’s requirements. The following configuration
constants describe some of the different write consistency levels [33]:

e ALL. Data is written on all replica nodes in the cluster before the coordinator node ac-
knowledges the client. (Strong Consistency, high latency)

e QUORUM. Data is written on a given number of replica nodes in the cluster before the
coordinator node acknowledges the client. This number is called the quorum. (Eventual
Consistency, low latency)

e LOCAL QUORUM. Data is written on a quorum of replica nodes in the same data center
as the coordinator node before this last one acknowledges the client. (Eventual Consistency,
low latency)

e ONE. Data is written in at least one replica node. (Eventual Consistency, low latency)

e LOCAL ONE. Data is written in at least one replica node in the same data center as the
coordinator node. (Eventual Consistency, low latency)

5.2 Architecture

CBench-Dynamo requires an architecture composed of an orchestrator, a workload coordinator,
and a dynamo cluster as the SUT. The following architecture was de-fined for our first test (see
Figure 5.1):

Orchestrator. The orchestrator is a MacBook Pro 13-inch, 2017, 2.3GHz Intel Core 15 with 8GB
of RAM.

Workload Coordinator. The workload coordinator is an Amazon EC2 Chn.xlarge instance (4
vCPUs, 10.5GB RAM).

SUT. The System Under Test is a Cassandra cluster composed of eight Amazon EC2 Mbd.large
instances. Each cluster instance will be rebooted and reloaded between workloads by the Orches-
trator and the Workload Coordinator.
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Figure 5.1: Testing architecture.

5.3 Experiment

In this section, we present the results obtained after running the proposed workload configurations.
Our experiment targets an 8-node Cassandra cluster and combines different consistency configu-
rations, i.e. ONE, QUORUM, ALL, as described in Table 5.1. The common input parameters for
every configuration are the following:

e Replication Factor: 3;
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e Total number of objects: 1.000.000;

e Versions/updates per object: 2;

e Network partition event duration: 2s;

e Interval between network partition events: random between [1s, 25s].

Configuration | SUT Write Consistency | Read Consistency
1 Cassandra | ALL ALL
2 Cassandra | ONE ONFE
3 Cassandra | QUORUM ONFE
4 Cassandra | ONE QUORUM
5 Cassandra | QUORUM QUORUM
Table 5.1: Cassandra’s benchmark workload configurations.

Consistency and Availability. When in a configuration where both read and write consistency
is ALL we achieve results of Strong Consistency while compromising availability. This happens
as theorized because all replicas must be involved before returning to the client. If some replica
is down, resulting from a network partition event, the request can’t fulfill and the response to
the client reports an unavailable service. Although this configuration generated an availability of
99.7539%, the industry does not consider this value high. Availability is usually represented by how
many nines the availability probability has (see Table 5.2). The value we attained in the ALL-ALL
configuration only has 2-nines, which means that this number only falls into the second level of
availability, hence translating into 3.65 days of availability when rounding down the number to
99.0000%. Many businesses that require high-availability may fail with such a long unavailable
service time.

In the other hand, when querying Cassandra with no consistency constraints by set-ting both read
and write operations to involve just one replica (write consistency = ONE and read consistency =
ONE), we achieved 100% of availability, but we have compromised consistency down to the lowest
value achieved in the whole experience.

As of configurations using QUORUM combined with ONE, we achieved a more balanced consis-
tency /availability relation. As we had chosen a replica factor of three, the QUORUM involves two
replicas when processing a client request. When reading with ONFE and writing with QUORUM,
the request may involve the third replica that was not part of the QUORUM for that given data
object, hence returning an outdated version. When inverting the order, the ONE in the writing and
the QUORUM in the reading, it seems not to have such a drastic decline in consistency, however
availability loses a nine.

For a QUORUM-QUORUM configuration, we achieved strong-consistency and high-availability.
This configuration can tolerate some network partition events unless the number of replicas down
compromises the quorum. Because network partition events had disconnected one replica at a time,
the quorum had never been compromised, hence the results we had and represented in Figure 5.2.

Performance. The second analysis is in terms of read and write operation latencies given a consis-
tency setting. As Figure 5.3 illustrates, for an ALL-ALL configuration we achieved as expected the

Availability (%) Downtime per year

90.0000 (one nine availability) 36.53 days
99.0000 (two nines availability) 3.65 days
99.9000 (three nines availability) | 8.77 hours

52.60 minutes
5.26 min