Skip to main content

A Deep Learning Cognitive Architecture: Towards a Unified Theory of Cognition

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1250))

Included in the following conference series:

Abstract

This work suggests a novel approach to autonomous systems development linking autonomous technology to an integrated cognitive architecture with the aim of supporting a common artificial general intelligence (AGI) development. The paper provides a summary of strengths and weaknesses of some of the most known cognitive architecture and highlights how to support a generic artificial intelligent approach rather than ad hoc solutions. It also proposes objective evaluation criteria to assess a cognitive architecture. Finally, the proposed cognitive architecture is introduced: a Deep-Learning Artificial Neural Cognitive Architecture (D-LANCA), which aims to overcome current limits of cognitive frameworks for autonomous systems with the view to create a common artificial general intelligent (AGI) cognitive approach across industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langley, P.: Cognitive architectures and general intelligent systems. AI Mag. 27(2), 33–44 (2006)

    MathSciNet  Google Scholar 

  2. Langley, P.: Information-processing psychology, artificial intelligence, and the cognitive systems paradigm thanks to. In: AAAI (2017)

    Google Scholar 

  3. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11(2), 151–180 (2007). https://doi.org/10.1109/TEVC.2006.890274

    Article  Google Scholar 

  4. Models, C., Branch, A., Force, A., Patterson, W., Force, A.: Unified Theories of Cognition: Newell’s Vision after 25 Years Presenters, pp. 250–251 (2012)

    Google Scholar 

  5. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. 111(4), 1036–1060 (2004). https://doi.org/10.1037/0033295x.111.4.1036

  6. Sun, R., Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: research issues and challenges. Cogn. Syst. Res. 10(2), 141–160 (2009). https://doi.org/10.1016/j.cogsys.2006.07.004

    Article  Google Scholar 

  7. Profanter, S.: Cognitive architectures (2012)

    Google Scholar 

  8. Lieto, A., Bhatt, M., Oltramari, A., Vernon, D.: The role of cognitive architectures in general artificial intelligence. Cogn. Syst. Res. 48, 1–3 (2018). https://doi.org/10.1016/j.cogsys.2017.08.003

    Article  Google Scholar 

  9. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: where do we go from here? Front. Artif. Intell. Appl. 171, 122–136 (2008)

    Google Scholar 

  10. Thagard, P.W.: Cognitive architectures. In: The Cambridge Handbook of Cognitive Science. Cambridge University Press, pp. 50–70 (2012)

    Google Scholar 

  11. Ritter, F.E.: Two cognitive modeling frontiers. Trans. Jpn. Soc. Artif. Intell. 24, 241–249 (2009). https://doi.org/10.1527/tjsai.24.241

    Article  Google Scholar 

  12. Kotseruba, I., Tsotsos, J.K.: A Review of 40 Years of Cognitive Architecture Research: Core Cognitive Abilities and Practical Applications (2016)

    Google Scholar 

  13. Ye, P., Wang, T., Wang, F.Y.: A survey of cognitive architectures in the past 20 years. IEEE Trans. Cybern. 48(12), 3280–3290 (2018). https://doi.org/10.1109/TCYB.2018.2857704

    Article  Google Scholar 

  14. Anderson, J.R., Lebiere, C.: The Newell Test for a Theory of cognition

    Google Scholar 

  15. Samsonovich, A.: Comparative Table of Cognitive Architectures (started on October 27, 2009; last update: June 18, 2012)

    Google Scholar 

  16. Samsonovich, A.V.: Comparative analysis of implemented cognitive architectures. Front. Artif. Intell. Appl. 233, 469–479 (2011). https://doi.org/10.3233/978-1-60750-959-2-469

    Article  Google Scholar 

  17. Kingdon, R.: A review of cognitive architectures. ISO Project report (2008)

    Google Scholar 

  18. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: a systems-level architecture for cognition, emotion, and learning. IEEE Trans. Auton. Ment. Dev. 6(1), 19–41 (2014). https://doi.org/10.1109/TAMD.2013.2277589

    Article  Google Scholar 

  19. Computing, C.: The Mind According to LIDA - A Brief account The “LIDA Model” and its Cognitive Cycle, pp. 1–20 (2013)

    Google Scholar 

  20. Lieto, A., Lebiere, C., Oltramari, A.: The knowledge level in cognitive architectures: current limitations and possible developments. Cogn. Syst. Res. 48, 39–55 (2018). https://doi.org/10.1016/j.cogsys.2017.05.001

    Article  Google Scholar 

  21. Li, D.: A tutorial survey of architectures, algorithms. APSIPA Trans. Signal Inf. Process. 3(2014), 1–29 (2014)

    Google Scholar 

  22. Lieto, A.: Representational limits in cognitive architectures. CEUR Workshop Proceedings, vol. 1855, pp. 16–20 (2017)

    Google Scholar 

  23. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  24. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: Neural networks architectures review. 1–31 (2017)

    Google Scholar 

  25. Liu, Y., Xiang, C.: Hybrid learning network: a novel architecture for fast learning. Procedia Comput. Sci. 122, 622–628 (2017)

    Article  Google Scholar 

  26. Luo, X., Shen, R., Hu, J., Deng, J., Hu, L., Guan, Q.: A deep convolution neural network model for vehicle recognition and face recognition. Procedia Comput. Sci. 107(ICICT), 715–720 (2017)

    Article  Google Scholar 

  27. Petersen, S.E., Sporns, O.: Brain networks and cognitive architectures. Neuron 88(1), 207–219 (2015)

    Article  Google Scholar 

  28. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., Barth, M.: Deep reinforcement learning enabled self-learning control for energy efficient driving. Transp. Res. Part C Emerging Technol. 99, 67–81 (2019)

    Article  Google Scholar 

  29. Rizk, Y., Hajj, N., Mitri, N., Awad, M.: Deep belief networks and cortical algorithms: a comparative study for supervised classification. Appl. Comput. Inf. 15(2), 81–93 (2019)

    Google Scholar 

  30. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach, vol. 9 (1995)

    Google Scholar 

  31. Behere, S., Törngren, M., Chen, D.: A reference architecture for cooperative driving. J. Syst. Architect. 59(10), 1095–1112 (2013)

    Article  Google Scholar 

  32. Brehmer, B.: The dynamic OODA loop: amalgamating Boyd’s OODA loop and the cybernetic approach to command and control. In: 10th International Command and Control Research and Technology Symposium The Future of C2 (2005)

    Google Scholar 

  33. Huyck, C.R.: A neural cognitive architecture. Cogn. Syst. Res. 59, 171–178 (2020)

    Article  Google Scholar 

  34. Kim, J., Kim, H., Huh, S., Lee, J., Choi, K.: Deep neural networks with weighted spikes. Neurocomputing 311, 373–386 (2018)

    Article  Google Scholar 

  35. Sboev, A., Vlasov, D., Rybka, R., Serenko, A.: Spiking neural network reinforcement learning method based on temporal coding and STDP. Procedia Comput. Sci. 145, 458–463 (2018)

    Article  Google Scholar 

  36. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)

    Article  Google Scholar 

  37. Wu, X., Wang, Y., Tang, H., Yan, R.: A structure-time parallel implementation of spike-based deep learning. Neural Netw. 113, 72–78 (2019)

    Article  Google Scholar 

  38. Wang, B., Chen, L.L., Zhang, Z.Y.: A novel method on the edge detection of infrared image. Optik 180, 610–614 (2019)

    Article  Google Scholar 

  39. Stief, P., Dantan, J.-Y., Etienne, A., Siadat, A.: A New Methodology to Analyze the Functional and Physical Architecture of Existing Products for an Assembly Oriented Product Family Identification (2018)

    Google Scholar 

  40. Seijen, V., Harm, M.F., Romoff, J., Laroche, R., Barnes, T., Tsang, J.: Hybrid reward architecture for reinforcement learning. In Advances in Neural Information Processing Systems 2017 (NIPS 2017), pp. 5393–5403 (2017)

    Google Scholar 

  41. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., Barth, M.: Deep reinforcement learning enabled self-learning control for energy efficient driving. Transp. Res. Part C Emerging Technol. 99, 67–81 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Panella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panella, I., Fragonara, L.Z., Tsourdos, A. (2021). A Deep Learning Cognitive Architecture: Towards a Unified Theory of Cognition. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_42

Download citation

Publish with us

Policies and ethics