Skip to main content

Butterfly-Based Higher-Order Clustering on Bipartite Networks

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12274))

Abstract

Higher-order clustering is a hot research topic which searches higher-order organization of networks at the level of small subgraphs (motifs). However, in bipartite networks, there are no higher-order structures such as triangles, quadrangles or cliques. In this paper, we study the problem of identifying clusters with motif of dense butterflies in bipartite networks. First, we propose a framework of higher-order clustering algorithm by optimizing motif conductance. Then, we prove that the problem can be transformed to computing the conductance of a weight graph constructed by butterflies, so it can be solved by eigenvalue decomposition techniques. Next, we analyse the computational complexity of the proposed algorithms and find that it is indeed efficient to cluster motif of butterflies in bipartite networks. Finally, numerous experiments prove the effectiveness, efficiency and scalability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)

    Article  Google Scholar 

  2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)

    Article  Google Scholar 

  3. Colfen, H., Mann, S.: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. 42(21), 2350–2365 (2003)

    Article  Google Scholar 

  4. Cooper, D.M., Crossthwaite, A.J.: Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol. Sci. 27(8), 426–431 (2006)

    Article  Google Scholar 

  5. Farid, H.: Detecting hidden messages using higher-order statistical models. In: IEEE IPIP, vol. 2, p. II (2002)

    Google Scholar 

  6. Hou, Y., Whang, J.J., Gleich, D.F., Dhillon, I.S.: Non-exhaustive, overlapping clustering via low-rank semidefinite programming, pp. 427–436 (2015)

    Google Scholar 

  7. Jain, S., Govindu, V.M.: Efficient higher-order clustering on the grassmann manifold. In: ICCV 2013, USA, pp. 3511–3518. IEEE (2013)

    Google Scholar 

  8. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100(21), 11980–11985 (2003)

    Article  Google Scholar 

  9. Milo, R., Shenorr, S.S., Itzkovitz, S., Kashtan, N., Chklovskii, D.B., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  10. Saneimehri, S., Sariyuce, A.E., Tirthapura, S.: Butterfly counting in bipartite networks, pp. 2150–2159 (2018)

    Google Scholar 

  11. Schaub, M.T., Trefois, M., Van Dooren, P., Delvenne, J.: Sparse matrix factorizations for fast linear solvers with application to laplacian systems. SIAM J. Matrix Anal. Appl. 38(2), 505–529 (2017)

    Article  MathSciNet  Google Scholar 

  12. Seshadhri, C., Pinar, A., Kolda, T.G.: Wedge sampling for computing clustering coefficients and triangle counts on large graphs. Stat. Anal. Data Mining 7(4), 294–307 (2014)

    Article  MathSciNet  Google Scholar 

  13. Smith, K.: On neighbourhood degree sequences of complex networks. Sci. Rep. 9(1), 8340 (2019)

    Article  Google Scholar 

  14. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Vertex priority based butterfly counting for large-scale bipartite networks. Proc. VLDB Endow. 12(10), 1139–1152 (2019). https://doi.org/10.14778/3339490.3339497

    Article  Google Scholar 

  15. Yang, J., Leskovec, J.: Overlapping communities explain core-periphery organization of networks. Proc. IEEE 102(12), 1892–1902 (2014)

    Article  Google Scholar 

  16. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/s10115-013-0693-z

    Article  Google Scholar 

  17. Yaveroglu, O.N., et al.: Revealing the hidden language of complex networks. Sci. Rep. 4(1), 4547–4547 (2015)

    Article  Google Scholar 

  18. Yin, H., Benson, A.R., Leskovec, J.: Higher-order clustering in networks. Phys. Rev. E 97(5), 052306 (2018)

    Article  Google Scholar 

  19. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clustering. In: KDD 2017, pp. 555–564. ACM, New York (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2018YFB1004402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Qin, H., Zheng, J., Jin, F., Li, RH. (2020). Butterfly-Based Higher-Order Clustering on Bipartite Networks. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12274. Springer, Cham. https://doi.org/10.1007/978-3-030-55130-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55130-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55129-2

  • Online ISBN: 978-3-030-55130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics