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Abstract

Nowadays software architects face new challenges. The Internet has grown to a point
where popular websites are accessed by hundreds of millions of people on a daily basis.
One powerful machine is no longer economically viable and resilient in order to handle such
outstanding traffic. Architectures have since been migrated to horizontal scaling. How-
ever, traditional databases, usually associated with a relational design, were not ready for
horizontal scaling. Therefore, NoSQL databases have proposed to fill the gap left by their
predecessors. This new paradigm is proposed to better serve currently massive scaled-up
Internet usage when consistency is no longer a top priority and a high available service is
preferable. However, based on the CAP theorem when in a distributed environment where
network partition events occur, only one of the two properties, consistency or availability,
can be guaranteed. When one increases the other must decreases. Dynamo-based databases
are designed to run in a cluster while offering high availability and eventual consistency to
clients when subject to network partition events. Therefore, this thesis proposes CBench-
Dynamo, the first consistency benchmark for NoSQL databases. The proposed benchmark
correlates properties, such as performance, consistency, and availability, in different consis-
tency configurations while subjecting the System Under Test (SUT) to network partition
events. This enables us to better comprehend how the SUT handles the trade-off between
these properties.
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Resumo

Hoje em dia arquiteturas de software encaram novos desafios. A Internet cresceu tal que
existem sítios na Internet que são acedidos por centenas de milhões de pessoas diariamente.
Uma única máquina poderosa não é mais economicamente viável e resiliente de forma a
lidar com a imensidão de tráfego e as arquiteturas têm desde então sido migradas para es-
calagem horizontal. No entanto, bases de dados tradicionais, mais associadas ao paradigma
relacional, não estão preparadas para a escalagem horizontal. Desta feita, as base de da-
dos NoSQL vieram propôr preencher essa limitação. O paradigma NoSQL propõe melhor
servir a atual massificação de uma Internet com alto tráfego de dados onde a consistência
não é uma prioridade de topo, mas sim a alta disponibilidade para muitos projetos. No
entanto, de acordo com o teorema de CAP entre as duas propriedades, disponibilidade ou
consistência, só uma delas pode ser totalmente garantida. A especificação Dynamo con-
siste num cluster de bases de dados que oferecem alta disponibilidade enquanto relaxam
a consistência ao nível de consistência eventual ao mesmo tempo que toleram eventos de
partição na rede. Consequentemente, esta tese propõe CBench-Dynamo, a primeira frame-
work de benchmark para bases de dados NoSQL. O benchmark proposto correlaciona pro-
priedades, como performance, consistência e disponibilidade, em diferences configurações
de consistência enquanto sujeitamos o sistema em testes a eventos de partição na rede.
Consequentemente, permitindo-nos compreender melhor como o sistema em testes gere os
trade-offs entre estas propriedades.

Palavras-Chave

Consistência, Disponibilidade, Tolerância a Partições na Rede, Bases de Dados NoSQL,
Benchmark, Dynamo, Cassandra.
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Chapter 1

Introduction

The Internet has grown to a point where billions of people have access to it, not only from
a desktop but also from smartphones, smartwatches, and even other servers and services.
Nowadays systems need to scale. The monolithic database architecture, based on a power-
ful server, does not guarantee the high availability and network partition tolerance required
by today’s web-scale systems, as demonstrated by the CAP (Consistency, Availability, and
Network Partition Tolerance) theorem [8]. Strong consistency is a property that has been
relaxed to achieve more scalable database systems. Relational databases were designed
to support strong consistency. Each transaction must be immediately committed, and all
clients will operate over consistent data states. Reads from the same object will present
the same value to all client requests. Although strong consistency is the ideal require-
ment for a database, it deeply compromises horizontal-scalability. Horizontal scalability
is a more affordable approach when compared to vertical scalability. It enables higher
throughput and data distribution across multiple database nodes. On the other hand,
vertical scalability relies on a single powerful database server to store data and answer
all requests. Although horizontal scaling may seem preferable, CAP theorem states that
when network partitions occur, one has to opt between availability and consistency [9].
Horizontal scaling has inspired a new category of databases called NoSQL. These systems
have been created with a common requirement in mind, scalability. Several NoSQL designs
prioritize high-availability over a more relaxed consistency strategy, an approach known as
BASE (Basically Available, Soft-state and Eventually consistent) [10].

Although frameworks, such as YCSB [11], have been developed for benchmarking NoSQL
databases, they lack a consistency tier to fully compare the tradeoffs described by the CAP
theorem.

This thesis proposes CBench-Dynamo, a benchmark for testing consistency and availability
on a horizontal-scaled system. It also defines the main quality attributes of a benchmark,
i.e. Relevance, Reproducibility, Fairness, Verifiability, and Usability [12]. This thesis’ main
goal is to propose a consistency benchmark framework and extract different measurements
on performance, consistency, and availability with different consistency configurations of
the System Under Test (SUT) while subjecting this system to network partition events.

1.1 Thesis Goals

This thesis aims to build a NoSQL Consistency Benchmarking Framework that compares
and analyses how consistency is affected by other quality attributes such as availability and

1
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performance when subjecting the target system to network partition events. This thesis
also aims to take advantage of this new framework and test it on Cassandra. Cassandra
can be configured to be Eventual Consistent or Strong Consistent as they implement the
dynamo blueprints first introduced by Amazon. This work will enable Software Architects
to better assert what NoSQL database will better suit their application requirements based
on different consistency configurations and how it influences performance and availability
while subjecting the system to network partition events.

1.2 Main Contribution

This study differentiates from all the work in this field by purposing the first NoSQL
consistency benchmark while subjecting the SUT to network partition events. This work
also tests the proposed benchmark on Cassandra.

To the best of our knowledge, there is no other work that empirical compares the three
vertices of the CAP theorem, consistency, availability and network partition tolerance.

This thesis extends the work done by Bermbach and Tai [13] on long-term benchmarking
on S3 by introducing network partition events and a framework approach that can be used
on dynamo-based databases such as Cassandra.

All the codebase is openly available on GitHub [14] [15] [16].

1.3 Work Recognition and Publication

This thesis has resulted in two papers, hence contributing to the scientific community
within this field. Future Internet published a resulting survey from this thesis work [17]
(see Appendix B) about consistency models on NoSQL databases and served as a theoret-
ical introduction to the proposed benchmark framework, CBench-Dynamo, published (see
Appendix C) and presented at TPCTC/VLDB 2019 conference in Los Angeles, USA (see
presentation in Appendix D).

1.4 Report Structure

The remainder of this report is structured as follows. Section 2 presents the background
knowledge. Section 3 presents the related work. Section 4 presents the proposed benchmark
framework, CBench-Dynamo, followed by the testing results in Section 5. In Section 6,
we present the work plan. Finally, in Section 7, the current thesis’ conclusion and future
work.

2
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Chapter 2

Background Knowledge

In this chapter, the main concepts are introduced. Section 2.1 presents the CAP theorem
as the main theorem that supports our problem and motivation. Then, Section 2.2 gives
a brief explanation about the different consistency models in the NoSQL databases realm.
Finally, in Section 2.3 we introduce the Dynamo design first introduced by Amazon. This
specification will allow us to better understand Eventual Consistency and Availability. This
is the design that our System Under Test (SUT) is based on for the proposed benchmark.

2.1 CAP Theorem

In 2000, Eric Brewer introduced CAP theorem [8], Consistency, Availability, network par-
tition tolerance. The CAP theorem states that in a distributed system three properties
cannot be fulfilled simultaneously, but only two. According with CAP a preliminary clas-
sification of NoSQL databases presents as follows [1]:

• CA (Concerned about consistency and availability). The database’s bottom priority
is network partition tolerance, and it uses replication as the main approach to ensure
data consistency and availability. Traditional relational database are CA.

• CP (Concerned about consistency and partition tolerance). The database’s bottom
priority is availability. Such database stores data in distributed nodes, while en-
suring the consistency of these data. Examples of this configuration are MongoDB
(document-based), and Redis (key-value).

• AP (Concerned about availability and partition tolerance). The database’s bottom
priority is consistency. Such database ensure availability and partition tolerance
primarily while relaxing consistency. AP systems are Voldemort (key-value), Riak
(document-based), and Cassandra (column-based)

2.2 Consistency Models

In the past, almost all architectures of databases systems were strong consistent. In these
cases, most architectures would have a single database instance only responding to a few
hundred clients. Nowadays, many systems are accessed by hundreds of thousands of clients,
so there was the need to scale database architectures. However, considering the CAP
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Figure 2.1: CAP Theorem [1].

theorem, high-availability and consistency do conflict on distributed systems when subject
to a network partition event. The majority of the projects that have been experiencing
such high-traffic have chosen to adopt high-availability over a strong consistent architecture
by relaxing the consistency level.

There are two perspectives on consistency, the data-centric consistency and the client-
centric consistency, as illustrated in Figure 2.2. Data-centric consistency is the consistency
analyzed from the replicas’ point of view. Client-centric consistency is the consistency
analyzed from the clients’ point of view [2].

Figure 2.2: Data-centric and Client-centric consistencies [2]

In the next sections, we will review the main consistency models implemented in storage
systems: Strong consistency, weak consistency, eventual consistency, causal consistency,
read-your-writes consistency, session consistency, monotonic reads consistency, and mono-
tonic writes consistency. Figure 2.3 synthesizes these consistency models.

2.2.1 Strong Consistency

Strong Consistency or Linearization is the strongest consistency model. Each operation
must appear committed immediately, and all clients will operate over the same data state.
A read operation in an object must wait until the write commits before being able to
read the new version. There is also a single global order of events accepted by all storage

5
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Figure 2.3: Consistency Models based on Reference [3].

systems’ instances [18]. Strong Consistency leads to a high consistency system, but it
compromises scaling by decreasing availability and network partition tolerance.

2.2.2 Weak Consistency

As the name implies, this model weakens the consistency. It states that a read operation
does not guarantee the return of the latest value written. It also does not guarantee a
specific order of events [18]. The time period between the write operation and the moment
that every read operation returns the updated value is called the inconsistency window
[19]. This model leads to a highly scalable system because there is no need to involve more
than one replica or node into a client request.

2.2.3 Eventual Consistency

Eventual Consistency strengths the Weak Consistency model. Replicas tend to converge to
the same data state. While this convergence process runs, it is possible for read operations
to retrieve an older version instead of the latest one. The inconsistency window will depend
on communication delays between replicas and its sources, the load on the system and the
number of replicas involved [19].

This model is half-way a strong consistency model and a weak consistency model. Eventual
Consistency is a popular feature offered by many NoSQL databases. Cassandra is one of
them, and it can offer availability and network partition on such a level that it does not
compromise the usability of the most accessed websites in the world that uses Cassandra.
One of them is Facebook, the company that initially developed Cassandra.

2.2.4 Causal Consistency

If some database client updates a given object, all the clients that acknowledge the update
on this object will consider the updated value. However, if some other client (e.g. other
database) does not acknowledge the write operation, they will follow the eventual consis-
tency model [19]. Causal consistency is weaker than sequential consistency but stronger
than eventual consistency.

Strengthening the Eventual Consistency model to be Causal Consistency decreases avail-
ability and network partitioning properties of the system.

6
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2.2.5 Read-your-writes Consistency

Read-your-writes consistency allows ensuring that a replica is at least current enough to
have the changes made by a specific transaction. Because transactions are applied serially,
by ensuring a replica has a specific commit applied to it, we know that all transaction
commits occurring prior to the specified transaction have also been applied to the replica. If
some database client updates a given object, this same database client will always consider
the updated value. Other clients will eventually read the updated value. Therefore, read-
your-writes consistency is achieved when the system guarantees that, once a record has
been updated, any attempt to read the record will return the updated value [20].

2.2.6 Session Consistency

If some database client makes a request to the storage system in the context of a session,
it will follow a read-your-writes consistency model as long as this session exists. Using
session consistency, all reads are current with writes from that session, but writes from
other sessions may lag. Data from other sessions come in the correct order, just isn’t
guaranteed to be current. This provides good performance and good availability at half
the cost of strong consistency [21].

2.2.7 Monotonic Reads Consistency

After a database client reads some value, all the successive reads will return that same value
or a more recent one [22]. In other words, all the reads on the same object by the same
database client follow a monotonic order. However, this does not guarantee monotonic
ordering on the read operations between different clients on the same object. Therefore,
monotonic reads ensure that if a client performs read r1, then r2, then r2 cannot observe a
state prior to the writes which were reflected in r1; intuitively, reads cannot go backward.
Monotonic reads do not apply to operations performed by different clients, only reads by
the same client. Monotonic reads can be totally available: Even during a network partition,
all nodes can make progress [23].

2.2.8 Monotonic Writes Consistency

A write operation invoked by a database client on a given object needs to be completed
before any subsequent write operation on the same object by the same database client [22].
In other words, all the writes on the same object by the same client follow a monotonic or-
der. However, this does not guarantee monotonic ordering on the write operations between
different clients on the same object. Therefore, monotonic writes ensure that if a database
client performs write w1, then w2, then all clients observe w1 before w2. Monotonic writes
do not apply to operations performed by different clients, only writes by the same client.
Monotonic writes can be totally available: Even during a network partition, all nodes can
make progress [24].

2.3 Dynamo

Dynamo design and implementation were first introduced by Amazon as a highly available
key-value storage system [4]. Since then, Amazon has built many cloud services imple-
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menting this design such as Amazon DynamoDB and Amazon S3.

Dynamo prioritizes eventual consistency, targeted to applications that need an “always
writeable” data store where no updates are rejected due to failures or concurrent writes.

Dynamo was designed to scale incrementally, hence it was designed with a partition mecha-
nism in mind. Dynamo’s partition mechanism is based on a consistent hashing to distribute
the load across multiple data nodes. The output of this hashing function can be illustrated
as a ring as seen in Figure 2.4, in which the highest output wraps around the smallest one.
Each node is assigned a random value within the range of the hashing function. To know
which node will store a given data value, the correspondent key of this value is hashed.
Then, we walk the ring clockwise, from the smallest to the largest number, to find the first
node with a position larger than the hashing result.

Figure 2.4: Partitioning and replication of keys in Dynamo ring [4].

2.3.1 Consistency Configurations

Amazon’s Dynamo based databases such as Cassandra, all use the same variant of quorum-
style replication [25]. Quorum-style replication is associated with a replication factor N ,
i.e. the number of replicas that some data eventual will be in. Read and write consistency
can be configured as follows, ONE, QUORUM , or ALL.

The following configurations describe the differences between the three write consistency
levels for Dynamo-based database systems [17]:

• ALL. Data is written on all replica nodes in the cluster before the coordinator node
acknowledges the client. Therefore, this configuration has: Strong Consistency and
High latency.

• QUORUM . Data is written on a given number of replica nodes in the cluster
before the coordinator node acknowledges the client, where this number is called
the quorum. This configuration has: Eventual Consistency and Low latency.

• ONE. Data is written in at least one replica node. This configuration has: Eventual
Consistency and Low latency.

8



Background Knowledge

Analogous to the write consistency levels, the following configuration constants describe the
differences between the three read consistency levels for Dynamo-based database systems
[17]:

• ALL. The coordinator node returns the requested data to the client only after
all replicas have responded. This configuration has: Strong consistency and Less
availability.

• QUORUM . The coordinator node returns the requested data to the client only after
a quorum of replicas has responded. This configuration has: Eventual consistency
and high-availability.

• ONE. The coordinator node returns the requested data to the client from the closest
replica node. This configuration has: Eventual consistency and High availability.

Under normal operation, i.e. without network partition events, given the number of replicas
required for a read operation as R, the number of replicas required for a write operation as
W, and the replication factor as N, Dynamo-based databases guarantee consistency when
[25]:

R+W > N (2.1)

Given RQuorum and WQuorum, as Read Consistency and Write Consistency set to QUO-
RUM, respectively, and the floor function that takes as input a real number and round it
down to the closest integer. The conversion from the QUORUM notation to the R, W
notation is as follows:

RQUORUM , WQUORUM = R, W = floor

(
N

2
+ 1

)
(2.2)

2.3.2 Consistency Faults

Under abnormal operations where a network partition event had occurred, if consistency
is set to strong, i.e. ALL, availability is compromised as the Figure 2.5 illustrates.

The scenario illustrated by Figure 2.5 describes a situation where a read operation needs to
involve the total number of replicas N in order to retrieve the data to the client. In case of
a network partition, e.g. node C crashes, the coordinator of the request, node A, was not
able to serve data, hence the total number of replicas had been involved in the operation,
and the coordinator had no other option than announcing a lack of service availability to
the client, resulting in a TIMEOUT response.

Under abnormal operations where a network partition event had occurred, if consistency is
set to eventual configuration (ONE ), we achieve service availability even in the presence of
a node crash as the Figure 2.6 illustrates. The scenario illustrated by Figure 2.6 describes
a situation where a read operation only needs to involve one replica in order to retrieve
the requested data to the client. Because only one replica had been involved, the response
may not contain the latest data as this example suggests. Although consistent responses
are not ensured, this configuration results in a high-available service.

For Dynamo-based databases, high availability does not necessarily ensures write persis-
tence. When addressing the concept of availability, in terms of service availability and not
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data availability, i.e. when a request is made, a successful response is given even if such
key does not exist anymore. The response is successful, even if the response refers to the
inexistent of such resource. There may be the case when, for instance, a configuration
of W = 1 (ONE ) is set and the same node crashes right afterward, the data is lost and
there is no acknowledgment to the client that such abnormality had happened. To avoid
such events, W values greater than 1 increase data redundancy and, consequently, the
probability of all replicas that contain the data fail is diminished.

Figure 2.5: Data request on abnormal operation where a node fails, and strong read
consistency is set (i.e. ALL).

Figure 2.6: Data request on abnormal operation where a node fails, and eventual read
consistency is set (i.e. ONE ).
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Chapter 3

Related Work

This chapter presents the current state of the art related to consistency comparison and
benchmarking in NoSQL databases.

3.1 NoSQL Background

Consistency models are analyzed in various works using different assumptions. Bhamra in
Reference [5] presents a comparison between the specifications of Cassandra and MongoDB.
The author focuses only on a theoretical comparison based on the databases specifications.
The objective of this work is to help the reader choosing which database is more suitable
for a particular problem. Bhamra starts by making a comparison between Cassandra and
MongoDB specifications.

A cluster of nodes in Cassandra is visualized as a ring (see Figure 3.1). Cassandra dis-
tributes all the data from the keyspace evenly across all the nodes. Each Cassandra node
in the cluster stores a subset of the data and is responsible for an interval of hashes. When
some data is inserted into the database, the key of that data is sent to the partitioner.
The partitioner is a hash function based on that key. The resulting hash determines which
node contains that data’s value. Randomness is obtained by using hashing, therefore a fair
load is attained across nodes [5]. Data replication is defined per keyspace and follow two
parameters; the replication strategy and replication factor. The replication strategy defines
the algorithm that decides at which nodes to store copies of rows. In the other hand, the
replication factor represents the number of copies of each row have to be persisted.

MongoDB is a schema-less document-oriented database, hence documents are used as the
primary structure for persisting data. MongoDB data model is based on documents. These
documents are represented in BSON (Binary JSON). This format extends the well-known
JSON (JavaScript Object Notation). Documents that represent a similar class of objects
are organized as collections. For example, a collection could be the Car collection while
a document could be the data item of a single car. Making the analogy with RDBMS,
collections are similar to tables. Documents are similar to rows. Fields are similar to
columns. MongoDB allows configuring a replica set. A replica set has primary replica set
members and secondary replica set members (see Figure 3.2). There are two configurations
based on the desired consistency level:

• Strong consistency. Applications write and read from the primary replica set member.
The primary member will write all the operations that made it transact to the new
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Figure 3.1: Cassandra ring [5].

state. These operations are idempotent and constitute the oplog (operations log).
After the primary member acknowledges the application of the committed data and
operations logging, secondary replica set members can now read from this log and
replay all operations so that they can be on the same state of the primary member.

• Eventual consistency. Applications can read from secondary replica set members if
they do not prioritize reading the latest data.

Oplog has a configurable back-limit history (default: 5% of the available disk space). If a
secondary member fails longer enough to need operations that are no longer available in
the oplog, all the databases, collections, and indexes directives are copied from the primary
member or another secondary member. This process is called initial synchronization. The
same one that is used when adding a new member to the replica set [5].

Figure 3.2: MongoDB replica set example [5].

The author compiles the whole comparison between Cassandra and MongoDB into a single
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table (see Table 3.3) at the end of the article and concludes that MongoDB offers a more
versatile approach, querying, and ease of use than Cassandra. The author makes a valuable
theoretical analysis. However, it is not presented an experimental evaluation comparing
Cassandra and MongoDB databases.

Figure 3.3: Cassandra vs MongoDB [5].

3.2 Analytical Models to Study Consistency on NoSQL Databases

Bailis et al. [26] suggest an approach that predicts the expected consistency of an eventually
consistent Dynamo data store using models the authors developed called Probabilistically
Bounded Staleness (PBS). This approach lacks a benchmark framework.

To analyze how eventual consistency is affected by the write and read consistency config-
urations offered by Cassandra, UC Berkeley developed a simulator called Probabilistically
Bounded Staleness (PBS) [25]. Figures 3.4–8, show the resulting curves of a simulation
using PBS, given the number of available cluster hosts (N), the read quorum (R) and the
write quorum (W). They represent the probability of a client request having the latest
version of the data over time (ms) for a given N , W and R combination. All the above
configurations assume a ReplicationFactor > 1. If the Replication Factor were 1, there
would be a single node storing a given data object, therefore the write operation and read
operation would only execute in that single node resulting in strong consistency (as seen
in Figure 3.4) for all configurations in Figures 3.4–8.
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3.2.1 ALL Write Consistency Level or ALL Read Consistency Level

From Figure 3.4, we can conclude that the probability of consistency over time is constant,
resulting in 100%. That is because each write or read operation is executed on every node
available before acknowledging the result to the client. Therefore, this configuration makes
the Cassandra cluster strong consistent.

Figure 3.4: PBS results for (N = 5, R = 1, W = N = 5) and (N = 5, R = N = 5, W = 1).

3.2.2 ONE Read Consistency Level and QUORUM Write Consistency
Level

In Figure 3.5, the consistency of a given data object eventually gets to 100%. A write
operation needs three updated copies to acknowledge a successful write operation and a
read operation returns the first copy the coordinator finds. The time that it is needed to
reach 100% consistency is the time that the cluster needs to make all the number of copies
previously set on the Replication Factor. With Read Consistency Level ONE, Cassandra
will depend on the periodically Read Repair routines set by the Read Repair Chance to
update all the copies of the data object and return all the time the same latest version.

Figure 3.5: PBS results for (N=5, R=1, W=3).

3.2.3 QUORUM Read Consistency Level and ONE Write Consistency
Level

From Figure 3.6, we can conclude that the time needed to reach full consistency of a given
data object is the shortest of all configurations here (excluding the Figure 3.4 configu-
ration). Three nodes are approached by the coordinator and the most updated version
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among them is returned. For each read operation, Cassandra cluster uses its Read Repair
feature to propagate to all three nodes inside the Quorum (the three nodes), so that they
all have the most updated version of the requested data among them. Because Read Repair
is always triggered by a read, the cluster reaches full consistency faster on the given data
object.

Figure 3.6: PBS results for (N=5, R=3, W=1).

3.2.4 ONE Read Consistency Level and ONE Write Consistency Level

In Figure 3.7, we have the strongest form of eventual consistency configuration in Cassan-
dra. We need just one node with the updated data to acknowledge the write operation.
For the reads, the first node the coordinator node chooses will retrieve the requested data.
This may or may not be the most updated version of the data object. Eventually, the
most updated version will be returned on all requests. The time needed to get to a 100%
probability of consistency will depend on the Read Repair Chance and the Replication
Factor. The higher the probability of the Read Repair Chance, the shorter the time to
get to full consistency. The lower the Replication Factor, the shorter the time to get to
full consistency. Modifying the Read Repair Chance and the Replication Factor to reach
consistency faster will result in higher latencies because more copies and nodes are involved
in the read and write operations for each client request.

Figure 3.7: PBS results for (N=5, R=1, W=1).

3.3 Benchmark Consistency in NoSQL databases

This section presents the related work on building a consistency framework for NoSQL
databases.
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Cooper et al. [27] presents the YCSB (Yahoo! Cloud Serving Benchmark), a benchmarking
framework for cloud serving systems. It comes to fill the need for performance comparisons
between NoSQL databases and keep tracking of their tradeoffs such as read performance
versus write performance, latency versus durability, and synchronous versus asynchronous
replication. Although benchmark tiers such as performance and scaling are included in
YCSB, it lacks other tiers such as availability and consistency. The tiers supported by
YCSB are the following:

• Tier 1 - Performance. Performance tier focuses on the latency of requests when the
database is under load.

• Tier 2 - Scaling. The Scaling tier of the database studies the impact on performance
as more instances are added to the system.

Tudorica and Bucur present a critical comparison between NoSQL systems using mul-
tiple criteria [28]. The authors start to introduce multiple taxonomies to classify many
NoSQL databases groups, even though there is not an official classification system on this
type of databases. They define the following criteria to be used on the theoretical com-
parison: Persistence, replication, high availability, transactions, rack-locality awareness,
implementation, influencers/sponsors, and license type. Tudorica and Bucur concentrate
this theoretical comparison into one single table. Afterward, the authors make an empirical
performance comparison, between Cassandra, HBase, Sherpa, and MySQL, using YCSB
[11]. This article lacks other empirical metrics besides performance, such as consistency.

Patil et al. [29] propose a benchmark architecture that evaluates time to consistency. The
authors extend the YCSB framework and add support to distributed architectures by using
ZooKeeper for coordination. However, since 2011, development of the YCSB++ framework
has been discontinued, and Cassandra support is still in progress. Only HBase and Acumulo
support are available, but they are outdated as major releases of both databases have been
released. YCSB++ also does not fully evaluate consistency trade-offs based on the CAP
theorem as YCSB++ does not support network partition events.

Wang et al., in Reference [30], present a benchmarking effort on the replication and con-
sistency strategies used in two databases: HBase and Cassandra. Wang et al. motivation
are to evaluate tradeoffs, such as latency, consistency, and data replication. The authors
conclude that in the latency of read/write operations is hardly improved by adding more
replicas to the database. Higher levels of consistency dramatically increase write latency
and are not suitable for reading the latest version of data and heavy writes in Cassandra.
This paper lacks a more in-depth comparison of how consistency is affected in different con-
figurations. Instead, this work is more focused on studying how consistency levels influence
other properties in HBase and Cassandra databases.

The work of Bermbach and Tai [13] propose a benchmark methodology on Amazon’s cloud
database AWS S3. This is the closest work of what we aim to do in this thesis. Bermbach
and Tai project a long-term monitor system on AWS S3 to evaluate how this service changes
its consistency ability over time and the benchmark approach used can be easily extended
for other usages and databases as we aim to demonstrate in this thesis. Bermback and
Tai propose a benchmark methodology to study how Amazon S3 handles consistency over
a long time period. This long-term experiment proposes a sin-gle writer and a variable
number of readers as Figure 3.8 suggests. To achieve a uniformly load throughout the
cluster’s replicas and avoid always hitting the same replica, writer and readers interact with
the cluster through a load balancer. During a benchmark the writer periodically persists
a tuple (writeTimestamp;version) for each write operation and all readers record the tuple
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(readTimestamp;writeTimestamp;version) for each read operation. An offline analysis or
an online analysis lagging slightly behind can then detect consistency anomalies based on
the reader logs [13].

Table 3.1 summarizes all the previous related work an how they are different from what
we are proposing in this thesis.

Figure 3.8: Bermback and Tai’s propose benchmark architecture.
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References Method Databases
involved

Comparison
with thesis

Bhamra [5] Theoretical
Comparison

Cassandra
MongoDB

Lacks an
empirical
comparison

Bailis
et al. [25]

Analytical
Model

Dynamo
databases

Lacks a
benchmark
framework

Cooper
et al. [27]

Performance
and Scaling
Benchmark
Framework
(YCSB)

NoSQL
databases

Lacks support
for consistency,
availability,
and
Network Partition
Tolerance

Tudorica
and Bucur [28]

Empirical
comparison
using YCSB

Cassandra
HBase
Sherpa
MySQL

Lacks consistency
measurements.

Patil
et al. [29]

Distributed
Benchmark
Framework

NoSQL
databases

No longer supports
current versions
of the
proposed databases

Wang
et al. [30] Consistency Benchmark HBase

Cassandra
Lacks network
partition support.

Bermbach
and Tai [13]

Long-term consistency
benchmark Amazon S3

Lacks network
partition support
for non-cloud databases.

Table 3.1: Related work summary.
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CBench-Dynamo

A benchmark is a standardized tool to evaluate and compare competing systems or com-
ponents according to specific characteristics. These characteristics can be performance,
dependability, among others.

According to [12] the benchmarks can be categorized into three types: specification-based
benchmarks, kit-based benchmarks, and a hybrid based on the latest two. Specification-
based benchmarks are simulated based on a specific business problem by imposing certain
functions that must be achieved, such as required input parameters and expected out-
comes. This type of benchmark imposes a big development investment on presenting
multiple implementations for the same problem and proceed with an evaluation of that
set of development. While for specification-based benchmark, the specification is a set
of rules implemented by the third party to load and run the benchmark. The Kit-based
benchmarks use the specification as a guide for implementing the benchmark kit. A hy-
brid category can be provided mostly as a kit but allows some functions to be implemented
depending on each individual benchmark run.

In this section, we propose CBench-Dynamo, a consistency benchmark that is a standard
procedure to evaluate and compare consistency in the System Under Test (SUT). The
specification to present proposes a benchmark approach to test consistency and availabil-
ity in Dynamo-based NoSQL databases while subjecting these systems to network partition
events. Therefore, this thesis contributes towards standardizing consistency benchmark-
ing and lead vendors and buyers to better understand which system better suits their
requirements.

4.1 CBench-Dynamo Properties

Benchmark researching and industry participants describe a benchmark into the following
properties [12]: Relevance, Reproducibility, Fairness, Verifiability, and Usability.

Although the proposed benchmark, CBench-Dynamo, can be adapted to run in dedicated
instances it has only been tested with Amazon EC2 instances. Some orchestration play-
books, such as easy instance setup, must be adapted to work on dedicated machines.
However, as future work it is intended to make the framework more generic and versatile.
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4.1.1 Relevance

Relevance is the most important property when defining a benchmark [12]. The rele-
vance of a benchmark splits up into two dimensions, the spectrum of its applicability and
the degree of relevance in the given area. The CBench-Dynamo is designed to target all
Dynamo-based databases and the area of relevance is the study of the properties consis-
tency, availability and network partition tolerance, of a horizontal-distributed database
system. This benchmark aims to be a framework to facilitate the decision process of
choosing the most appropriate NoSQL database depending on the degree of performance,
availability, consistency, and network fault tolerance required for running a given applica-
tion.

Figure 4.1: Dynamo-based databases set within NoSQL realm.

4.1.2 Reproducibility

Reproducibility will be attained as CBench-Dynamo exports the instances’ hardware and
software facts via Ansible. In addition, the workload specs will be also exported at the
end of the associated run. The goal of this extensive and detailed description is for other
people to obtain identical results by configuring the whole system as described.

All the proposed benchmark modules are hosted on GitHub. There is a repository for each
of these modules, modified YCSB [14], analyzer [16], and orchestration playbooks [15].
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{
" ans ib le_al l_ipv4_addresses " : [

"REDACTED IP ADDRESS"
] ,
" ans ib le_al l_ipv6_addresses " : [

"REDACTED IPV6 ADDRESS"
] ,
" ansible_apparmor " : {

" s t a tu s " : " d i s ab l ed "
} ,
" an s i b l e_a r ch i t e c tu r e " : "x86_64" ,
" ans ib le_bios_date " : "11/28/2013" ,
" ans ib l e_bios_vers ion " : " 4 . 1 . 5 " ,
" ans ib le_cmdl ine " : {

"BOOT_IMAGE" : "/ boot/vmlinuz −3 .10 .0 −862 .14 .4 . e l 7 . x86_64" ,
" conso l e " : " ttyS0 ,115200" ,
"no_timer_check " : true ,
"nofb " : true ,
"nomodeset " : true ,
" ro " : true ,
" root " : "LABEL=cloudimg−r o o t f s " ,
"vga " : "normal"

} ,
" ans ib le_defau l t_ipv4 " : {

" address " : "REDACTED" ,
" a l i a s " : " eth0 " ,
" broadcast " : "REDACTED" ,
"gateway " : "REDACTED" ,
" i n t e r f a c e " : " eth0 " ,
"macaddress " : "REDACTED" ,
"mtu" : 1500 ,
"netmask " : "255 . 255 . 255 . 0" ,
"network " : "REDACTED" ,
" type " : " e the r "

}
( . . . )

}

Figure 4.2: Example of Ansible facts. [6]

4.1.3 Fairness

Fairness is the ability of the results being supported by the system merit without artificial
constraints. To reach fairness a set of artificial constraints must be consent and well defined.
CBench-Dynamo defines the following constraints:

• The SUT must be a Dynamo-based NoSQL database system, e.g. Cassandra;

• The SUT must have the same hardware, network and operating system components
when comparing benchmark test results targeting similar SUT;
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• The Workload Coordinator must support a JVM to run the benchmark test and
Python to analyze and translate the data into meaningful measurements;

• The fact that the Workload Coordinator uses Java and Python to coordinate the
benchmark and post-process all the data, respectively, makes the system highly
portable and therefore fair as JVM and Python based applications can run virtu-
ally in any system.

4.1.4 Verifiability

It is important that results are trustworthy. Results must be validated and decrease the
possibility of chance or manipulation. CBench-Dynamo results from academic work, all
the workloads presented here were subject to peer-review by other researchers.

4.1.5 Usability

Usability is the degree of how easy a system is to use. Several layers of abstractions were
taken into account so that only a minimum input is needed to start a benchmark test.

4.2 Methodology

This paper proposes a workload that evaluates how consistency, performance, and availabil-
ity are affected when consistency is configured either to prefer a high-available system or
a high-consistent system while in a distributed system, such as Dynamo-based databases,
where network partition events may occur. The proposed workload is a customized YCSB
workload and follows the method-ology proposed by Bermback and Tai [13]. Bermback
and Tai propose a benchmark methodology to study how Amazon S3 handles consistency
over a long time period. This long-term experiment proposes a single writer and a variable
number of readers. To achieve a uniformly load throughout the cluster’s replicas and avoid
always hitting the same replica, writer and readers interact with the cluster through a load
balancer.

Our benchmark is composed of two stages, the load, and run stages. The load stage is off the
record for benchmark purposes. This stage’s goal is to load all the objects into the database.
These objects are composed only of two fields, key, and version. During the benchmark run
phase, both update and read operations occur uniformly. When configuring a workload
run, the parameters threads indicate how much writers and readers will be running, as only
one writer is used, the number of readers is calculated as threads-1. Each write operation
increments a given object’s version and each read operation reads the version of a given
object. The writer and the readers each have their task plan pre-generated at the beginning
of the test and the benchmark ends when all the objects have been updated and read from
until the pre-configured final version. Each operation is registered into a common file (see
Figure 4.3).
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( . . . )
wr i ter_id : 0 , key :9345 f1bae61442dab3f167c02d19a4a8 ,
timestamp :17309459474301 , v e r s i on : 1
( . . . )
reader_id : 2 , key :9345 f1bae61442dab3f167c02d19a4a8 ,
timestamp :17309253174394 , v e r s i on : 0
reader_id : 1 , key :9345 f1bae61442dab3f167c02d19a4a8 ,
timestamp :17309253174398 , v e r s i on :UNAVAILABLE
( . . . )

Figure 4.3: Proposed benchmark’s results data structure.

The generated data is sufficient to infer whether a consistency anomaly had happened. For a given
object’s key, if a read operation returns a version inferior to a version already written by some
write operation in the past, there was a consistency anomaly. At the same time this occurs, there
is a module that is disconnecting from time to time one instance at a time from the cluster to
simulate network partition events. For every operation that the cluster was not able to retrieve
a successful answer, the version assumes the UNAVAILABLE value as 4.3 suggests. All consis-
tency anomalies are then processed and translated into the following measurements: availability
probability, consistency probability, write latency, and read latency.

4.3 Architecture Specification

CBench-Dynamo is composed of a Workload Coordinator, a Load Balancer and a Dynamo clus-
ter (SUT). All these components are orchestrated by the orchestrator via Ansible playbooks, as
illustrated in Figure 4.4.

Figure 4.4: CBench-Dynamo Architecture Specification.

4.3.1 Orchestrator

As we are benchmarking a distributed system and with a easy replication in mind, there are many
processes to manage and to sync up with one another. Hence, the Orchestrator is the module that
handle all this management and synchronization between all the existing modules from benchmark
preparation to benchmark final results.

The Orchestrator was developed as multiple Ansible playbooks. Ansible is an open source IT
configuration management, deployment, and orchestration tool. Ansible enables clear orchestration
of complex multi-tier workflows under a single point of management.
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Figure 4.5: Cassandra nodes and coordinator instances listed on AWS Management Con-
sole.

Ansible was used for automating the following tasks:

1. setup the SUT

2. setup de Workload Coordinator

3. prepare the SUT for testing

4. run benchmark test

5. clean SUT

6. trigger the analyser against the generated data

An Ansible project is composed by playbooks and roles. A playbook is a script file composed by
tasks targeting the remote host defined in hosts. Figure 4.6 represents an example of a playbook.
The hosts can be a group of IP addresses as long as they are defined in the file /etc/ansible/hosts
(see Figure 4.7), or a IP address or host name. A role is much alike a playbook. It is a way to
better organize an Ansible project as roles can be run by more than one playbook. Figure 4.8
illustrates a generic role.

−−−
− hos t s : nodes

remote_user : ubuntu
gather_fact s : yes
r o l e s :

− run_this_role . yml
− hos t s : Add l o c a l hostname to / e tc / hos t s
remote_user : ubuntu
gather_fact s : yes
r o l e s :

− run_this_second_role . yml

Figure 4.6: Ansible generic playbook.
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[ nodes ]
node01 ans ib le_host =34.244 .127 .84
node02 ans ib le_host =54.72 .103 .106
node03 ans ib le_host =34.244 .237 .236
node04 ans ib le_host =18.202 .36 .92
node05 ans ib le_host =52.49 .176 .148
node06 ans ib le_host =18.202 .253 .1
node07 ans ib le_host =34.253 .9 .164
node08 ans ib le_host =52 .48 .5 .184

[ coo rd ina to r ]
co ans ib le_host =52.213 .81 .171

[ load−ba lancer ]
lb −1108247867. eu−west−1. e lb . amazonaws . com

[ local ]
1 2 7 . 0 . 0 . 1

Figure 4.7: Ansible hosts file.

# f i l e : run_this_role . yml
−−−
− name : Desc r ip t i on o f the task here .

module :
arg1 : va lue
arg2 : va lue
arg3 : va lue
. . . .
become : yes | no

Figure 4.8: Ansible generic role.

The first three dashes in playbooks and roles indicate that we are in presence of a YAML file.
Ansible language of choice is YAML.

A task is composed by a name, a module call, and, besides other arguments, an argument called
become.

name. The name is a text that describes what we intend to do with the current task.

module. The module is some pre-made program that receives a variable number of arguments.
The modules run on the remote host.

become. The argument become allow us to run the module with administrator privileges (sudo)
on the remote host. This feature is enable when the value passed is yes. The default value is no.

In order to group the remote machines we want to target with our playbooks we need to edit the
file /etc/ansible/hosts (see Figure 4.7) with the IP addresses provided by AWS EC2 instances.

Setting up Cassandra

The code snippets in Figure 4.9 and Figure 4.3.1 represent the playbook and the role respectively
responsible for setting up Cassandra cluster. Here we assume that we are handling a clean EC2
machine from Amazon AWS and from scratch we configure a Cassandra cluster based on a cluster
configuration followed by previous configured machines so that they can join the same Cassandra
cluster. The setting up process goes from downloading and installing the required dependencies to
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finally run Cassandra service.

# f i l e : setup . yml
−−−
− hos t s : nodes

remote_user : ubuntu
gather_fact s : yes
become : yes
r o l e s :

− setup_cassandra
− hos t s : l o c a l

connect ion : l o c a l
r o l e s :

− prepare_cassandra

Figure 4.9: Ansible playbook for setting up and preparing for testing a Cassandra node in
a AWS EC2 instance.

# f i l e : setup_cassandra . yml
−−−
− name : Add l o c a l hostname to / e t c / hos t s

l i n e i n f i l e :
des t : / e t c / hos t s
l i n e : " 1 2 7 . 0 . 0 . 1 {{ ansible_hostname }}"
s t a t e : p re s ent
become : yes

− name : Add Cassandra repo to apt
apt_repos i tory :
repo : deb http ://www. apache . org / d i s t / cassandra /debian 311x main
f i l ename : cassandra . s ou r c e s . l i s t
s t a t e : p re s ent
update_cache : no

− name : Update apt
apt :
update_cache : yes
upgrade : yes
al low−unauthent icated : yes

− name : i n s t a l l openjdk−8− j r e
apt :
name : openjdk−8− j r e

− name : i n s t a l l python
apt :
name : python
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− name : I n s t a l l Cassandra
apt :
name : cassandra
al low−unauthent icated : yes

− name : Stop Cassandra s e r v i c e
s e r v i c e :
name : cassandra
s t a t e : stopped

− name : Remove a l l data f i l e s
s h e l l : rm −r f / var / l i b / cassandra /data /∗
become : yes

− name : Overr ide cassandra . yaml c on f i g f i l e
template : s r c=cassandra . yaml dest=/etc / cassandra /

− name : run Cassandra s e r v i c e
s e r v i c e :
name : cassandra
s t a t e : s t a r t ed
become : yes

Figure 4.10: Ansible role for setting up a Cassandra node in a AWS EC2 instance.

Preparing Cassandra for testing

The code snippet in 4.11 represents the role for preparing a single Cassandra node. Here we have
two tasks targeting a single node that is responsible for propagating this configuration through out
all the nodes from the cluster. The first task creates the namespace ycsb with replication factor of
3, and the second one creates the table where the workload data is written.

# f i l e : prepare_cassandra . yml
−−−
− name : Create Cassandra Keyspace

s h e l l : " cq l sh {{ load_balancer_ip_address }} −e \"CREATE KEYSPACE IF
NOT EXISTS ycsb WITH REPLICATION = { ’ c l a s s ’ : ’ S impleStrategy
’ , ’ r e p l i c a t i on_ fa c t o r ’ : 3 } ;\""

− name : Create Workload Table
s h e l l : " cq l sh {{ load_balancer_ip_address }} −e \"USE ycsb ; CREATE

TABLE IF NOT EXISTS workload ( y_id varchar primary key , v e r s i on
varchar ) ;\""

Figure 4.11: Ansible playbook for preparing a Cassandra node in a AWS EC2 instance.

Setting up the Workload Coordinator

The workload coordinator is responsible for running CBench-Dynamo workloads. The following
code snippets (Figure 4.12 and Figure 4.13) are the playbook and the role respectively for setting
up the coordinator.
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# f i l e : coo rd ina to r . yml
−−−
− hos t s : coo rd ina to r

remote_user : ubuntu
gather_fact s : yes
become : yes
r o l e s :
− setup_coordinator

Figure 4.12: Ansible playbook for setting up the benchmark coordinator.

# f i l e : setup_coordinator . yml
−−−
− name : Add l o c a l hostname to / e t c / hos t s

l i n e i n f i l e :
des t : / e t c / hos t s
l i n e : " 1 2 7 . 0 . 0 . 1 {{ ansible_hostname }}"
s t a t e : p re s ent

become : yes
− name : Update apt

apt :
update_cache : yes
upgrade : yes
al low−unauthent icated : yes

− name : i n s t a l l openjdk−8−jdk
apt :

name : openjdk−8− j r e
− name : i n s t a l l maven

apt :
name : maven

− name : i n s t a l l python
apt :

name : python

Figure 4.13: Ansible role for setting up the benchmark coordinator.

Running the benchmark

The following code snippet 4.14 represents de playbook that runs the benchmark. This playbook
calls the role run_benchmark.yml (see Figure 4.15) that will be called for each map of variables
defined bellow the field with_items. All the arguments defined bellow vars will be common to all
benchmark iterations. In summary, we will have 5 workloads and they are represented in Table
4.1.
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# Description Driver Write
consistency

Read
consistency Threads Objects Versions

1 cassandra cassandra
-cql ALL ALL 4 1000000 2

2 cassandra cassandra
-cql ONE ONE 4 1000000 2

3 cassandra cassandra
-cql ONE QUORUM 4 1000000 2

4 cassandra cassandra
-cql QUORUM ONE 4 1000000 2

5 cassandra cassandra
-cql QUORUM QUORUM 4 1000000 2

Table 4.1: Workload configurations.

# f i l e : benchmark . yml
−−−
− host s : coo rd ina to r

remote_user : ubuntu
ta sk s :
− name : Use r o l e in loop

inc lude_ro l e :
name : run_benchmark

vars :
− d e s c r i p t i o n : "{{ item . d e s c r i p t i o n }}"
− db : "{{ item . db }}"
− wr i te_cons i s t ency : "{{ item . wr i t e_cons i s t ency }}"
− read_cons i s tency : "{{ item . read_cons i s tency }}"
− threads : "{{ item . threads }}"
− objects_num : "{{ item . objects_num }}"
− version_num : "{{ item . version_num }}"
− host : "{{ groups [ ’ nodes ’ ] | random }}"

with_items :
− { d e s c r i p t i o n : cassandra , db : cassandra−cql ,

wr i t e_cons i s t ency : ALL, read_cons i s tency : ALL, threads : 4 ,
objects_num : 1000000 , version_num : 2 }

− { d e s c r i p t i o n : cassandra , db : cassandra−cql ,
wr i t e_cons i s t ency : ONE, read_cons i s tency : ONE, threads : 4 ,
objects_num : 1000000 , version_num : 2 }

− { d e s c r i p t i o n : cassandra , db : cassandra−cql ,
wr i t e_cons i s t ency : ONE, read_cons i s tency : QUORUM, threads :
4 , objects_num : 1000000 , version_num : 2 }

− { d e s c r i p t i o n : cassandra , db : cassandra−cql ,
wr i t e_cons i s t ency : QUORUM, read_cons i s tency : ONE, threads :
4 , objects_num : 1000000 , version_num : 2 }

− { d e s c r i p t i o n : cassandra , db : cassandra−cql ,
wr i t e_cons i s t ency : QUORUM, read_cons i s tency : QUORUM,
threads : 4 , objects_num : 1000000 , version_num : 2 }

Figure 4.14: Ansible playbook for running a set of benchmark configurations.
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# f i l e : run_benchmark . yml
−−−
− name : Reboot AWS in s t an c e s

l o ca l_ac t i on :
module : ec2
aws_access_key : "{{aws_access_key}}"
aws_secret_key : "{{ aws_secret_key }}"
reg i on : eu−west−1
wait : yes
instance_tags :

Name : node
s t a t e : r e s t a r t e d

− name : With AWS in s t an c e s s t a r t ed
l o ca l_ac t i on :

module : ec2
aws_access_key : "{{aws_access_key}}"
aws_secret_key : "{{ aws_secret_key }}"
reg i on : eu−west−1
wait : yes
instance_tags :

Name : node
s t a t e : running

− name : s l e e p f o r 60 seconds and cont inue with play
wait_for :

t imeout : 60

− name : "Load {{ d e s c r i p t i o n }} wr i t e_cons i s t ency={{wr i t e_cons i s t ency }} ,
read_cons i s tency={{read_cons i s tency }}"

s h e l l : " chd i r=~/ycsb . / bin /ycsb load {{db}} −p hos t s={{
load_balancer_ip_address }} −p threadcount={{threads }} −p
ob j e c t v e r s i o n l im i t={{version_num}} −p numobjects={{objects_num}}
−p cassandra . r e a d c on s i s t e n c y l e v e l={{read_cons i s tency }} −p
cassandra . w r i t e c o n s i s t e n c y l e v e l={{wr i t e_cons i s t ency }} −P
workloads /myworkload −s > ~/ load . l og "

− name : "Run {{ d e s c r i p t i o n }} wr i t e_cons i s t ency={{wr i t e_cons i s t ency }} ,
read_cons i s tency={{read_cons i s tency }}"

s h e l l : " chd i r=~/ycsb . / bin /ycsb run {{db}} −p hos t s={{
load_balancer_ip_address }} −p threadcount={{threads }} −p
ob j e c t v e r s i o n l im i t={{version_num}} −p numobjects={{objects_num}}
−p cassandra . r e a d c on s i s t e n c y l e v e l={{read_cons i s tency }} −p
cassandra . w r i t e c o n s i s t e n c y l e v e l={{wr i t e_cons i s t ency }} −P
workloads /myworkload −s > ~/ r epo r t s /ycsb /{{ ansible_date_time .
epoch}}_{{ d e s c r i p t i o n }}_w{{ wr i t e_cons i s t ency }}_r{{
read_cons i s tency }} . dat"

Figure 4.15: Ansible role for running a single benchmark configuration.

4.3.2 Load Balancer

The load balancer is a basic AWS Network Load Balancer. Its purpose is to balance the database
calls coming from the benchmark testing evenly across the 8 nodes of the cluster. Figure 4.16
illustrates the load balancer instance used on AWS Management Console.
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Figure 4.16: Load balancer instance used listed on AWS Management Console.

4.3.3 Data Analyser

The workload coordinator is responsible for running CBench-Dynamo workloads. The role in
Figure 4.17 runs the python script (see code snippet in Figure 4.18) responsible for measuring the
data produced by the workload. The following measurements are calculated:

• Availability probability

• Consistency probability

• Latency (write)

• Latency (read)

−−−
− name : "Analyse {{ f i l ename }}"

s h e l l : " chd i r=~/anayser python −m bin . main run ~/ r epo r t s /ycsb/ ~/
r epo r t s / ana ly s e r //{{ ansible_date_time . epoch}}_analys i s . csv "

r e g i s t e r : out

− debug : msg="{{ out . s tdout }}"

Figure 4.17: Ansible role for analysing data.
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def c a l c u l a t e ( s e l f ) :
i n cons i s t enc i e s_reads_counte r = 0
tota l_reads = 0
for entry in s e l f . data :

i f entry . worker_type == DataEntry .WRITER:
s e l f . r e g i s t r y [ entry . key ] = ( entry . timestamp , entry . v e r s i on )

else :
to ta l_reads = tota l_reads + 1
timestamp , ve r s i on = s e l f . r e g i s t r y . get ( entry . key , (0 , 0) )
i f int ( entry . v e r s i on ) < int ( v e r s i on ) and int ( timestamp ) <

int ( entry . timestamp ) :
incons i s t enc i e s_reads_counte r =

incons i s t enc i e s_reads_counte r + 1
print ( entry )

cons i s tent_reads_counter = tota l_reads −
i n cons i s t enc i e s_reads_counte r

try :
s e l f . rat io_read_latency_and_consistency_score = s e l f .

read_average_latency / (
cons i s tent_reads_counter / tota l_reads )

except ZeroDiv i s i onError :
s e l f . rat io_read_latency_and_consistency_score = 0

try :
s e l f . rat io_write_latency_and_consistency_score = s e l f .

write_average_latency / (
cons i s tent_reads_counter / tota l_reads )

except ZeroDiv i s i onError :
s e l f . rat io_write_latency_and_consistency_score = 0

i f cons i s tent_reads_counter == 0 :
s e l f . cons i s t ency_score = 0

else :
s e l f . cons i s t ency_score = cons i s tent_reads_counter / tota l_reads

∗ 100

i f s e l f . unava i lab l e_serv ice_counter == s e l f . t o ta l_ope ra t i ons :
s e l f . a v a i l a b i l i t y_ s c o r e = 0

else :
s e l f . a v a i l a b i l i t y_ s c o r e = ( s e l f . t o ta l_ope ra t i on s − s e l f .

unava i lab l e_serv ice_counter ) / s e l f . t o ta l_ope ra t i on s ∗ 100

Figure 4.18: Main logic to calculate the measurements evaluated.

4.3.4 Network partition events generator

The network partition events generator’s playbook (Figure 4.19) and role (Figure 4.20) are respon-
sible for calling the bash script that injects the fault (Figure 4.21) for each cluster node. This node
is randomly chosen and it stops operating, hence simulating a network partition event. The script
stops the Cassandra node represented by the IP address it receives from the arguments from the
playbook call and after stopping the node the script sleeps for a specific amount of time and then
restarts the node it just stopped. This repeats until the benchmark is over.
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−−−
− hos t s : l o c a l

connect ion : l o c a l
t a sk s :
− name : Use r o l e in loop

inc lude_ro l e :
name : i n j e c t_ f a u l t s

vars :
− s e r v i c e : "{{ item . s e r v i c e }}"
− f au l t_durat ion : "{{ item . fau l t_durat ion }}"
− f a u l t_ i n t e r v a l : "{{ item . f au l t_ i n t e r v a l }}"

with_items :
− { s e r v i c e : cassandra , fau l t_durat ion : 2 , f a u l t_ i n t e r v a l :

25 }

Figure 4.19: Ansible playbook for initiating the network partition event generator.

−−−
− name : With AWS in s t an c e s s t a r t ed

l o ca l_ac t i on :
module : ec2
aws_access_key : "{{aws_access_key}}"
aws_secret_key : "{{ aws_secret_key }}"
reg i on : eu−west−1
wait : yes
instance_tags :

Name : node
s t a t e : running

− name : gather f a c t s from nodes
setup :
de legate_to : "{{ facts_item }}"
de l ega t e_fac t s : True
remote_user : ubuntu
loop : "{{ groups [ ’ nodes ’ ] } } "
loop_contro l :
loop_var : facts_item

− name : I n t e r p o l a t e f a u l t_ i n j e c t i o n . sh
template : s r c=f au l t_ i n j e c t i o n . sh dest=f au l t_ i n j e c t i o n . sh

− name : " I n j e c t i n g network p a r t i t i o n events in the background ( see
s c r i p t . l og ) "
s h e l l : " sh f a u l t_ i n j e c t i o n . sh {{ fau l t_durat ion }} {{ f au l t_ i n t e r v a l }}

{{ s e r v i c e }} ubuntu > s c r i p t . l og "

Figure 4.20: Ansible role that randomly chooses the cluster node to fail and calls the
network partition event bash script.
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while true
do

RANDOM=$$$ ( date +%s )
IP=${IPS [$RANDOM % ${#IPS [@] } ] }
echo i n i t i a t i n g s e r v i c e f a u l t on ${IP}
ssh ${USER}@${IP} ’ sudo␣ s e r v i c e ␣ ’ ${SERVICE} ’ ␣ stop ’
echo s e r v i c e ${SERVICE} stopped on ${IP}
RANDOM_FAULT_DURATION=$ ( ( ( RANDOM % ${FAULT_DURATION_MAX} ) + 1 )

)
echo s l e e p i n g ${RANDOM_FAULT_DURATION} s be f o r e s t a r t i n g ${SERVICE}

again on ${IP } . . .
s l e e p ${RANDOM_FAULT_DURATION}
ssh ${USER}@${IP} ’ sudo␣ s e r v i c e ␣ ’ ${SERVICE} ’ ␣ s t a r t ’
echo s e r v i c e ${SERVICE} s t a r t ed
RANDOM_FAULT_INTERVAL=$ ( ( ( RANDOM % ${FAULT_INTERVAL_MAX} ) + 1 )

)
echo s l e e p i n g ${RANDOM_FAULT_INTERVAL} s be f o r e next f a u l t . . .
s l e e p ${RANDOM_FAULT_INTERVAL}
echo

done

Figure 4.21: Bash script that stops Cassandra service on the cluster node received as
argument, sleeps for specific time, and recovers the cluster node back to life.

The output of the playbook will give details about the network partition events that are currently
taking place. Figure 4.22 illustrates a possible output.

i n i t i a t i n g s e r v i c e f a u l t on 34 . 244 . 127 . 84
s e r v i c e cassandra stopped on 34 . 244 . 127 . 84
s l e e p i n g 1 s be f o r e s t a r t i n g cassandra again on 3 4 . 2 4 4 . 1 2 7 . 8 4 . . .
s e r v i c e cassandra s t a r t ed
s l e e p i n g 7 s be f o r e next f a u l t . . .

i n i t i a t i n g s e r v i c e f a u l t on 34 . 244 . 237 . 236
s e r v i c e cassandra stopped on 34 . 244 . 237 . 236
s l e e p i n g 1 s be f o r e s t a r t i n g cassandra again on 3 4 . 2 4 4 . 2 3 7 . 2 3 6 . . .
s e r v i c e cassandra s t a r t ed
s l e e p i n g 16 s be f o r e next f a u l t . . .

i n i t i a t i n g s e r v i c e f a u l t on 52 . 49 . 176 . 148
s e r v i c e cassandra stopped on 52 . 49 . 176 . 148
s l e e p i n g 2 s be f o r e s t a r t i n g cassandra again on 5 2 . 4 9 . 1 7 6 . 1 4 8 . . .
s e r v i c e cassandra s t a r t ed
s l e e p i n g 7 s be f o r e next f a u l t . . .

i n i t i a t i n g s e r v i c e f a u l t on 34 . 244 . 237 . 236
s e r v i c e cassandra stopped on 34 . 244 . 237 . 236
s l e e p i n g 2 s be f o r e s t a r t i n g cassandra again on 3 4 . 2 4 4 . 2 3 7 . 2 3 6 . . .
s e r v i c e cassandra s t a r t ed
s l e e p i n g 4 s be f o r e next f a u l t . . .

Figure 4.22: Network partition events generator output.
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Experimental Evaluation

As the first test of the proposed benchmark, Cassandra was the chosen SUT. Cassandra is a
database system built with distributed systems in mind, like almost every NoSQL systems out
there. Following the CAP theorem, Cassandra by default is on the AP (Availability and Network
Partition Tolerance) side, hence prioritizing high-availability when subject to network partitioning.
As we will further see, Cassandra’s consistency can be tuned to be a CP (Consistency and Network
Partition Tolerance) database system, so it becomes a strong consistent database when subject to
network partitioning [17].

5.1 Cassandra

Cassandra is a column NoSQL database [31]. It was initially developed by Facebook to fulfill the
needs of the company’s Inbox Search services. In 2009, it became an Apache Project.

Cassandra is a database system built with distributed systems in mind, like almost every NoSQL
systems out there. Following the CAP theorem, Cassandra will be on the AP (Availability and
Network Partition Tolerance) side, hence prioritizing high-availability when subject to network
partitioning. As we will further see, Cassandra’s consistency can be tuned to be a CP (Consistency
and Network Partition Tolerance) database system, so it becomes a strong consistency database
when subject to network partitioning. Cassandra system is a column based NoSQL database [5].
In other words, Cassandra describes data by using columns. A keyspace is the outermost container
for the entire dataset, corresponding to the entire database, and it is composed of many column-
families. A column-family represents the same class of objects, like a Car or a Person, and each
column-family has different entries of objects called rows. Each row is uniquely identified by a row
key or partition key and can hold an arbitrarily large number of columns. A column contains a
name-value pair and a timestamp. This timestamp is necessary when solving consistency conflicts.

Cassandra scales up by distributing data across a set of nodes, designated as a cluster. Each node
is capable of answering client requests. When a node is working on a client request, it becomes
the coordinator for that request. It will be responsible for asking to other nodes for the requested
data and answering back to the application.

Cassandra partitions data across the cluster by hashing the row key. Each node on the ring stores
a subset of hashes, in such a way that "the largest hash value wraps around the smallest hash
value" [31]. Because of the randomness of the hash functions, data tends to be evenly distributed
across the ring.

Replication is the strategy Cassandra uses to achieve a high-available system. Two concepts de-
scribe a replication configuration in Cassandra, replication strategy and replication factor [32].
The Replication strategy determines which nodes replicas are placed. The replication factor de-
termines how many different nodes have the same data. If the replication factor is R, the node
that is responsible for that specific key range copies the data it owns to the next R− 1 neighbors,
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clockwise as in Figure 2.4.

Cassandra was initially designed to be eventually consistent, high-available and low-latency. How-
ever, its consistency can be tuned to match the client’s requirements. The following configuration
constants describe some of the different write consistency levels [33]:

• ALL. Data is written on all replica nodes in the cluster before the coordinator node ac-
knowledges the client. (Strong Consistency, high latency)

• QUORUM . Data is written on a given number of replica nodes in the cluster before the
coordinator node acknowledges the client. This number is called the quorum. (Eventual
Consistency, low latency)

• LOCAL_QUORUM . Data is written on a quorum of replica nodes in the same data center
as the coordinator node before this last one acknowledges the client. (Eventual Consistency,
low latency)

• ONE . Data is written in at least one replica node. (Eventual Consistency, low latency)

• LOCAL_ONE . Data is written in at least one replica node in the same data center as the
coordinator node. (Eventual Consistency, low latency)

5.2 Architecture

CBench-Dynamo requires an architecture composed of an orchestrator, a workload coordinator,
and a dynamo cluster as the SUT. The following architecture was de-fined for our first test (see
Figure 5.1):

Orchestrator. The orchestrator is a MacBook Pro 13-inch, 2017, 2.3GHz Intel Core i5 with 8GB
of RAM.

Workload Coordinator. The workload coordinator is an Amazon EC2 C5n.xlarge instance (4
vCPUs, 10.5GB RAM).

SUT. The System Under Test is a Cassandra cluster composed of eight Amazon EC2 M5d.large
instances. Each cluster instance will be rebooted and reloaded between workloads by the Orches-
trator and the Workload Coordinator.

Figure 5.1: Testing architecture.

5.3 Experiment

In this section, we present the results obtained after running the proposed workload configurations.
Our experiment targets an 8-node Cassandra cluster and combines different consistency configu-
rations, i.e. ONE, QUORUM, ALL, as described in Table 5.1. The common input parameters for
every configuration are the following:

• Replication Factor: 3;
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• Total number of objects: 1.000.000;

• Versions/updates per object: 2;

• Network partition event duration: 2s;

• Interval between network partition events: random between [1s, 25s].

Configuration SUT Write Consistency Read Consistency
1 Cassandra ALL ALL
2 Cassandra ONE ONE
3 Cassandra QUORUM ONE
4 Cassandra ONE QUORUM
5 Cassandra QUORUM QUORUM

Table 5.1: Cassandra’s benchmark workload configurations.

Consistency and Availability. When in a configuration where both read and write consistency
is ALL we achieve results of Strong Consistency while compromising availability. This happens
as theorized because all replicas must be involved before returning to the client. If some replica
is down, resulting from a network partition event, the request can’t fulfill and the response to
the client reports an unavailable service. Although this configuration generated an availability of
99.7539%, the industry does not consider this value high. Availability is usually represented by how
many nines the availability probability has (see Table 5.2). The value we attained in the ALL-ALL
configuration only has 2-nines, which means that this number only falls into the second level of
availability, hence translating into 3.65 days of availability when rounding down the number to
99.0000%. Many businesses that require high-availability may fail with such a long unavailable
service time.

In the other hand, when querying Cassandra with no consistency constraints by set-ting both read
and write operations to involve just one replica (write consistency = ONE and read consistency =
ONE ), we achieved 100% of availability, but we have compromised consistency down to the lowest
value achieved in the whole experience.

As of configurations using QUORUM combined with ONE, we achieved a more balanced consis-
tency/availability relation. As we had chosen a replica factor of three, the QUORUM involves two
replicas when processing a client request. When reading with ONE and writing with QUORUM,
the request may involve the third replica that was not part of the QUORUM for that given data
object, hence returning an outdated version. When inverting the order, the ONE in the writing and
the QUORUM in the reading, it seems not to have such a drastic decline in consistency, however
availability loses a nine.

For a QUORUM-QUORUM configuration, we achieved strong-consistency and high-availability.
This configuration can tolerate some network partition events unless the number of replicas down
compromises the quorum. Because network partition events had disconnected one replica at a time,
the quorum had never been compromised, hence the results we had and represented in Figure 5.2.

Performance. The second analysis is in terms of read and write operation latencies given a consis-
tency setting. As Figure 5.3 illustrates, for an ALL-ALL configuration we achieved as expected the

Availability (%) Downtime per year
90.0000 (one nine availability) 36.53 days
99.0000 (two nines availability) 3.65 days
99.9000 (three nines availability) 8.77 hours
99.9900 (four nines availability) 52.60 minutes
99.9990 (five nines availability) 5.26 minutes
99.9999 (six nines availability) 31.56 seconds

Table 5.2: Availability and nines notation [7]
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Figure 5.2: Consistency and availability results for all configurations.

highest latencies of all configurations because all replicas had to be involved in read and write op-
erations. For the ONE-ONE configuration, because only one replica needed to be involved in read
and write operations, the latencies are the lowest among all configurations tested when combining
the two latencies. However, when compared solely on mixed ONE-QUORUM configurations, ONE
latency in these last configurations are better. Finally, for QUORUM-QUORUM configuration we
achieved the most balanced configuration between latency, consistency, and availability.

Figure 5.3: Write latency and read latency results for all configurations.
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Work Plan

This thesis work is structured into four main parts, the survey, the proof of concept, the imple-
mentation and analyses, and conclusions. A more detailed representation of the work planning can
be found in the Gantt diagram located in Appendix A.

Figure 6.1: Diagram Gantt.

6.1 First Semester

In the first semester, the work focused on writing a survey about Consistency Models and devel-
oping a proof of concept of the proposed NoSQL Consistency Benchmark Framework.
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6.1.1 Survey

To introduce the research work that supports the current thesis, a survey was written. The focus
of this work was to understand how consistency is implemented in five different databases, Redis,
Cassandra, MongoDB, Neo4j, and OrientDB while compiling all the related work about consistency
benchmarking. Afterward, all the information gathered was compile and discussed into a survey
called "Consistency Models of NoSQL Databases". This survey [17] was published in Future
Internet Journal and can be found attached in Appendix C.

6.1.2 Proof of Concept

As part of this project, a proof of concept was developed. The architecture setup consists of a
four-node Cassandra cluster and a YCSB workload implementation.

6.2 Second Semester

In the second semester, we matured the PoC and implemented the NoSQL Consistency Benchmark-
ing Framework, named CBench-Dynamo, and targeted it to a 8-node Cassandra cluster. Then, we
analysed the data generated and conclusions were taken.

6.2.1 Implementation

After understanding that there was an obvious lack of empirical results about relating consistency,
availability when subject to network partition events in NoSQL databases, the current project
extends the work carried out by Bermbach [13] and matures the work introduced with the Proof
of Concept (PoC) implementation developed in the first semester.

6.2.2 Conference Paper

All that we had learned while implementing CBench-Dynamo was compiled into a paper (see
Appendix C) that was submitted, accepted and presented in TPCTC 2019, a conference hosted by
VLDB 2019 conference in Los Angeles.
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Chapter 7

Conclusions and Future Work

This thesis’ proposal is one of the first studies that empirically compares the consistency of Redis,
Cassandra and MongoDB databases. All of them offer eventual consistency, but each particular
implementation has its specificities. Some have the option of offering strong consistency. However,
configuring any selected database to favor strong consistency will result in less availability when
subject to network partition events, as the CAP theorem preconized.

The following goals of this thesis were achieved:

• Study the state of the art of consistency models;

• Study the state of the art of NoSQL databases;

• Study the state of the art of consistency benchmarking;

• Publish a survey about the investigation carried about the study of the state of the art on
consistency models in NoSQL databases;

• Develop a benchmark framework for studying consistency, performance, and availability
while subjecting the SUT to network partition events;

• Evaluate how the consistency is affected by the read and write processes of the system, and
how the consistency can be improved by tuning system configurations;

• Test this benchmark framework on Cassandra;

• Publish and present a paper at an international conference describing the whole process from
designing to testing of the consistency benchmark framework that had been developed.

This thesis started with writing a survey on consistency models. Consistency models can go from
Strong to Weak Consistency based on how consistent we want some data to be persisted in a
distributed database system. In this survey, it was also addressed a comparison between popular
NoSQL databases, Redis, MongoDB, Cassandra, Neo4j, and OrientDB, and how they implement
consistency when in distributed configurations. Finally, the same survey stated the problem of a
not existing solution on benchmarking consistency in NoSQL databases and that was projected as
future work.

The survey enabled us to find a problem, benchmarking consistency on NoSQL databases, and,
by referencing the CAP theorem, how consistency correlates with other properties such as avail-
ability, network partition tolerance, and performance. Therefore, designing the methodology and
by extending the already well-establish performance benchmark framework for NoSQL databases,
YCSB, and extending the work carried by Bermbach and Tai [13], this work resulted into CBench-
Dynamo, a consistency benchmark for NoSQL databases based on the Dynamo design such as
Cassandra.

In weaker consistency models, Cassandra’s latency is lower and availability increases, while in
stronger consistency models, Cassandra’s latency is higher and availability decreases. All this was
tested while subjecting the System Under Test to network partition events.
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Conclusions and Future Work

As more NoSQL databases are supported for this framework and implement our methodology, the
framework will become a powerful tool on comparing the trade-offs between consistency, latency,
availability and network partition tolerance. Hence, providing to database vendors and buyers an
easy method to assert which database will better suit their requirements.
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Abstract: Internet has become so widespread that most popular websites are accessed by hundreds
of millions of people on a daily basis. Monolithic architectures, which were frequently used in the
past, were mostly composed of traditional relational database management systems, but quickly
have become incapable of sustaining high data traffic very common these days. Meanwhile,
NoSQL databases have emerged to provide some missing properties in relational databases like
the schema-less design, horizontal scaling, and eventual consistency. This paper analyzes and
compares the consistency model implementation on five popular NoSQL databases: Redis, Cassandra,
MongoDB, Neo4j, and OrientDB. All of which offer at least eventual consistency, and some have the
option of supporting strong consistency. However, imposing strong consistency will result in less
availability when subject to network partition events.

Keywords: consistency models; NoSQL databases; redis; cassandra; MongoDB; Neo4j; OrientDB

1. Introduction

Consistency can be simply defined by how the copies from the same data may vary within the
same replicated database system [1]. When the readings on a given data object are inconsistent with
the last update on this data object, this is a consistency anomaly [2].

For many years, system architects would not compromise when it came to storing data and
retrieving it. The ACID (Atomicity, Consistency, Isolation, and Durability) properties were the
blueprints for every database management system. Therefore, strong consistency was not a choice.
It was a requirement for all systems.

The Internet has grown to a point where billions of people have access to it, not only from
a desktop but also from smartphones, smartwatches, and even other servers and services. Nowadays
systems need to scale. The “traditional” monolithic database architecture, based on a powerful server,
does not guarantees the high availability and network partition required by today’s web-scale systems,
as demonstrated by the CAP (Consistency, Availability, and Network Partition Tolerance) theorem [3].
To achieve such requirements, systems cannot impose strong consistency.

Traditional relational database architectures usually have a single database instance responding
to a few hundred clients. Relational databases implement the strongest consistency model, where
each transaction must be immediately committed, and all clients will operate over valid data states.
Reads from the same object will present the same value to all simultaneous client requests. Although
strong consistency is the ideal requirement for a database, it deeply compromises horizontal-scalability.
Horizontal scalability is a more affordable approach when compared to vertical scalability, for enabling
higher throughput and the distribution/replication of data across distinct database nodes. On the
other hand, vertical scalability relies on a single powerful database server to store data and answer all
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requests. Although horizontal scaling may seem preferable, CAP theorem shows that when network
partitions occur, one has to opt between availability and consistency [4].

To help solve this problem, NoSQL database systems have emerged. These systems have been
created with a standard requirement in mind, scalability.

Some NoSQL databases designers have chosen higher Availability over a more relaxed consistency
strategy, an approach known as BASE (Basically Available, Soft-state and Eventually consistent).

The most common NoSQL database systems can be organized into four categories, document
databases, column databases, key-value stores, and graph databases. There are also hybrid categories
that mix multiple data models known has multi-model databases.

In this work, our goal is to study how consistency is implemented over different non-cloud
NoSQL databases. The designers of these database systems have devised different strategies to handle
consistency, thus assuming variable tradeoffs between consistency and other quality attributes, such as
availability, latency, and network partitioning tolerance.

In this work, we compare the consistency models provided by five of the most popular non-cloud
NoSQL database systems [5]. One self-imposed constraint was to select at least one database of
each sub-category: Key-value database (Redis); column database (Cassandra); document database
(MongoDB), graph database (Neo4j), and multi-model database (OrientDB).

To the best of our knowledge, this is the first study that compares the different consistency
solutions provided by the selected NoSQL databases. All of them offer eventual consistency, but each
particular implementation has its specificities. Some have the option to offer strong consistency.

The rest of this paper is structured as follows. Section 2 presents the related work. Section 3 presents
and discusses consistency models. Section 4 describes the main characteristics of each NoSQL database.
In Section 5, we describe and compare the consistency implementations of the five NoSQL databases. Finally,
Section 6 presents our conclusions and points out future work.

2. Related Work

Consistency models are analyzed in various works using different assumptions. Bhamra in
Reference [6] presents a comparison between the specifications of Cassandra and MongoDB. The author
focuses only on a theoretical comparison based on the databases specifications. The objective of
this work is to help the reader choosing which database is more suitable for a particular problem.
Bhamra starts by making a comparison between Cassandra and MongoDB specifications. Followed
by a comparison of the consistency models and, finally, addresses security features, client languages,
platform availability, documentation and support, and ease of use. The author compiles the whole
comparison into a single table at the end of the article and concludes that MongoDB offers a more
versatile approach, querying, and ease of use than Cassandra. The author makes a valuable theoretical
analysis. However, it is not presented an experimental evaluation comparing Cassandra and
MongoDB databases.

In Reference [7], Han et al. briefly present some NoSQL databases based on the CAP theorem.
The authors review and analyze NoSQL databases, such as Redis, Cassandra, and MongoDB and
compile the major advantages and disadvantages of these databases. This article concludes that further
research is needed to clarify what are the exact limitations of using NoSQL in cloud computing.

Shapiro et al. [2] describe in their work each consistency model. However, the authors do not
compare the consistency models against each other by stating that fully implementing each model has
not yet been attained because of lack of available frameworks. Shapiro raises three questions from
an application point of view. First the robustness of a system versus a specific consistency model.
Second, the relation of a model versus a consistency control protocol. The third, and final issue, is to
compare consistency models in practice and analyze their advantages and disadvantages. Based on
this work, the first two questions are problematic because of the challenge of synthesizing concurrency
control from the application specifications.
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Pankowski proposes the Lorq algorithm in Reference [8] to balance QoS (Quality of Service)
and QoD (Quality of Data). QoS refers to high availability, fault tolerance, and scalability properties.
QoD refers to strong consistency. Lorq algorithm is a consensus quorum-based solution for NoSQL
data replication. Although this study did not conduct experimental work, the authors state that
the Lorq algorithm presents some advantages, for example tools oriented to asynchronous and
parallel programming.

Islam and Vrbsky in Reference [9] present two techniques for maintaining consistency and propose
a tree-based consistency (TBC) approach. They analyze the advantages and disadvantages of each
technique. In the classic approach, in a write request the client needs the acknowledge of every node.
While on reading, the system only needs to hit one node. In the quorum approach, in a write request
and a read request the system needs to hit only a given number of nodes (quorum) to return a response
to the client. In the TBC approach, the system is organized as a tree, where the controller is on the
root. The tree defines a path that is used by the replica nodes to propagate the update requests to the
replicas (leaves). The authors concluded that the classic approach performs better when write requests
represent a low volume; the quorum technique is better to write requests in subsequent read or when
write operations are high; the tree-based technique performs better in most cases than the previous
two approaches regardless of the request load. Although TBC is an interesting approach, TBC misses
abort, commit and rollbacks protocols as the authors have proposed for future work.

Cooper et al. propose in Reference [10], the YCSB (Yahoo! Cloud Serving Benchmark)
a benchmarking tool for cloud serving systems. This benchmark fulfills the need for performance
comparisons between NoSQL databases and their tradeoffs, such as read performance versus
write performance, latency versus durability, and synchronous versus asynchronous replication.
The benchmark tiers proposed in this paper include the Tier 1 – Performance and the Tier 2 – Scaling.
However, YCSB benchmark lacks tiers, such as Availability, Replication, and Consistency. Although
the first two tiers are proposed for future work.

Tudorica and Bucur present a critical comparison between NoSQL systems using multiple
criteria [11]. The authors start to introduce multiple taxonomies to classify many NoSQL databases
groups, even though there is not an official classification system on this type of databases. They define
the following criteria to be used on the theoretical comparison: Persistence, replication, high
availability, transactions, rack-locality awareness, implementation, influencers/sponsors, and license
type. Tudorica and Bucur concentrate this theoretical comparison into one single table. Afterward,
the authors make an empirical performance comparison, between Cassandra, HBase, Sherpa,
and MySQL, using YCSB [10]. This article lacks other empirical metrics besides performance,
such as consistency.

Wang et al., in Reference [12], present a benchmarking effort on the replication and consistency
strategies used in two databases: HBase and Cassandra. Wang et al. motivation are to evaluate
tradeoffs, such as latency, consistency, and data replication. The authors conclude that in the latency of
read/write operations is hardly improved by adding more replicas to the database. Higher levels of
consistency dramatically increase write latency and are not suitable for reading the latest version of
data and heavy writes in Cassandra. This paper lacks a more in-depth comparison of how consistency
is affected in different configurations. Instead, this work is more focused on studying how consistency
levels influence other properties in HBase and Cassandra databases.

Our study is different from all these works by purposing a comparative theoretical analysis of
the five of the most popular NoSQL databases in the industry, Redis, MongoDB, Cassandra, Neo4j,
and OrientDB, and evaluate how they implement consistency.

3. Consistency Models

In the past, almost all architectures used in databases systems were strong consistent. In these
cases, most architectures would have a single database instance only responding to a few hundred
clients. Nowadays, many systems are accessed by hundreds of thousands of clients, so there was
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a mandatory requirement to system’s architectures that scale. However, considering the CAP theorem,
high-availability and consistency do conflict on distributed systems when subject to a network partition
event. The majority of the projects that have been experiencing such high-traffic have chosen to adopt
high-availability over a strong consistent architecture by relaxing the consistency level.

There are two perspectives on consistency, the data-centric consistency and the client-centric
consistency, as illustrated in Figure 1. Data-centric consistency is the consistency analyzed from
the replicas’ point of view. Client-centric consistency is the consistency analyzed from the clients’ point
of view [13].

Figure 1. Data-centric and Client-centric consistencies [13].

For both perspectives, there are two dimensions, staleness and ordering. Staleness measures how
far from the latest version the return data is. Ordering describes what operations order has been taken
in the replica in a data-centric point of view, and, in a client-centric perspective, what order is shown
to clients [13]. Figure 2 extends this taxonomy and illustrates how consistency models can be classified
by client-centric and data-centric perspectives, and by staleness and ordering dimensions. Under the
data-centric perspective we can find two dimensions: Models for Specifying Consistency that describe the
consistency models that allow measuring and specifying the consistency levels that are tolerable to the
application (e.g., Continuous Consistency Model); Models of Consistent Ordering of Operations that describe
the consistency models that specify what ordering of operations are ensured at the replicas (e.g., Sequential
Consistency and Causal Consistency). On the client-centric perspective are also defined two dimensions,
Eventual Consistency and Client Consistency Guarantees. The Eventual Consistency dimension states that
all replicas will gradually become consistent if no update operation occurs (e.g., Eventual Consistency
Model). The client Consistency Guarantees defines that each client process must ensure some level of
consistency while accessing the data value on different replicas (e.g., Monotonic Writes Model, Monotonic
Reads Model, Read your Writes Model, and Write Follow Reads).

Figure 2. Consistency Models based on Reference [14].
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In the next sections, we will review the main consistency models implemented in storage systems:
Strong consistency, weak consistency, eventual consistency, causal consistency, read-your-writes
consistency, session consistency, monotonic reads consistency, and monotonic writes consistency.

3.1. Strong Consistency

Strong Consistency or Linearization is the strongest consistency model. Each operation must
appear committed immediately, and all clients will operate over the same data state. A read operation
in an object must wait until the write commits before being able to read the new version. There is also
a single global order of events accepted by all storage systems’ instances [15].

Strong Consistency leads to a high consistency system, but it compromises scaling by decreasing
availability and network partition tolerance.

3.2. Weak Consistency

As the name implies, this model weakens the consistency. It states that a read operation does
not guarantee the return of the latest value written. It also does not guarantee a specific order of
events [15].

The time period between the write operation and the moment that every read operation returns
the updated value is called the inconsistency window [16]. This model leads to a highly scalable system
because there is no need to involve more than one replica or node into a client request.

3.3. Eventual Consistency

Eventual Consistency strengths the Weak Consistency model. Replicas tend to converge to the
same data state. While this convergence process runs, it is possible for read operations to retrieve
an older version instead of the latest one. The inconsistency window will depend on communication
delays between replicas and its sources, the load on the system and the number of replicas involved [16].

This model is half-way a strong consistency model and a weak consistency model. Eventual
Consistency is a popular feature offered by many NoSQL databases. Cassandra is one of them, and it
can offer availability and network partition on such a level that it does not compromise the usability of
the most accessed websites in the world that uses Cassandra. One of them is Facebook, the company
that initially developed Cassandra.

3.4. Causal Consistency

If some process updates a given object, all the processes that acknowledge the update on this
object will consider the updated value. However, if some other process does not acknowledge the
write operation, they will follow the eventual consistency model [16]. Causal consistency is weaker
than sequential consistency but stronger than eventual consistency.

Strengthening the Eventual Consistency model to be Causal Consistency decreases availability
and network partitioning properties of the system.

3.5. Read-your-writes Consistency

Read-your-writes consistency allows ensuring that a replica is at least current enough to have
the changes made by a specific transaction. Because transactions are applied serially, by ensuring
a replica has a specific commit applied to it, we know that all transaction commits occurring prior to
the specified transaction have also been applied to the replica. If some process updates a given object,
this same process will always consider the updated value. Other processes will eventually read the
updated value. Therefore, read-your-writes consistency is achieved when the system guarantees that,
once a record has been updated, any attempt to read the record will return the updated value [17].
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3.6. Session Consistency

If some process makes a request to the storage system in the context of a session, it will follow
a read-your-writes consistency model as long as this session exists. Using session consistency, all reads
are current with writes from that session, but writes from other sessions may lag. Data from other
sessions come in the correct order, just isn’t guaranteed to be current. This provides good performance
and good availability at half the cost of strong consistency [18].

3.7. Monotonic Reads Consistency

After a process reads some value, all the successive reads will return that same value or a more
recent one [19]. In other words, all the reads on the same object by the same process follow a monotonic
order. However, this does not guarantee monotonic ordering on the read operations between different
processes on the same object. Therefore, monotonic reads ensure that if a process performs read r1,
then r2, then r2 cannot observe a state prior to the writes which were reflected in r1; intuitively, reads
cannot go backward. Monotonic reads do not apply to operations performed by different processes,
only reads by the same process. Monotonic reads can be totally available: Even during a network
partition, all nodes can make progress [20].

3.8. Monotonic Writes Consistency

A write operation invoked by a process on a given object needs to be completed before any
subsequent write operation on the same object by the same process [19]. In other words, all the writes
on the same object by the same process follow a monotonic order. However, this does not guarantee
monotonic ordering on the write operations between different processes on the same object. Therefore,
monotonic writes ensure that if a process performs write w1, then w2, then all processes observe w1
before w2. Monotonic writes do not apply to operations performed by different processes, only writes
by the same process. Monotonic writes can be totally available: Even during a network partition,
all nodes can make progress [21].

4. NoSQL Databases Background

In the next sections, we describe succinctly the main characteristics of each one of the five NoSQL
databases: Redis, Cassandra, MongoDB, Neo4j, and OrientDB.

4.1. Redis

From the official website, “Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures such as strings, hashes,
lists, sets, sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius
queries” [22].

Redis optimizes data in memory by prioritizing high performance, low computation complexity,
high memory space efficiency and low application network traffic [23]. Redis guarantees high
availability by extending its architecture and introducing the Redis Cluster. Redis on a single instance
configuration is strong consistent. In a cluster configuration, Redis is Eventual Consistent when the
client reads from the replica nodes.

Redis Cluster requirements are the following [24,25]:

• High performance and linear scalability up to 1000 nodes.
• Relaxed write guarantees. Redis Cluster tries its best to retain all write operations issued by the

application, but some of these operations can be lost.
• Availability. Redis Cluster survives network partitions as long as the majority of the master

nodes are reachable and there is at least one reachable slave for every master node that is no
longer reachable.
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4.2. Cassandra

Cassandra is a column NoSQL database [26]. It was initially developed by Facebook to fulfill the
needs of the company’s Inbox Search services. In 2009, it became an Apache Project.

Cassandra is a database system built with distributed systems in mind, like almost every NoSQL
systems out there. Following the CAP theorem, Cassandra will be on the AP (Availability and Network
Partition Tolerance) side, hence prioritizing high-availability when subject to network partitioning.
As we will further see, Cassandra’s consistency can be tuned to be a CP (Consistency and Network
Partition Tolerance) database system, so it becomes a strong consistency database when subject to
network partitioning.

Cassandra system is a column based NoSQL database [6]. In other words, Cassandra describes
data by using columns. A keyspace is the outermost container for the entire dataset, corresponding
to the entire database, and it is composed of many column-families. A column-family represents the
same class of objects, like a Car or a Person, and each column-family has different entries of objects
called rows. Each row is uniquely identified by a row key or partition key and can hold an arbitrarily
large number of columns. A column contains a name-value pair and a timestamp. This timestamp is
necessary when solving consistency conflicts.

4.3. MongoDB

MongoDB is a document-based NoSQL database. Its architecture was inspired by the limitations
on relational databases like MySQL and Oracle. MongoDB tries to join the best of the RDBMS and
NoSQL worlds. From RDBMS, MongoDB took the expressive query language, secondary indexes,
strong consistency, and enterprise management while adding NoSQL concepts like dynamic schemas
and easier horizontal scalability [27].

MongoDB data model is based on documents. These documents are represented in BSON (Binary
JSON). This format extends the well-known JSON (JavaScript Object Notation) to include additional
types like int, long, date, and floating point [27].

Documents that represent a similar class of objects are organized as collections. For example,
a collection could be the Car collection while a document could be the data item of a single car. Making
the analogy with RDBMS, collections are similar to tables. Documents are similar to rows. Fields
are similar to columns. Although left-outer JOIN is a valid operation, MongoDB tends to avoid
joins by nesting relationships into a single document, like including manufacturer information into
a car document [27].

4.4. Neo4j

Neo4j is a graph NoSQL database system. Its data model prioritizes relationships between entities
in the form of graphs [28,29].

In the RDBMS world, despite the normalization forms, first introduced in 1970 by Edgar Codd [30],
database architects tend to put some extra information into some tables to prevent joins, ending up
with several replications of the same data and many consistency problems by having multiple versions
of this data. MongoDB also tries to avoid joins by nesting objects which cause the same duplication
problem as RDBMS [28].

In Neo4j, a graph is defined by a node and a relationship. As shown in Figure 3, a node represents
an entity (i.e., the entity Person). It can have several node attributes. (i.e., the Person with the name
“Alice”). Two entities can be linked by a relationship (i.e., the Person with name “Alice” likes the
Person with name “Bob”). Relationships can also have properties [31].
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Figure 3. Neo4j Disk Data Structure. Source: Reference [32].

Internally, Neo4j uses linked lists of fixed size record on disk [32]. Properties are stored as
a linked list of property records. Each property record holds a key/value. Each node or relationship
references its first property record. Relationships are stored in a doubly linked list. A node references
its first relationship.

Neo4j is schema optional. It is not necessary to create indexes and constraints. Nodes, relationships,
and properties can be created without defining a schema.

Labels define domains by grouping nodes into sets. Nodes that have the same label belongs
to the same set. For example, all nodes representing cars could be labeled with the same label: Car.
This allows Neo4j to perform operations only within a specific label, such as finding all cars with
a given brand.

4.5. OrientDB

OrientDB is a multi-model NoSQL database by mixing more than one model. OrientDB main
data models are documents and graphs, but it also implements a key-value engine [29]. This NoSQL
database uses the free adjacency list to enable native query processing and it uses document database
and object-orientation capabilities to store physical vertices. OrientDB supports schema less, full and
mixed modes. Replication and sharding are also supported.

In its Community free edition (Apache 2 License), it does not support features, such as fault
tolerance, horizontal scalability, clustering, sharding and replication. However, in its Enterprise paid
edition, it supports all the features previously mentioned [29].

A record is the smallest piece of data that can be stored in the database. A record can be a Document,
a RecordBytes record (BLOB) a Vertex or even an Edge [33].

Similar to MongoDB’s data model, a document is schema-less or schema classes with defined
constraints. Documents can easily import or export JSON format [33].

5. NoSQL Consistency Implementations

In this section, we will analyze each consistency implementation in Redis, Cassandra, MongoDB,
Neo4j, and OrientDB, NoSQL databases. This review is based on the specifications and focuses on
consistency properties. The goal is to understand how each database system scales and how this
affects consistency.
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5.1. Redis

Redis Cluster distributes keys into 16384 hash slots. Each master stores a subset of the 16384 slots.
To determine in which slot a key is stored, the key is hashed using the CRC16 algorithm following by
the modulo of 16384:

HASH_SLOT = CRC16(key) mod 16384

However, when we want two keys in the same slot so that we can implement multi-key operations on
them, the Redis Cluster implements hash tags. Hash tags ensure that two keys are allocated in the
same slot. To achieve this, part of the key has to be a common substring between the two keys and
inside brackets. These two keys end up in the same slot because only the substring inside the brackets
will be hashed.

For example:

{user:1000}following

{user:1000}followers

Redis Cluster is formed by N nodes connected by TCP connections. Each node has N-1 outgoing
connections and N-1 incoming connections. A connection is kept alive as long as the two connected
nodes live.

This architecture implements a master-slave model without proxies which means that the application
is redirected to the node that has the requested data. Redis nodes do not intermediate responses.

Each master node holds a hash slot. This slot has 1 to N replicas (including the master and
its replica nodes). When a master node receives an application issued request, it handles it and
asynchronously propagates any changes to its replicas. Then, the master node by default acknowledges
the application without an assured replication. This behavior can be overwritten by explicitly making
a request using the WAIT command, but this profoundly compromises performance and scalability—
the two main strong points of using Redis Cluster.

On the asynchronous replication configuration (default), if the master node dies before replicating
and after acknowledging the client, the data is permanently lost. Therefore, the Redis Cluster is not
able to guarantee write persistence at all times.

Supposing we have a master node A and a single replica of it representing by A1. If A fails, A1
will be promoted to master, and the cluster will continue to operate. However, if A has no replicas or
A and A1 fail at the same time, the Redis Cluster will not be able to continue operating.

In the case of a network partition event, if the client is on the minority side with master A, while on
the majority side resides its replicas A1 and A2, if the partition holds for too long (NODE_TIMEOUT)
the majority side starts an election process to elect a new master among them, either A1 or A2. Node
A is also aware of the timeout and its role change from master to slave. Consequently, it will refuse
any further write operations from the client. In this case, Redis Cluster is not the best solution for
applications that require high-availability, such as large network partition events.

Supposing that the majority side has N nodes and A and B and its replicas, A1, B1, and B2,
respectively, and a network partition event occurs in such way that the replica A1 is separated from the
rest. If the partition lasts long enough for assuming A1 as unreachable, Redis Cluster uses a strategy
called replicas migration to reorganize the cluster and because B has multiple slaves, one of B’s replicas
will now replicate from A and not from B.

There is also a possibility of reading from replica nodes, instead of from master nodes in order
to achieve a more read-scaled system. By using the READONLY command, the client assumes the
possibility of reading stale data which is reasonable for situations where having the latest data is not
critical. Therefore, leading to an eventual consistency model.
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5.2. Cassandra

Cassandra scales up by distributing data across a set of nodes, designated as a cluster. Each node
is capable of answering client requests. When a node is working on a client request, it becomes the
coordinator for that request. It will be responsible for asking to other nodes for the requested data and
answering back to the application.

Cassandra partitions data across the cluster by hashing the row key. Each node on the ring
stores a subset of hashes, in such a way that “the largest hash value wraps around the smallest hash
value” [26]. Because of the randomness of the hash functions, data tends to be evenly distributed
across the ring.

Replication is the strategy Cassandra uses to achieve a high-available system. Two concepts
describe a replication configuration in Cassandra, replication strategy and replication factor [34].
The Replication strategy determines which nodes replicas are placed. The replication factor determines
how many different nodes have the same data. If the replication factor is R, the node that is responsible
for that specific key range copies the data it owns to the next R-1 neighbors, clockwise as in Figure 4.

Figure 4. Cassandra Ring.

Cassandra was initially designed to be eventually consistent, high-available and low-latency.
However, its consistency can be tuned to match the client’s requirements. The following configuration
constants describe some of the different write consistency levels [35]:

• ALL. Data is written on all replica nodes in the cluster before the coordinator node acknowledges
the client. (Strong Consistency, high latency)

• QUORUM. Data is written on a given number of replica nodes in the cluster before the coordinator
node acknowledges the client. This number is called the quorum. (Eventual Consistency,
low latency)

• LOCAL_QUORUM. Data is written on a quorum of replica nodes in the same data center as the
coordinator node before this last one acknowledges the client. (Eventual Consistency, low latency)

• ONE. Data is written in at least one replica node. (Eventual Consistency, low latency)
• LOCAL_ONE. Data is written in at least one replica node in the same data center as the coordinator

node. (Eventual Consistency, low latency)

Analogous to the write consistency levels, the following configuration constants describe some of
the read consistency levels [35]:
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• ALL. The coordinator node returns the requested data to the client only after all replicas have
responded. (Strong consistency, less availability)

• QUORUM. The coordinator node returns the requested data to the client only after a quorum of
replicas has responded. (Eventual consistency, high-availability)

• LOCAL QUORUM. The coordinator node returns the requested data to the client only after
a quorum of replicas has responded from the same datacenter as the coordinator. (Eventual
consistency, high-availability)

• ONE. The coordinator node returns the requested data to the client from the closest replica node.
(Eventual consistency, high availability)

• LOCAL ONE. The coordinator node returns the requested data to the client from the closest replica
node in the local datacenter. (Eventual consistency, high availability)

On the default configuration, Cassandra updates all the replica nodes that have been queried
in some reading request to reflect the latest value. This routine is called Read Repair and, because
a single read triggers it, it puts little stress on the cluster [36]. For reading consistency levels of ONE,
the coordinator only asks to one node for the information. Therefore, it cannot Read Repair when only
one version of the data object is being considered. However, Cassandra has a configuration called Read
Repair Chance. For instance, given a Read Repair Change of 0.1 and a Replication Factor of 3, 10% of the
reads will trigger a Read Repair and hit the three replicas so that the update data is propagated to all
three replicas.

Some confusion may raise about the difference between Replication Factor and Write Consistency
Level. The Replication Factor does not guarantee that the updated value is fully propagated, only that
the data will eventually have a given number of copies in the cluster. The Write Consistency Level is
responsible for how many copies are made before acknowledging the write operation to the client who
had requested it.

To analyze how eventual consistency is affected by the write and read consistency configurations
offered by Cassandra, UC Berkeley developed a simulator called Probabilistically Bounded Staleness
(PBS) [37]. Figures 5–8, show the resulting curves of our simulation using PBS, given the number
of available cluster hosts (N), the read quorum (R) and the write quorum (W). They represent the
probability of a client request having the latest version of the data over time (ms) for a given N, W
and R combination. All the above configurations assume a Replication Factor above 1. If the Replication
Factor were 1, there would be a single node storing a given data object, therefore the write operation
and read operation would only execute in that single node resulting in strong consistency (as seen in
Figure 5) for all configurations in Figures 5–8.

Figure 5. Probabilistically Bounded Staleness (PBS) results for (N = 5, R = 1, W = N = 5) and (N = 5,
R = N = 5, W = 1).
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Figure 6. PBS results for (N = 5, R = 1, W = 3).

Figure 7. PBS results for (N = 5, R = 3, W = 1).

Figure 8. PBS results for (N = 5, R = 1, W = 1).

5.2.1. ALL Write Consistency Level or ALL Read Consistency Level

From Figure 5, we can conclude that the probability of consistency over time is constant, resulting
in 100%. That is because each write or read operation is executed on every node available before
acknowledging the result to the client. Therefore, this configuration makes the Cassandra cluster
strong consistent.

5.2.2. ONE Read Consistency Level and QUORUM Write Consistency Level

In Figure 6, the consistency of a given data object eventually gets to 100%. A write operation
needs three updated copies to acknowledge a successful write operation and a read operation returns
the first copy the coordinator finds. The time that it is needed to reach 100% consistency is the time that
the cluster needs to make all the number of copies previously set on the Replication Factor. With Read
Consistency Level ONE, Cassandra will depend on the periodically Read Repair routines set by the Read
Repair Chance to update all the copies of the data object and return all the time the same latest version.
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5.2.3. QUORUM Read Consistency Level and ONE Write Consistency Level

From Figure 7, we can conclude that the time needed to reach full consistency of a given data
object is the shortest of all configurations here (excluding the Figure 5 configuration). Three nodes
are approached by the coordinator and the most updated version among them is returned. For each
read operation, Cassandra cluster uses its Read Repair feature to propagate to all three nodes inside the
Quorum (the three nodes), so that they all have the most updated version of the requested data among
them. Because Read Repair is always triggered by a read, the cluster reaches full consistency faster on
the given data object.

5.2.4. ONE Read Consistency Level and ONE Write Consistency Level

In Figure 8, we have the strongest form of eventual consistency configuration in Cassandra.
We need just one node with the updated data to acknowledge the write operation. For the reads,
the first node the coordinator node chooses will retrieve the requested data. This may or may not be
the most updated version of the data object. Eventually, the most updated version will be returned on
all requests. The time needed to get to a 100% probability of consistency will depend on the Read Repair
Chance and the Replication Factor. The higher the probability of the Read Repair Chance, the shorter
the time to get to full consistency. The lower the Replication Factor, the shorter the time to get to full
consistency. Modifying the Read Repair Chance and the Replication Factor to reach consistency faster will
result in higher latencies because more copies and nodes are involved in the read and write operations
for each client request.

5.3. MongoDB

One of the strongest features of MongoDB is horizontal scaling by using a technique called
sharding. Sharding allows distributing data across many data nodes. Hence, avoiding the architectures
composed of a couple of big and powerful machines. MongoDB balances data across these nodes in
an automatic way. There are three types of sharding:

Range-based Sharding: documents are distributed based on their shard key-values. Consequently,
two shard key-values close to each other are likely to be on the same shard. Hence, optimizing
operations between them.

Hash-based Sharding: the key-values are subject to an MD5 hash. This sharding strategy tends to
distribute data across shards uniformly. Although, it performs worse in range-based queries.

Location-aware Sharding: the user can specify a custom configuration to accomplish application
requirements. For example, high-demanding data can be stored In-Memory (Enterprise Edition),
and less popular data can be stored on the disk.

A dispatcher called Query Router will redirect application issued queries to the correct shard
depending on the sharding strategy and shard value.

MongoDB follows the ACID (Atomicity, Consistency, Isolation, and Durability) properties [38]
similar to RDBMS implementations:

• Atomicity. MongoDB supports single operation inserts and updates;
• Consistency. MongoDB can be used on a strong consistency approach;
• Isolation. While a document is updated, it is entirely isolated. Any error would result in a rollback

operation, and no user will be reading stale data;
• Durability. MongoDB implements a feature called write concern. Write concern are user-defined

policies that need to be fulfilled in order to commit (i.e., writing at least three replicas before
commit).

MongoDB allows configuring a replica set. A replica set has primary replica set members and
secondary replica set members. There are two configurations based on the desired consistency level:
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• Strong consistency. Applications write and read from the primary replica set member.
The primary member will write all the operations that made it transact to the new state. These
operations are idempotent and constitute the oplog (operations log). After the primary member
acknowledges the application of the committed data and operations logging, secondary replica
set members can now read from this log and replay all operations so that they can be on the same
state of the primary member.

• Eventual consistency. Applications can read from secondary replica set members if they do not
prioritize reading the latest data.

In the case of a primary member failover, secondary replicas will elect a new primary among them
by using the Raft consensus algorithm [39]. Once the primary member is elected, it will be responsible
for updating the oplog read by secondary members. In the case of a recovery of the primary member,
this will play the role of a secondary member for then on.

Oplog has a configurable back-limit history (default: 5% of the available disk space). If a secondary
member fails longer enough to need operations that are no longer available in the oplog, all the
databases, collections, and indexes directives are copied from the primary member or another
secondary member. This process is called initial synchronization. The same one that is used when
adding a new member to the replica set

5.4. Neo4j

Neo4J is considered the most popular graph database worldwide, used in areas, such as health,
government, automotive production, military area and others. Neo4j favors strong consistency and
availability. Neo4j has clustering features in its Enterprise Edition. These features are capable of
providing a fault tolerant platform, reading scale up and Causal Consistency model.

A cluster is composed of two types of nodes, core servers and read replicas. Core Servers’ primary
responsibility is to ensure data durability. Once the majority of the Core Servers set has accepted
a given transaction, the client will be acknowledged of the commit. In order to calculate the number
of Core Servers required to tolerate F failed servers, Neo4j states that the number of Core Servers
needed is 2F + 1. In a real situation where occurs a certain number of failed Core Servers greater than
F, the cluster will become read-only to preserve data safety, because the minimum requirements to
achieve write consensus has been compromised.

Figure 9 shows Neo4j Cluster Architecture. Read replicas’ main responsibility is to ease the load
from read requests. They asynchronously reflect the changes consented by the majority of the Core
Servers set. As the Read Replicas do not change data states, they can view as disposable servers,
which means that their arrival or departure will only decrease or increase query latency respectively,
but it will never compromise data availability [40].

Neo4j in a single node architecture is strongly consistent. In Neo4j Enterprise Edition, the cluster
ensures causal consistency. As we previously mentioned, causal consistency guarantees that reading
data previously written from the same client will be consistent. However, we have eventual consistency
when reading data that was changed by other clients, because there is a millisecond time window
which the latest data has not been propagated yet [40]. Neo4j is located on the CA quadrant by
providing consistency and availability.
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Figure 9. Neo4j Cluster Architecture.

5.5. OrientDB

OrientDB has a master-slave strategy to achieve a more scalable architecture. Every time a client
makes a request, it would have to hit a single master. This master would then propagate any state
change to its replicas. Finally, it would acknowledge the client. This approach made the database
strong consistent, and it was only scaling the reads because there was only a single master node,
which represented a severe bottleneck in the system.

Some years ago, OrientDB announced a new paradigm shift, the multi-master architecture,
with the premise that all nodes must accept writes. In the default configuration, a client acknowledges
only after the majority of the master nodes commit the new date state. Then, asynchronously, the master
nodes that have not committed are fixed, and the data propagates to the replicas (read-only). This new
approach made the system eventual consistent when reading from an unfixed master or some replica
that has not yet received the latest data. However, if the same master is hit over and over again,
the client will get strong consistency, while compromising performance. OrientDB handles this with
three client load balancing configurations:

• STICKY. The default configuration. The client remains connected to the same server until the
database closes. (Strong Consistency, high latency)

• ROUND_ROBIN_CONNECT. The client connects to a different server at each connection
following a round robin schedule [41]. (Session Consistency)

• ROUND_ROBIN_REQUEST. The client connects to a different server at each request following
a round robin schedule [41]. (Eventual Consistency, low latency)

Clients have the ability to know whether the version of the data retrieved is updated [42].
OrientDB supports Multi-Version Concurrency Control (MVCC) with atomic operations. This avoids
the use of locks in the server. Every time a read request is made, if the version of the data is equal to
the one that is on the response payload addressed to the client, the operation is successful. Otherwise,
OrientDB generates an error that can be handled by the client.

5.6. Summary

In this section, we compared the different consistency implementations of several NoSQL
databases. Table 1 summarizes the consistency models supported by the five NoSQL databases:
Redis, Cassandra, MongoDB, Neo4j, and OrientDB.
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Table 1. Consistency models comparison.

Strong Casual Session Eventual Weak

Redis 2 X 1

Cassandra X X 1

MongoDB X 1 X X X
Neo4j X 1 X X

OrientDB X 1 X X
1 default configuration, 2 across replicas.

Redis is a high-available and very low latency (the best of the group) database, due to the
in-memory architecture. It can relax consistency to an eventual consistency level.

Cassandra introduces a storing system composed of many nodes on a ring. Cassandra is the
database system that offers the broadest spectrum of eventual consistency levels. Cassandra is cheaper
for storing data than Redis and has a robust eventual consistency architecture while maintaining
high-availability and low-latency. Cassandra’s best uses cases are core data storage from applications
that don’t always need the latest data but prefer a high available and low latency service instead.

MongoDB is the database system that offers more consistency configurations, strong consistency,
causal consistency, session consistency, and eventual consistency. Although MongoDB’s default
consistency model is strong consistency, it has the ability to perform at higher availability and lower
latency when on its eventual consistency configuration. However, MongoDB is a single master
architecture. For this reason, it does not scale writes well as it scales stale data reads (eventual
consistency). MongoDB’s best use cases are, for example, logging and data that don’t demand write
requests from a large pool of clients.

Neo4j promotes consistency and availability. Neo4j does not support data partitioning. However,
it has a variant of the master-slave model, where it is possible to read from replicas that may or may
not have the latest data. Therefore, the applications can choose to have eventual consistent readings.

Similar to MongoDB and Neo4j, OrientDB allows the application to choose which consistency
level it prefers. OrientDB defaults to strong consistency when its data is read solely from master nodes
and eventual consistency when reading from replicas. In their eventual consistency configurations,
Neo4j’s and OrientDB’s scaling limitations are similar to the ones found on MongoDB.

Figure 10 summarizes the lessons learned by depicting where each database positions itself with
respect to the three quality attributes addressed by the CAP theorem. Note that this analysis only
considers the default configurations of each database engine [43]. The three vertices of the theorem
describe each property, Consistency, Availability and Network Partition Tolerance. Neo4j, OrientDB,
and Relational DBs favor strong consistency and availability. Cassandra favors eventual consistency,
resulting in high availability, better tolerance to network partition and low latency. Finally, MongoDB
and Redis favor strong consistency and network partition tolerance.

Figure 10. Consistency, Availability, and Network Partition Tolerance (CAP) Theorem and classification
of databases based on their default configurations.
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6. Conclusions and Future Work

In this work, we studied the consistency models implemented by five popular NoSQL database
systems: Redis, Cassandra, MongoDB, Neo4j, and OrientDB. Configuring any selected database
to favor strong consistency will result in less availability when subject to network partition events,
as the CAP theorem preconized. When considering the default consistency model in each distributed
database, it is clear that to be partition tolerant and ensure high consistency, MongoDB is the preferable
option. But, if one wants to provide high availability, Cassandra is the better choice. Whenever
partition intolerance or non-distributed databases are an option, both Neo4j and OrientDB are able to
offer high consistency.

As future work, we propose to do an empirical evaluation to study, compare and better understand
the impact of different consistency solutions and configurations on the selected NoSQL databases.
Consequently, comparing the consistency models in practice, but for the rest of the NoSQL spectrum,
so that we understand their pros and cons. We also intend to evaluate the real impact of the different
consistency models over the other quality attributes considered on the CAP theorem.
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Abstract. Nowadays software architects face new challenges because Internet 
has grown to a point where popular websites are accessed by hundreds of millions 
of people on a daily basis. One powerful machine is no longer economically via-
ble and resilient in order to handle such outstanding traffic and architectures have 
since been migrated to horizontal scaling. However, traditional databases, usually 
associated with a relational design, were not ready for horizontal scaling. There-
fore, NoSQL databases have proposed to fill the gap left by their predecessors. 
This new paradigm is proposed to better serve currently massive scaled-up Inter-
net usage when consistency is no longer a top priority and a high available service 
is preferable. Cassandra is a NoSQL database based on the Amazon Dynamo 
design. Dynamo-based databases are designed to run in a cluster while offering 
high availability and eventual consistency to clients when subject to network par-
tition events. Therefore, our goal is to propose CBench-Dynamo, the first con-
sistency benchmark for NoSQL databases. Our proposed benchmark correlates 
properties, such as performance, consistency, and availability, in different con-
sistency configurations while subjecting the System Under Test to network par-
tition events. 

Keywords: Consistency, Availability, Network Fault Tolerance, NoSQL Data-
bases, Benchmark, Dynamo, Cassandra. 

1 Introduction 

The Internet has grown to a point where billions of people have access to it, not only 
from a desktop but also from smartphones, smartwatches, and even other servers and 
services. Nowadays systems need to scale. The monolithic database architecture, based 
on a powerful server, does not guarantee the high availability and network partition 
required by today’s web-scale systems, as demonstrated by the CAP (Consistency, 
Availability, and Network Partition Tolerance) theorem [1]. Strong consistency is a 
property that has been relaxed to achieve a more scalable database system. Relational 
databases foundations were designed to support strong consistency. Each transaction 
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must be immediately committed, and all clients will operate over consistent data states. 
Reads from the same object will present the same value to all client requests. Although 
strong consistency is the ideal requirement for a database, it deeply compromises hori-
zontal-scalability. Horizontal scalability is a more affordable approach when compared 
to vertical scalability. It enables higher throughput and data distribution across multiple 
database nodes. On the other hand, vertical scalability relies on a single powerful data-
base server to store data and answer all requests. Although horizontal scaling may seem 
preferable, CAP theorem presents that when network partitions occur, one has to opt 
between availability and consistency [2]. Horizontal scaling has inspired a new cate-
gory of databases called NoSQL. These systems have been created with a common 
requirement in mind, scalability. Several NoSQL designs prioritize high-availability 
over a more relaxed consistency strategy, an approach known as BASE (Basically 
Available, Soft-state and Eventually consistent) [3]. 

Although performance frameworks, such as YCSB [4], have been developed for 
benchmarking NoSQL databases, they lack a consistency tier to fully compare the 
tradeoffs annunciated by the CAP theorem. 

In this work, we propose CBench-Dynamo, a benchmark for testing consistency and 
availability on a horizontal-scaled system. We also define how to address the main 
quality attributes of a benchmark, i.e. Relevance, Reproducibility, Fairness, Verifiabil-
ity, and Usability [5]. Our goal is to extract different measurements on performance, 
consistency, and availability with different consistency configurations of the System 
Under Test (SUT) while subjecting this system to network partition events. 

Finally, we will run the proposed benchmark on a Cassandra cluster and discuss the 
resulting measurements. 

2 Related Work 

Cooper et al. [6] propose the YCSB (Yahoo! Cloud Serving Benchmark), a benchmark-
ing framework for cloud serving systems. It comes to fill the need for performance 
comparisons between NoSQL databases and keep tracking of their tradeoffs such as 
read performance versus write performance, latency versus durability, and synchronous 
versus asynchronous replication. Although benchmark tiers such as performance and 
scaling are included in YCSB, it lacks other tiers such as availability and consistency. 

Bailis et al. [7] suggest an approach that predicts the expected consistency of an 
eventually consistent Dynamo data store using models the authors developed called 
Probabilistically Bounded Staleness (PBS). This approach lacks a benchmark frame-
work. 

The work of Bermbach and Tai [8] propose a benchmark methodology on Amazon’s 
cloud database AWS S3. This is the closest work of what we aim to do in this paper. 
Bermbach and Tai project a long-term monitor system on AWS S3 to evaluate how this 
service changes its consistency ability over time and the benchmark approach used can 
be easily extended for other usages and databases as we aim to demonstrate in our pa-
per. 
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Patil et al. [9] propose a benchmark architecture that evaluates time to consistency. 
The authors extend the YCSB framework and add support to distributed architectures 
by using ZooKeeper for coordination. However, since 2011, development of the 
YCSB++ framework has been discontinued, and Cassandra support is still in progress. 
Only HBase and Acumulo support are available, but they are outdated as major releases 
of both databases have been released. YCSB++ also does not fully evaluate consistency 
trade-offs based on the CAP theorem as YCSB++ does not support network partition 
events. 

Our work differentiates from the rest by proposing the first NoSQL consistency 
benchmarking framework and testing it on Cassandra. To the best of our knowledge, 
no such framework compares consistency levels to other quality attributes such as avail-
ability and performance while subjecting the target system to network partition events. 

3 Dynamo 

Dynamo design and implementation were first introduced by Amazon as a highly 
available key-value storage system [10]. Since then, Amazon has built many cloud 
services emerged around this design, e.g. Amazon DynamoDB and Amazon S3. 

Dynamo prioritizes eventual consistency, targeted to applications that need an 
“always writeable” data store where no updates are rejected due to failures or 
concurrent writes. 

Dynamo was designed to scale incrementally, hence it was designed with a partition 
mechanism in mind. Dynamo’s partition mechanism is based on a consistent hashing 
to distribute the load across multiple data nodes. The output of this hashing function 
can be illustrated as a ring as seen in 

Fig. 1, in which the highest output wraps around the smallest one. Each node is 
assigned a random value within the range of the hashing function. To know which node 
will store a given data value, the correspondent key of this value is hashed. Then, we 
walk the ring clockwise, from the smallest to the largest number, to find the first node 
with a position larger than the hashing result. 

 
Fig. 1. Partitioning and replication of keys in Dynamo ring [10]. 
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4 Consistency in Dynamo-based Databases 

Amazon’s Dynamo based databases such as Cassandra, all use the same variant of 
quorum-style replication [11]. Quorum-style replication is associated with a replication 
factor N, i.e. the number of replicas that some data eventual will be in. Read and write 
consistency can be configured as follows, ONE, QUORUM, or ALL. 

The following configurations describe the differences between the three write con-
sistency levels for Dynamo-based database systems [12]:  

• ALL: data is written on all replica nodes in the cluster before the coordinator node 
acknowledges the client. Therefore, this configuration has: Strong Consistency and 
High latency.  

• QUORUM: data is written on a given number of replica nodes in the cluster before 
the coordinator node acknowledges the client, where this number is called the 
quorum. This configuration has: Eventual Consistency and Low latency.  

• ONE: data is written in at least one replica node. This configuration has: Eventual 
Consistency and Low latency.  

Analogous to the write consistency levels, the following configuration constants de-
scribe the differences between the three read consistency levels for Dynamo-based da-
tabase systems [12]:  

• ALL. The coordinator node returns the requested data to the client only after all rep-
licas have responded. This configuration has: Strong consistency and Less availabil-
ity.  

• QUORUM. The coordinator node returns the requested data to the client only after 
a quorum of replicas has responded. This configuration has: Eventual consistency 
and High-availability.  

• ONE. The coordinator node returns the requested data to the client from the closest 
replica node. This configuration has: Eventual consistency and High availability. 

Under normal operation, i.e. without network partition events, given the number of 
replicas required for a read operation as R, the number of replicas required for a write 
operation as W, and the replication factor as N, Dynamo-based databases guarantee 
consistency when [11]: 

 𝑅 +𝑊 > 𝑁 (1) 

Given RQuorum and WQuorum, as Read Consistency and Write Consistency set to 
QUORUM, respectively, and the floor function that takes as input a real number and 
round it down to the closest integer. The conversion from the QUORUM notation to the 
R, W notation is as follows: 

																																					𝑅'()*(+,𝑊'()*(+ = 𝑅,𝑊 = 𝑓𝑙𝑜𝑜𝑟 23
4
+ 16 (2) 

Under abnormal operations where a network partition event had occurred, if con-
sistency is set to strong, i.e. ALL, availability is compromised as the Fig. 2 illustrates. 
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The scenario illustrated by Fig. 2 describes a situation where a read operation needs to 
involve the total number of replicas N in order to retrieve the data to the client. In case 
of a network partition, e.g. node C crashes, the coordinator of the request, node A, was 
not able to serve data, hence the total number of replicas had been involved in the op-
eration, and the coordinator had no other option than announcing a lack of service avail-
ability to the client, resulting in a TIMEOUT response. 

 

Fig. 2. Data request on abnormal operation where a node fails, and strong read consistency is 
set (i.e. ALL). 

Under abnormal operations where a network partition event had occurred, if con-
sistency is set to eventual configuration (ONE), we achieve service availability even in 
the presence of a node crash as the Fig. 3 illustrates. The scenario illustrated by Fig. 3 
describes a situation where a read operation only needs to involve one replica in order 
to retrieve the requested data to the client. Because only one replica had been involved, 
the response may not contain the latest data as this example suggests. Although con-
sistent responses are not ensured, this configuration results in a high-available service. 
 

 
Fig. 3. Data request on abnormal operation where a node fails, and eventual read con-

sistency is set (i.e. ONE). 
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For Dynamo-based databases, high availability does not necessarily ensures write per-
sistence. When addressing the concept of availability, in terms of service availability 
and not data availability, i.e. when a request is made, a successful response is given 
even if such key does not exist anymore. The response is successful, even if the re-
sponse refers to the inexistent of such resource. There may be the case when, for in-
stance, a configuration of W=1 (ONE) is set and the same node crashes right afterward, 
the data is lost and there is no acknowledgment to the client that such abnormality had 
happened. To avoid such events, W values greater than 1 increase data redundancy and, 
consequently, the probability of all replicas that contain the data fail is diminished. 

5 CBench-Dynamo 

A benchmark is a standardized tool to evaluate and compare competing systems or 
components according to specific characteristics. These characteristics can be perfor-
mance, dependability, among others. 

According to [5] the benchmarks can be categorized into three types: specification-
based benchmarks, kit-based benchmarks, and a hybrid based on the latest two. Speci-
fication-based benchmarks are simulated based on a specific business problem by im-
posing certain functions that must be achieved, such as required input parameters and 
expected outcomes. This type of benchmark imposes a big development investment on 
presenting multiple implementations for the same problem and proceed with an evalu-
ation of that set of development. While for specification-based benchmark, the specifi-
cation is a set of rules implemented by the third party to load and run the benchmark. 
The Kit-based benchmarks use the specification as a guide for implementing the bench-
mark kit. A hybrid category can be provided mostly as a kit but allows some functions 
to be implemented depending on each individual benchmark run. 

In this section, we propose CBench-Dynamo, a consistency benchmark that is a 
standard procedure to evaluate and compare consistency in the System Under Test 
(SUT). The specification we aim to present proposes a benchmark approach to test con-
sistency and availability in Dynamo-based NoSQL databases while subjecting these 
systems to network partition events. Therefore, we aim to contribute towards standard-
izing consistency benchmarking and lead vendors to better understand which system 
better suits their requirements. 

5.1 CBench-Dynamo Properties 

Benchmark researching and industry participants describe a benchmark into the follow-
ing properties [5]: Relevance, Reproducibility, Fairness, Verifiability, and Usability.  

Although the proposed benchmark, CBench-Dynamo can be adapted to run in dedi-
cated instances it has only been tested with Amazon EC2 instances. Some orchestration 
playbooks, such as easy instance setup, must be adapted to work on dedicated machines. 
However, we aim to make the system more generic and versatile in future work. For 
the present paper, our goal is to define the workload approach and present preliminary 
empirical results from the benchmark tests using this workload. 
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Relevance. Relevance is the most important property when defining a benchmark [5]. 
The relevance of a benchmark splits up into two dimensions, the spectrum of its ap-
plicability and the degree of relevance in the given area. 

The CBench-Dynamo is designed to target all Dynamo-based databases and the area 
of relevance is the study of the properties consistency, availability and network partition 
tolerance, of a horizontal-distributed database system. This benchmark aims to be a 
framework to facilitate the decision process of choosing the most appropriate NoSQL 
database depending on the degree of performance, availability, consistency, and net-
work fault tolerance required for running a given application. 

Reproducibility. Reproducibility will be attained as CBench-Dynamo exports the in-
stances’ hardware and software facts via Ansible. In addition, the workload specs will 
be also exported at the end of the associated run. 

The goal of this extensive and detailed description is for other people to obtain 
identical results by configuring the whole system as described. 

Fairness. Fairness is the ability of the results being supported by the system merit with-
out artificial constraints. To reach fairness a set of artificial constraints must be consent 
and well defined. CBench-Dynamo defines the following constraints: 

• The SUT must be a Dynamo-based NoSQL database system, e.g. Cassandra; 
• The SUT must have the same hardware, network and operating system components 

when comparing benchmark test results targeting similar SUT; 
• The Workload Coordinator must support a JVM to run the benchmark test and Py-

thon to analyze and translate the data into meaningful measurements; 
• The fact that the Workload Coordinator uses Java and Python to coordinate the 

benchmark and post-process all the data, respectively, makes the system highly port-
able and therefore fair as JVM and Python based applications can run virtually in 
any system. 

Verifiability. It is important that results are trustworthy. Results must be validated and 
decrease the possibility of chance or manipulation. 

CBench-Dynamo results from academic work, all the workloads presented here were 
subject to peer-review by other researchers. 

Usability. Usability is the degree of how easy a system is to use. The CBench-Dynamo 
has detailed instructions for making the benchmark easy to use and several layers of 
abstractions were taken into account so that only a minimum input is needed to start a 
benchmark test. 

 
All the proposed benchmark modules are hosted on GitHub. There is a repository 

for each of these modules, modified YCSB [13], analyzer [14], and orchestration play-
books [15]. 
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5.2 Architecture Specification 

CBench-Dynamo is composed of a Workload Coordinator, a Load Balancer and a 
Dynamo cluster (SUT). All these components are orchestrated by the orchestrator via 
Ansible playbooks, as illustrated in Fig. 4. 

 

Fig. 4. CBench-Dynamo Architecture Specification. 

Orchestrator. The orchestrator via Ansible playbooks allows the vendor to configure 
and run a benchmark test via the Workload Coordinator. The following configurations 
are needed prior a benchmark testing: 

• IP addresses of the instances of the SUT; 
• IP address of the load balancer that serves as the external gateway of the SUT; 
• YCSB project home directory; 
• Analyzer project home directory; 
• Analysis results output directory; 
• Ansible facts output directory; 
• List of workload configurations with the following parameters: {workload de-

scription, YCSB database driver descriptor (e.g. cassandra-cql), write and 
read consistency levels (i.e. ONE, QUORUM or ALL), number of threads 
used, number of objects to update, number of updates/versions per object}. 

The orchestrator is responsible for the following benchmark testing stages: 
• Setup a dynamo cluster composed of AWS EC2 Ubuntu 16.04 Xenial 64 bits 

clean instances (only Cassandra setup was implemented); 
• Prepare the data space for running the customized YCSB workload, i.e. a table 

called workload with two string-type fields, y_id and version; 
• Request the Workload Coordinator to run a list of given workload configura-

tions and reboot the SUT in each iteration; 
• Request the Workload Coordinator to analyze the test output it has collected 

at the end of the test; 
• Download from the workload coordinator the analysis output as a .csv file 

containing all the measures. Each line is the result of a single workload test. 
Workload coordinator. The workload coordinator is responsible for running CBench-
Dynamo workloads. 
Load Balancer. The load balancer is responsible for uniformly distribute the query 
load throughout the SUT. 
SUT. The SUT is composed of a dynamo-based cluster. 
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5.3 Workload 

This paper proposes a workload that evaluates how consistency, performance, and 
availability are affected when consistency is configured either to prefer a high-available 
system or a high-consistent system while in a distributed system, such as Dynamo-
based databases, where network partition events may occur. 

The proposed workload is a customized YCSB workload and follows the methodol-
ogy proposed by Bermback and Tai [8]. Bermback and Tai propose a benchmark meth-
odology to study how Amazon S3 handles consistency over a long time period. This 
long-term experiment proposes a single writer and a variable number of readers as Fig. 
5 suggests. To achieve a uniformly load throughout the cluster’s replicas and avoid 
always hitting the same replica, writer and readers interact with the cluster through a 
load balancer. 

 

 
Fig. 5. Bermback and Tai’s long-term benchmark approach. 

 
Our benchmark is composed of two stages, the load, and run stages. The load stage is 
off the record for benchmark purposes. This stage’s goal is to load all the objects into 
the database. These objects are composed only of two fields, key, and version. 

During the benchmark run phase, both update and read operations occur uniformly. 
When configuring a workload run, the parameters threads indicate how much writers 
and readers will be running, as only one writer is used, the number of readers is calcu-
lated as threads-1. Each write operation increments a given object’s version and each 
read operation reads the version of a given object.  

The writer and the readers each have their task plan pre-generated at the beginning 
of the test and the benchmark ends when all the objects have been updated and read 
from until the pre-configured final version. Each operation is registered into a common 
file and follows the structure represented in Fig. 6. 
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Fig. 6. Proposed benchmark’s results data structure. 
 
The generated data is sufficient to infer whether a consistency anomaly had happened. 
For a given object’s key, if a read operation returns a version inferior to a version al-
ready written by some write operation in the past, there was a consistency anomaly.  

At the same time this occurs, there is a module that is disconnecting from time to 
time one instance at a time from the cluster to simulate network partition events (see 
Fig. 7). For every operation that the cluster was not able to retrieve a successful answer, 
the version assumes the UNAVAILABLE value as Fig. 6 suggests. 

All consistency anomalies are then processed and translated into the following meas-
urements: availability probability, consistency probability, write latency, and read la-
tency. 
 

 
Fig. 7. Network partition event scenario. 

6 Benchmark Testing 

For our first test of the proposed benchmark, we chose Cassandra as our SUT. 
Cassandra is a database system built with distributed systems in mind, like almost every 
NoSQL systems out there. Following the CAP theorem, Cassandra by default is on the 
AP (Availability and Network Partition Tolerance) side, hence prioritizing high-
availability when subject to network partitioning. As we will further see, Cassandra’s 
consistency can be tuned to be a CP (Consistency and Network Partition Tolerance) 
database system, so it becomes a strong consistent database when subject to network 
partitioning [12]. 

… 
writer_id:0, key:9345f1bae61442dab3f167c02d19a4a8, 
timestamp:17309459474301, version:1 
… 
reader_id:2, key:9345f1bae61442dab3f167c02d19a4a8, 
timestamp:17309253174394, version:0 
reader_id:1, key:9345f1bae61442dab3f167c02d19a4a8, 
timestamp:17309253174398, version:UNAVAILABLE 
 
… 
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6.1 Testing Architecture 

CBench-Dynamo requires an architecture composed of an orchestrator, a workload co-
ordinator, and a dynamo cluster as the SUT. The following architecture was defined 
for our first test (see Fig. 8): 
 
Orchestrator. The orchestrator is a MacBook Pro 13-inch, 2017, 2.3GHz Intel Core i5 
with 8GB of RAM. 

 
Workload Coordinator. The workload coordinator is an Amazon EC2 C5n.xlarge in-
stance (4 vCPUs, 10.5GB RAM). 

 
SUT. The System Under Test is a Cassandra cluster composed of eight Amazon EC2 
M5d.large instances. Each cluster instance will be rebooted and reloaded between 
workloads by the Orchestrator and the Workload Coordinator. 

 

Fig. 8. Testing architecture. 
6.2 Experiment 

In this section, we present the results obtained after running the proposed workload 
configurations. Our experiment targets an 8-node Cassandra cluster and combines dif-
ferent consistency configurations, i.e. ONE, QUORUM, ALL, as described in Table 1. 
The common input parameters for every configuration are the following: 

• Replication Factor: 3; 
• Total number of objects: 1.000.000; 
• Versions/updates per object: 2; 
• Network partition event duration: 2s; 
• Interval between network partition events: random between [1s, 25s].  

Table 1.  Cassandra’s benchmark workload configurations. 

Configuration SUT Write Consistency Read Consistency 
1 Cassandra ALL ALL 
2 Cassandra ONE ONE 
3 Cassandra QUORUM ONE 
4 Cassandra ONE QUORUM 
5 Cassandra QUORUM QUORUM 
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Consistency and Availability. When in a configuration where both read and write con-
sistency is ALL we achieve results of Strong Consistency while compromising availa-
bility. This happens as theorized because all replicas must be involved before returning 
to the client. If some replica is down, resulting from a network partition event, the re-
quest can’t fulfill and the response to the client reports an unavailable service. Although 
this configuration generated an availability of 99.7539%, the industry does not consider 
this value high. Availability is usually represented by how many nines the availability 
probability has (see Table 2). The value we attained in the ALL-ALL configuration only 
has 2-nines, which means that this number only falls into the second level of availabil-
ity, hence translating into 3.65 days of availability when rounding down the number to 
99.0000%. Many businesses that require high-availability may fail with such a long 
unavailable service time. 

Table 2. Availability and nines notation [16]. 

 
In the other hand, when querying Cassandra with no consistency constraints by setting 
both read and write operations to involve just one replica (write consistency = ONE and 
read consistency = ONE), we achieved 100% of availability, but we have compromised 
consistency down to the lowest value achieved in the whole experience. 

As of configurations using QUORUM combined with ONE, we achieved a more 
balanced consistency/availability relation. As we had chosen a replica factor of three, 
the QUORUM involves two replicas when processing a client request. When reading 
with ONE and writing with QUORUM, the request may involve the third replica that 
was not part of the QUORUM for that given data object, hence returning an outdated 
version. When inverting the order, the ONE in the writing and the QUORUM in the 
reading, it seems not to have such a drastic decline in consistency, however availability 
loses a nine.  
 For a QUORUM-QUORUM configuration, we achieved strong-consistency and 
high-availability. This configuration can tolerate some network partition events unless 
the number of replicas down compromises the quorum. Because our network partition 
events had disconnected one replica at a time, the quorum had never been compro-
mised, hence the results we had and represented in Fig. 9. 

Availability (%) Downtime per year 
90.0000 (one nine availability) 36.53 days 
99.0000 (two nines availability) 3.65 days 
99.9000 (three nines availability) 8.77 hours 
99.9900 (four nines availability) 52.60 minutes 
99.9990 (five nines availability) 5.26 minutes 
99.9999 (six nines availability) 31.56 seconds 
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Fig. 9. Consistency and availability results for all configurations. 

Performance. Our second analysis is in terms of read and write operation latencies 
given a consistency setting. As Fig. 10 illustrates, for an ALL-ALL configuration we 
achieved as expected the highest latencies of all configurations because all replicas had 
to be involved in read and write operations. 

For the ONE-ONE configuration, because only one replica needed to be involved in 
read and write operations, the latencies are the lowest among all configurations tested 
when combining the two latencies. However, when compared solely on mixed ONE-
QUORUM configurations, ONE latency in these last configurations are better.  

Finally, for QUORUM-QUORUM configuration we achieved the most balanced 
configuration between latency, consistency, and availability. 
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Fig. 10. Write latency and read latency results for all configurations. 

7 Conclusions and Future Work 

In this paper, we have proposed CBench-Dynamo as a new benchmark methodology 
focused on study the three properties of the CAP theorem, consistency, availability, and 
network partition tolerance. From the best of our knowledge, this benchmark specifi-
cation for studying performance, consistency, and availability on different consistency 
configurations while subjecting the SUT to network partition events has never been 
proposed before.  

In this paper, we have conceptualized, defined, and experimented our proposed 
benchmark resulting in interesting data on how consistency and network partition 
events influence consistency, availability, and performance. This benchmark is a valu-
able tool for testing already existing NoSQL databases against the client requirements, 
but also to test new databases implementations that aim a certain level of performance, 
consistency, availability, and network partition tolerance. We also made CBench-Dy-
namo benchmark available on GitHub [14-15]. 

For future work, we intend to support more NoSQL databases and evolve the pro-
posed benchmark to be a well industry establish framework to test NoSQL databases 
so that the users have a deeper understanding of the tradeoffs of each configuration and 
what system and system configurations suits better their requirements. 
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Problem

•How do we correlate/evaluate consistency with 
other properties such as latency and availability 
when network partition events occur?

6

Solution

CBENCH-DYNAMO

• A benchmark methodology that correlates consistency, performance, 
and availability while network partition events are involved.

• We made a custom YCSB workload to achieve this. YCSB is a 
benchmark framework for NoSQL databases.

7



Relevance

Aims to be a framework to facilitate the decision process of choosing 
the most appropriate NoSQL database depending on the degree of 
performance, availability, consistency, and network fault tolerance.

8

Reproducibility

CBench-Dynamo exports the instances’ hardware and software facts via 
Ansible orchestration so others can reproduce this work. Also all this 
work is available on Github and it’s open source.
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Fairness

CBench-Dynamo defines the following constraints to achieve fairness:
• The SUT must be a Dynamo-based NoSQL database system, e.g. 

Cassandra; 
• The SUT must have the same hardware, network and operating system 

components when comparing benchmark test results targeting similar SUT;
• The Workload Coordinator must support a JVM to run the benchmark 

test and Python to analyze and translate the data into meaningful 
measurements;
• The fact that the Workload Coordinator uses Java and Python to coordinate 

the benchmark and post-process all the data, respectively, makes the 
system highly portable and therefore fair as JVM and Python based 
applications can run virtually in any system.

10

Verifiability

• CBench-Dynamo results from academic work, all the workloads 
presented here were subject to peer-review by other researchers.

• For future work we intend to improve this quality requirement and 
make it more automated.
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Usability

• Several layers of abstractions were taken into account so that only a 
minimum input is needed to start a benchmark test.
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How does it work?

13

Dynamo cluster

Writer

Reader

Reader

Reader

Reader

K = 1

K = 1

K = 1

K = 0

K = 1

CONSISTENCY 
ANOMALY

FOUND

Network 
Partition Events 

Generator



Workload
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Key Version

8314e14ba5b24be3ae4dbdfe45401524 2

966eae76c566408396983fbb7aefdd77 2

2fa8d8086b9543548fd6a6e99bc736b1 2

3cdaf599580c48a09290a14efae689e0 1

012e9eb2ef294ac185062ea874b24f5f 1

04170cc5d7d84202aed116fc53734409 0

The writer is 
responsible for 

incrementing  key’s 
version to a given limit 

(2 in this case)

VERSION_NUM 
= 2

OBJECTS_NUM 
= 6

The benchmark 
ends when all 
keys reach the 

version 2

Output Data
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…
writer_id:0, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309459474301, version:1

reader_id:2, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309253174394, version:0

reader_id:1, key:9345f1bae61442dab3f167c02d19a4a8,
timestamp:17309253174398, version:UNAVAILABLE
...



Analyzed data
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average time read average time write Consistency score availability score total operations

761.87301 616.589662 99.794054 99.9999 6870716

Generic Architecture

17



Testing Architecture
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Testing configurations

19

Configuration SUT Write
Consistency

Read
Consistency

1 Cassandra ALL ALL

2 Cassandra ONE ONE

3 Cassandra QUORUM ONE

4 Cassandra ONE QUORUM

5 Cassandra QUORUM QUORUM



Variables Common to All Testing 
Configurations
• Replication Factor: 3;
• Total number of objects: 1.000.000;

• Versions/updates per object: 2;

• Network partition event duration: 2s;
• Interval between network partition events: random between 

[1s,25s]. 

20

Results – Consistency vs. Availability

21



Results – Write Latency vs. Read Latency

22

Conclusions

• Proposed CBench-Dynamo as a new benchmark methodology 
focused on studying the three properties of the CAP theorem, 
consistency, availability, and network partition tolerance.
• The first benchmark that studies consistency, availability, and 

performance while network partition events are involved.

• CBench-Dynamo benchmark is available on GitHub.
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Future Work

• Support more NoSQL databases and evolve the proposed benchmark 
to be a well industry establish framework to test NoSQL databases on 
consistency, availability, and performance while subjecting them to 
network partition events.

24

THANKS!

25

Thanks!
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