Lecture Notes in Artificial Intelligence 12274

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel University of Alberta, Edmonton, Canada Yuzuru Tanaka Hokkaido University, Sapporo, Japan Wolfgang Wahlster DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann DFKI and Saarland University, Saarbrücken, Germany More information about this series at http://www.springer.com/series/1244

Gang Li · Heng Tao Shen · Ye Yuan · Xiaoyang Wang · Huawen Liu · Xiang Zhao (Eds.)

Knowledge Science, Engineering and Management

13th International Conference, KSEM 2020 Hangzhou, China, August 28–30, 2020 Proceedings, Part I

Editors Gang Li Deakin University Geelong, VIC, Australia

Ye Yuan Beijing Institute of Technology Beijing, China

Huawen Liu Zhejiang Normal University Jinhua, China Heng Tao Shen University of Electronic Science and Technology of China Chengdu, China

Xiaoyang Wang Zhejiang Gongshang University Hangzhou, China

Xiang Zhao D National University of Defense Technology Changsha, China

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Artificial Intelligence ISBN 978-3-030-55129-2 ISBN 978-3-030-55130-8 (eBook) https://doi.org/10.1007/978-3-030-55130-8

LNCS Sublibrary: SL7 - Artificial Intelligence

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Conference on Knowledge Science, Engineering and Management (KSEM) provides a forum for researchers in the broad areas of knowledge science, knowledge engineering, and knowledge management to exchange ideas and to report state-of-the-art research results. KSEM 2020 is the 13th in this series, which builds on the success of 12 previous events in Guilin, China (KSEM 2006); Melbourne, Australia (KSEM 2007); Vienna, Austria (KSEM 2009); Belfast, UK (KSEM 2010); Irvine, USA (KSEM 2011); Dalian, China (KSEM 2013); Sibiu, Romania (KSEM 2014); Chongqing, China (KSEM 2015); Passau, Germany (KSEM 2016); Melbourne, Australia (KSEM 2017); Changchun, China (KSEM 2018); and Athens, Greece (KSEM 2019).

The selection process this year was, as always, competitive. We received received 291 submissions, and each submitted paper was reviewed by at least three members of the Program Committee (PC) (including thorough evaluations by the PC co-chairs). Following this independent review, there were discussions between reviewers and PC chairs. A total of 58 papers were selected as full papers (19.9%), and 27 papers as short papers (9.3%), yielding a combined acceptance rate of 29.2%.

We were honoured to have three prestigious scholars giving keynote speeches at the conference: Prof. Zhi Jin (Peking University, China), Prof. Fei Wu (Zhejiang University, China), and Prof. Feifei Li (Alibaba Group, China). The abstracts of Prof. Jin's and Prof Wu's talks are included in this volume.

We would like to thank everyone who participated in the development of the KSEM 2020 program. In particular, we would give special thanks to the PC for their diligence and concern for the quality of the program, and also for their detailed feedback to the authors. The general organization of the conference also relies on the efforts of KSEM 2020 Organizing Committee.

Moreover, we would like to express our gratitude to the KSEM Steering Committee honorary chair, Prof. Ruqian Lu (Chinese Academy of Sciences, China), the KSEM Steering Committee chair, Prof. Dimitris Karagiannis (University of Vienna, Austria), Prof. Chengqi Zhang (University of Technology Sydney, Australia), who provided insight and support during all the stages of this effort, and the members of the Steering Committee, who followed the progress of the conference very closely with sharp comments and helpful suggestions. We also really appreciate the KSEM 2020 general co-chairs, Prof. Hai Jin (Huazhong University of Science and Technology, China), Prof. Xuemin Lin (University of New South Wales, Australia), and Prof. Xun Wang (Zhejiang Gongshang University, China), who were extremely supportive in our efforts and in the general success of the conference.

We would like to thank the members of all the other committees and, in particular, those of the Local Organizing Committee, who worked diligently for more than a year to provide a wonderful experience to the KSEM participants. We are also grateful to Springer for the publication of this volume, who worked very efficiently and effectively.

vi Preface

Finally and most importantly, we thank all the authors, who are the primary reason why KSEM 2020 is so exciting, and why it will be the premier forum for presentation and discussion of innovative ideas, research results, and experience from around the world as well as highlight activities in the related areas.

June 2020

Gang Li Heng Tao Shen Ye Yuan

Organization

Steering Committee

Ruqian Lu (Honorary Chair)	Chinese Academy of Sciences, China
Dimitris Karagiannis	University of Vienna, Austria
(Chair)	
Yaxin Bi	Ulster University, UK
Christos Douligeris	University of Piraeus, Greece
Zhi Jin	Peking University, China
Claudiu Kifor	University of Sibiu, Romania
Gang Li	Deakin University, Australia
Yoshiteru Nakamori	Japan Advanced Institute of Science and Technology,
	Japan
Jorg Siekmann	German Research Centre of Artificial Intelligence,
	Germany
Martin Wirsing	Ludwig-Maximilians-Universität München, Germany
Hui Xiong	Rutgers University, USA
Bo Yang	Jilin University, China
Chengqi Zhang	University of Technology Sydney, Australia
Zili Zhang	Southwest University, China

Organizing Committee

Honorary Co-chairs

Ruqian Lu	Chinese Academy of Sciences, China
Chengqi Zhang	University of Technology Sydney, Australia

General Co-chairs

Hai Jin	Huazhong University of Science and Technology,
	China
Xuemin Lin	University of New South Wales, Australia
Xun Wang	Zhejiang Gongshang University, China

Program Committee Co-chairs

Gang Li	Deakin University, Australia
Hengtao Shen	University of Electronic Science and Technology
	of China, China
Ye Yuan	Beijing Institute of Technology, China

viii Organization

Keynote, Special Sessions, and Tutorial Chair

Zili Zhang	Southwest University, China	
Publication Committe	e Co-chairs	
Huawen Liu	Zhejiang Normal University, China	
Xiang Zhao	National University of Defense Technology, China	
Publicity Chair		
Xiaoqin Zhang	Wenzhou University, China	
Local Organizing Committee Co-chairs		
Xiaoyang Wang	Zhejiang Gongshang University, China	

Xiaoyang Wang	Zhejiang Gongshang University, China
Zhenguang Liu	Zhejiang Gongshang University, China
Zhihai Wang	Zhejiang Gongshang University, China
Xijuan Liu	Zhejiang Gongshang University, China
Zhihai Wang	Zhejiang Gongshang University, China

Program Committee

Klaus-Dieter Althoff	DFKI and University of Hildesheim, Germany
Serge Autexier	DFKI, Germany
Massimo Benerecetti	Università di Napoli Federico II, Italy
Salem Benferhat	Université d'Artois, France
Xin Bi	Northeastern University, China
Robert Andrei Buchmann	Babes-Bolyai University of Cluj Napoca, Romania
Chen Chen	Zhejiang Gongshang University, China
Hechang Chen	Jilin University, China
Lifei Chen	Fujian Normal Univeristy, China
Dawei Cheng	Shanghai Jiao Tong University, China
Yurong Cheng	Beijing Institute of Technology, China
Yong Deng	Southwest University, China
Linlin Ding	Liaoning University, China
Shuai Ding	Hefei University of Technology, China
Christos Douligeris	University of Piraeus, Greece
Xiaoliang Fan	Xiamen University, China
Knut Hinkelmann	FHNW University of Applied Sciences and Arts
	Northwestern Switzerland, Switzerland
Guangyan Huang	Deakin University, Australia
Hong Huang	UGOE, Germany
Zhisheng Huang	Vrije Universiteit Amsterdam, The Netherlands
Frank Jiang	Deakin University, Australia
Jiaojiao Jiang	RMIT University, Australia
Wang Jinlong	Qingdao University of Technology, China
Mouna Kamel	IRIT, Université Toulouse III - Paul Sabatier, France
Krzysztof Kluza	AGH University of Science and Technology, Poland

Longbin Lai Yong Lai Qiujun Lan Cheng Li Ge Li Jianxin Li Li Li Oian Li Shu Li Ximing Li Xinyi Li Yanhui Li Yuan Li Shizhong Liao Huawen Liu Shaowu Liu Zhenguang Liu Wei Luo Xudong Luo Bo Ma Yuliang Ma Stewart Massie Maheswari N Myunghwan Na Bo Ning Oleg Okun Jun-Jie Peng Guilin Oi Ulrich Reimer Wei Ren Zhitao Shen Leilei Sun Jianlong Tan Zhen Tan Yongxin Tong Daniel Volovici Ouan Vu Hongtao Wang Jing Wang Kewen Wang Xiaoyang Wang Zhichao Wang Le Wu Jia Xu Tong Xu Ziqi Yan

Alibaba Group, China Jilin University, China Hunan University, China National University of Singapore, Singapore Peking University, China Deakin University, Australia Southwest University. China Chinese Academy of Sciences, China Chinese Academy of Sciences, China Jilin University, China National University of Defense Technology, China Northeastern University, China North China University of Technology, China Tianjin University, China Zhejiang Normal University, China University of Technology Sydney, Australia Zhejiang Gongshang University, China Deakin University, Australia Guangxi Normal University, China Chinese Academy of Sciences, China Northeastern University, China Robert Gordon University, UK VIT University, India Chonnam National University, South Korea Dalian Maritime University, China Cognizant Technology Solutions GmbH, China Shanghai University, China Southeast University, China University of Applied Sciences St. Gallen, Switzerland Southwest University, China Ant Financial Services Group, China Beihang University, China Chinese Academy of Sciences, China National University of Defense Technology, China Beihang University, China ULB Sibiu, Romania Deakin University, Australia North China Electric Power University, China The University of Tokyo, Japan Griffith University, Australia Zhejiang Gongshang University, China Tsinghua University, China Hefei University of Technology, China Guangxi University, China University of Science and Technology of China, China Beijing Jiaotong University, China

Bo Yang Jilin University, China Jianye Yang Hunan University. China Shiyu Yang East China Normal University, China Shuiqiao Yang University of Technology Sydney, Australia Yating Yang Chinese Academy of Sciences, China Feng Yi UESTC: Zhongshan College, China Min Yu Chinese Academy of Sciences, China Nanjing University of Science and Technology, China Long Yuan Shandong University of Science and Technology, Qingtian Zeng China Chengyuan Zhang Central South University, China Chris Zhang Chinese Science Academy, China Chunxia Zhang Beijing Institute of Technology, China Fan Zhang Guangzhou University, China Chinese Academy of Sciences, China Songmao Zhang Zili Zhang Deakin University, Australia Xiang Zhao National University of Defense Technology, China Monash University, Australia Ye Zhu Yi Zhuang Zhejiang Gongshang University, China Jiangxi Normal University, China Jiali Zuo

Additional Reviewers

Weronika T. Adrian Taotao Cai Xiaojuan Cheng Viktor Eisenstadt Glenn Forbes Nur Haldar Kongzhang Hao Sili Huang Francesco Isgro Gongiin Lan Enhui Li Shuxia Lin Patryk Orzechowski Roberto Prevete Najmeh Samadiani Bi Sheng Beat Tödtli Beibei Wang Yixuan Wang

Piotr Wiśniewski Yanping Wu Zhiwei Yang Xuan Zang Yunke Zhang Qianru Zhou Borui Cai Hui Chen Shangfu Duan Uno Fang Huan Gao Xin Han Xin He Xuqian Huang Krzysztof Kutt Boyang Li Jiwen Lin Yuxin Liu Ning Pang

- Pascal Reuss Jakob Michael Schoenborn Atsushi Suzuki Ashish Upadhyay Shuai Wang Yuhan Wang
- Haiyan Wu Zhengyi Yang Guoxian Yu Roozbeh Zarei Qing Zhao Xianglin Zuo

Abstracts of Invited Talks

Learning from Source Code

Zhi Jin

Key Laboratory of High-Confidence of Software Technologies (MoE), Peking University, China zhijin@pku.edu.cn

Abstract. Human beings communicate and exchange knowledge with each other. The system of communication and knowledge exchanging among human beings is natural language, which is an ordinary, instinctive part of everyday life. Although natural languages have complex forms of expressive, it is most often simple, expedient and repetitive with everyday human communication evolved. This naturalness together with rich resources and advanced techniques has led to a revolution in natural language processing that help to automatically extract knowledge from natural language documents, i.e. learning from text documents.

Although program languages are clearly artificial and highly restricted languages, programming is of course for telling computers what to do but is also as much an act of communication, for explaining to human beings what we want a computer to do¹. In this sense, we may think of applying machine learning techniques to source code, despite its strange syntax and awash with punctuation, etc., to extract knowledge from it. The good thing is the very large publicly available corpora of open-source code is enabling a new, rigorous, statistical approach to wide range of applications, in program analysis, software mining and program summarization.

This talk will demonstrate the long, ongoing and fruitful journey on exploiting the potential power of deep learning techniques in the area of software engineering. It will show how to model the code^{2,3}. It will also show how such models can be leveraged to support software engineers to perform different tasks that require proficient programming knowledge, such as code prediction

¹ A. Hindle, E. T. Barr, M. Gabel, Z. Su and P. Devanbu, On the Naturalness of Software, Communication of the ACM, 59(5): 122–131, 2016.

² L. Mou, G. Li, L. Zhang, T. Wang and Z. Jin, Convolutional Neural Networks over Tree Structures for Programming Language Processing, AAAI 2016: 1287–1293.

³ F. Liu, L. Zhang and Z. Jin, Modeling Programs Hierarchically with Stack-Augmented LSTM, The Journal of Systems and Software, https://doi.org/10.1016/j.jss.2020.110547.

and completion⁴, code clone detection⁵, code comments^{6,7} and summarization⁸, etc. The exploratory work show that code implies the learnable knowledge, more precisely the learnable tacit knowledge. Although such knowledge is difficult to transfer among human beings, it is able to transfer among the automatically programming tasks. A vision for future research in this area will be laid out as the conclusion.

Keywords: Software \cdot Source code \cdot Program languages \cdot Programming knowledge

⁴ B. Wei, G. Li, X. Xia, Z. Fu and Z. Jin, Code Generation as a Dual Task of Code Summarization, NeurIPS 2019.

⁵ W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree, SANER 2020: 261–271.

⁶ X. Hu, G. Li, X. Xia, D. Lo, S. Lu and Z. Jin, Deep Code Comment Generation, ICPC 2018: 200–210.

⁷ X. Hu, G. Li, X. Xia, D. Lo, S. Lu and Z. Jin, Deep Code Comment Generation with Hybrid Lexical and Syntactical Information, Empirical Software Engineering (2020) 25: 2179–2217.

⁸ X. Hu, G. Li, X. Xia, D. Lo, S. Lu and Z. Jin, Summarizing Source Code with Transferred API Knowledge, IJCAI 2018: 2269–2275.

Memory-Augmented Sequence2equence Learning

Fei Wu

Zhejiang University, China wufei@cs.zju.edu.cn

Abstract. Neural networks with a memory capacity provide a promising approach to media understanding (e.g., Q-A and visual classification). In this talk, I will present how to utilize the information in external memory to boost media understanding. In general, the relevant information (e.g., knowledge instance and exemplar data) w.r.t the input data is sparked from external memory in the manner of memory-augmented learning. Memory-augmented learning is an appropriate method to integrate data-driven learning, knowledge-guided inference and experience exploration.

Keywords: Media understanding · Memory-augmented learning

Contents – Part I

Knowledge Graph

Event-centric Tourism Knowledge Graph—A Case Study of Hainan Jie Wu, Xinning Zhu, Chunhong Zhang, and Zheng Hu	3
Extracting Short Entity Descriptions for Open-World Extension to Knowledge Graph Completion Models Wangpeng Zhu, Xiaoli Zhi, and Weiqin Tong	16
Graph Embedding Based on Characteristic of Rooted Subgraph Structure Yan Liu, Xiaokun Zhang, Lian Liu, and Gaojian Li	28
Knowledge Graphs Meet Geometry for Semi-supervised Monocular	10
Depth Estimation	40
Topological Graph Representation Learning on Property Graph Yishuo Zhang, Daniel Gao, Aswani Kumar Cherukuri, Lei Wang, Shaowei Pan, and Shu Li	53
Measuring Triplet Trustworthiness in Knowledge Graphs via Expanded Relation Detection	65
A Contextualized Entity Representation for Knowledge Graph Completion Fei Pu, Bailin Yang, Jianchao Ying, Lizhou You, and Chenou Xu	77
A Dual Fusion Model for Attributed Network Embedding	86
Attention-Based Knowledge Tracing with Heterogeneous Information Network Embedding	95

Knowledge Representation

Detecting Statistically Significant Events in Large Heterogeneous Attribute	
Graphs via Densest Subgraphs	107
Yuan Li, Xiaolin Fan, Jing Sun, Yuhai Zhao, and Guoren Wang	
Edge Features Enhanced Graph Attention Network for Relation Extraction	121
Xuefeng Bai, Chong Feng, Huanhuan Zhang, and Xiaomei Wang	

xx	Contents -	- Part
XX	Contents –	- Part

MMEA: Entity Alignment for Multi-modal Knowledge Graph Liyi Chen, Zhi Li, Yijun Wang, Tong Xu, Zhefeng Wang, and Enhong Chen	134
A Hybrid Model with Pre-trained Entity-Aware Transformer for Relation Extraction	148
NovEA: A Novel Model of Entity Alignment Using Attribute Triples and Relation Triples	161
A Robust Representation with Pre-trained Start and End Characters Vectors for Noisy Word Recognition	174
Intention Multiple-Representation Model for Logistics Intelligent Customer Service	186
Identifying Loners from Their Project Collaboration Records - A Graph-Based Approach Qing Zhou, Jiang Li, Yinchun Tang, and Liang Ge	194
Node Embedding over Attributed Bipartite Graphs Hasnat Ahmed, Yangyang Zhang, Muhammad Shoaib Zafar, Nasrullah Sheikh, and Zhenying Tai	202
FastLogSim: A Quick Log Pattern Parser Scheme Based on Text Similarity Weiyou Liu, Xu Liu, Xiaoqiang Di, and Binbin Cai	211
Knowledge Management for Education	
Robotic Pushing and Grasping Knowledge Learning via AttentionDeep Q-learning NetworkZipeng Yang and Huiliang Shang	223
A Dynamic Answering Path Based Fusion Model for KGQA Mingrong Tang, Haobo Xiong, Liping Wang, and Xuemin Lin	235
Improving Deep Item-Based Collaborative Filtering with Bayesian Personalized Ranking for MOOC Course Recommendation Xiao Li, Xiang Li, Jintao Tang, Ting Wang, Yang Zhang, and Hongyi Chen	247

Online Programming Education Modeling and Knowledge Tracing Yuting Sun, Liping Wang, Qize Xie, Youbin Dong, and Xuemin Lin	259
Enhancing Pre-trained Language Models by Self-supervised Learning for Story Cloze Test	271
MOOCRec: An Attention Meta-path Based Model for Top-K Recommendation in MOOC Deming Sheng, Jingling Yuan, Qing Xie, and Pei Luo	280
Knowledge-Based Systems	
PVFNet: Point-View Fusion Network for 3D Shape Recognition Jun Yang and Jisheng Dang	291
HEAM: Heterogeneous Network Embedding with Automatic Meta-path Construction Ruicong Shi, Tao Liang, Huailiang Peng, Lei Jiang, and Qiong Dai	304
A Graph Attentive Network Model for P2P Lending Fraud Detection Qiyi Wang, Hongyan Liu, Jun He, and Xiaoyong Du	316
An Empirical Study on Recent Graph Database Systems Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin	328
Bibliometric Analysis of Twitter Knowledge Management Publications Related to Health Promotion	341
Automatic Cerebral Artery System Labeling Using Registration and Key Points Tracking Mengjun Shen, Jianyong Wei, Jitao Fan, Jianlong Tan, Zhenchang Wang, Zhenghan Yang, Penggang Qiao, and Fangzhou Liao	355
Page-Level Handwritten Word Spotting via Discriminative Feature Learning <i>Jie Gao, Xiaopeng Guo, Mingyu Shang, and Jun Sun</i>	368
NADSR: A Network Anomaly Detection Scheme Based on Representation	380
A Knowledge-Based Scheduling Method for Multi-satellite Range System Yingguo Chen, Yanjie Song, Yonghao Du, Mengyuan Wang, Ran Zong,	388

and Cheng Gong

IM-Net: Semantic Segmentation Algorithm for Medical Images Based	
on Mutual Information Maximization.	397
Yi Sun and Peisen Yuan	

Data Processing and Mining

Fast Backward Iterative Laplacian Score for Unsupervised Feature Selection. Qing-Qing Pang and Li Zhang	409
Improving Low-Resource Chinese Event Detection with Multi-task Learning Meihan Tong, Bin Xu, Shuai Wang, Lei Hou, and Juaizi Li	421
Feature Selection Using Sparse Twin Support Vector Machine with Correntropy-Induced Loss Xiaohan Zheng, Li Zhang, and Leilei Yan	434
Customized Decision Tree for Fast Multi-resolution Chart Patterns Classification	446
Predicting User Influence in the Propagation of Toxic Information Shu Li, Yishuo Zhang, Penghui Jiang, Zhao Li, Chengwei Zhang, and Qingyun Liu	459
Extracting Distinctive Shapelets with Random Selection for Early Classification <i>Guiling Li and Wenhe Yan</i>	471
Butterfly-Based Higher-Order Clustering on Bipartite Networks Yi Zheng, Hongchao Qin, Jun Zheng, Fusheng Jin, and Rong-Hua Li	485
Learning Dynamic Pricing Rules for Flight Tickets Jian Cao, Zeling Liu, and Yao Wu	498
Author Index	507

Contents – Part II

Machine Learning

MA-TREX: Mutli-agent Trajectory-Ranked Reward Extrapolation via Inverse Reinforcement Learning	3
An Incremental Learning Network Model Based on Random Sample Distribution Fitting Wencong Wang, Lan Huang, Hao Liu, Jia Zeng, Shiqi Sun, Kainuo Li, and Kangping Wang	15
Parameter Optimization and Weights Assessment for Evidential Artificial Immune Recognition System Rihab Abdelkhalek and Zied Elouedi	27
Improving Policy Generalization for Teacher-Student Reinforcement Learning Gong Xudong, Jia Hongda, Zhou Xing, Feng Dawei, Ding Bo, and Xu Jie	39
Recommendation Algorithms and Systems	
Towards Effective Top-k Location Recommendation for Business Facility Placement. Pu Wang, Wei Chen, and Lei Zhao	51
Pairwise-Based Hierarchical Gating Networks for Sequential Recommendation	64
Time-Aware Attentive Neural Network for News Recommendation with Long- and Short-Term User Representation <i>Yitong Pang, Yiming Zhang, Jianing Tong, and Zhihua Wei</i>	76
A Time Interval Aware Approach for Session-Based Social Recommendation Youjie Zhang, Ting Bai, Bin Wu, and Bai Wang	88
AutoIDL: Automated Imbalanced Data Learning via Collaborative Filtering Jingqi Zhang, Zhongbin Sun, and Yong Qi	96

Fusion of Domain Knowledge and Text Features for Query Expansion in Citation Recommendation	105
Robust Sequence Embedding for Recommendation Rongzhi Zhang, Shuzi Niu, and Yucheng Li	114
Deep Generative Recommendation with Maximizing Reciprocal Rank Xiaoyi Sun, Huafeng Liu, Liping Jing, and Jian Yu	123
Spatio-Temporal Attentive Network for Session-Based Recommendation Chunkai Zhang and Junli Nie	131
Social Knowledge Analysis and Management	
Category-Level Adversarial Network for Cross-Domain Sentiment Classification	143
Seeds Selection for Influence Maximization Based on Device-to-Device Social Knowledge by Reinforcement Learning Xu Tong, Hao Fan, Xiaofei Wang, Jianxin Li, and Xin Wang	155
CIFEF: Combining Implicit and Explicit Features for Friendship Inference in Location-Based Social Networks	168
A Knowledge Enhanced Ensemble Learning Model for Mental Disorder Detection on Social Media	181
Constrained Viral Marketing in Social Networks Lei Yu, Guohui Li, and Ling Yuan	193
A Multi-source Self-adaptive Transfer Learning Model for Mining Social Links	202

Text Mining and Document Analysis

Multi-hop Syntactic Graph Convolutional Networks for Aspect-Based	
Sentiment Classification	213
Chang Yin, Qing Zhou, Liang Ge, and Jiaojiao Ou	

A Matching-Integration-Verification Model for Multiple-Choice Reading Comprehension	225
How to Interact and Change? Abstractive Dialogue Summarization with Dialogue Act Weight and Topic Change Info <i>Jiasheng Di, Xiao Wei, and Zhenyu Zhang</i>	238
Chinese Text Classification via Bidirectional Lattice LSTM Ning Pang, Weidong Xiao, and Xiang Zhao	250
MG-BERT: A Multi-glosses BERT Model for Word Sense Disambiguation	263
Top Personalized Reviews Set Selection Based on Subject Aspect Modeling	276
SCX-SD: Semi-supervised Method for Contextual Sarcasm Detection Meimei Li, Chen Lang, Min Yu, Yue Lu, Chao Liu, Jianguo Jiang, and Weiqing Huang	288
End-to-End Multi-task Learning for Allusion Detection in Ancient Chinese Poems	300
Defense of Word-Level Adversarial Attacks via Random Substitution Encoding Zhaoyang Wang and Hongtao Wang	312
Document-Improved Hierarchical Modular Attention for Event Detection Yiwei Ni, Qingfeng Du, and Jincheng Xu	325
Fine-Tuned Transformer Model for Sentiment Analysis	336
An Algorithm for Emotion Evaluation and Analysis Based on CBOW JiaXin Guo and ZhengYou Xia	344
Predicting Crowdsourcing Worker Performance with Knowledge Tracing Zizhe Wang, Hailong Sun, and Tao Han	352

Deep Learning

Watermarking Neural Network with Compensation Mechanism Le Feng and Xinpeng Zhang	363
Information Diffusion Prediction with Personalized Graph Neural Networks Yao Wu, Hong Huang, and Hai Jin	376
Relationship-Aware Hard Negative Generation in Deep Metric Learning Jiaqi Huang, Yong Feng, Mingliang Zhou, and Baohua Qiang	388
Striking a Balance in Unsupervised Fine-Grained Domain Adaptation Using Adversarial Learning Han Yu, Rong Jiang, and Aiping Li	401
Improved Performance of GANs via Integrating Gradient Penalty with Spectral Normalization	414
Evidential Deep Neural Networks for Uncertain Data Classification Bin Yuan, Xiaodong Yue, Ying Lv, and Thierry Denoeux	427
GDCRN: Global Diffusion Convolutional Residual Network for Traffic Flow Prediction Liujuan Chen, Kai Han, Qiao Yin, and Zongmai Cao	438
Depthwise Separable Convolutional Neural Network for Confidential Information Analysis	450
The Short-Term Exit Traffic Prediction of a Toll Station Based on LSTM Ying Lin, Runfang Wang, Rui Zhu, Tong Li, Zhan Wang, and Maoyu Chen	462
Long and Short Term Risk Control for Online Portfolio Selection Yizhe Bai, Jianfei Yin, Shunda Ju, Zhao Chen, and Joshua Zhexue Huang	472
Author Index	481