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Abstract. Most traffic flow control algorithms address switching cycle adaptation of
traffic signals and lights. This work addresses traffic flow optimisation by self-
organising micro-level control combining Reinforcement Learning and rule-based
agents for action selection performing long-range navigation in urban environments.
I.e., vehicles represented by agents adapt their decision making for re-routing based on
local environmental sensors. Agent-based modelling and simulation is used to study
emergence effects on urban city traffic flows. An unified agent programming model en-
ables simulation and distributed data processing with possible incorporation of crowd
sensing tasks used as an additional sensor data base. Results from an agent-based simu-
lation of an artificial urban area show that the deployment of micro-level vehicle navi-
gation control just by learned individual decision making and re-routing based on local
environmental sensors can increase the efficiency of mobility in terms of path length
and travelling time.

Keywords. Agent-based Reinforcement Learning; Traffic flow control; Self-organising
MAS; Agent-based Simulation; Crowd Sensing

1. Introduction

Traffic jams and disturbance in traffic flows are ubiquitous in modern cities. These
phenomena effect societies and causes economic losses of relevant order. Adaptive
traffic optimisation, addressing individual and domestic traffic, is crucial for improving
living quality in growing cities (i.e., it is basically a scaling problem).

Traffic is a distributed complex problem with hard predictable dynamics on global and
spatial scale. Arising of jams, slow down of average ensemble speed, and ensemble
dead locks in traffic flows without a clearly identifiable cause are prominent examples.

A traffic situation consists of a large set of individual entities (treated as agents) that
interact with each other and satisfying constraints (i.e., streets, traffic signs, traffic
rules, dangerous situations, and so on). Individual traffic entities are controlled by indi-
vidual humans or by machine algorithms (automatic and autonomous vehicles) based
on a a set of behaviour rules. These behaviour rules can significantly influenced by

1



varying parameter sets (i.e., different classes of drivers and individualism of behaviour
and goals).

Commonly, traffic flow is controlled via traffic signals (traffic lights) and dynamic
signs (e.g., speed and street routing control) based on accumulated flow data in real-
time. There are different basically spatial domains considered by controllers and
learner instances that have to be distinguished: Global and urban city scale, "glocal"
scale with transition from global to local spatial domains, i.e., connected groups of
streets and street areas, the local scale, i.e., one street, part of a street, a crossroad
and street junctions, crowds, and finally micro scale level, i.e., single vehicles or peo-
ple.

Adaptive traffic flow control on different spatial and domain levels is attractive to
reduce travelling times and energy consumption (i.e., air pollution), and to enable
better scaling of growing city populations finally improving urban living quality and
social prosperity. It is basically a distributed optimising problem of a large-scale
dynamic system including chaotic effects. Traffic can be understood as the behaviour
of a set of ensembles consisting of interacting bust mostly autonomous entities solving
a set of constraints (e.g., road maps). Most work in this field focuses on traffic signal
control (e.g., an overview can be found in [1]). Other aspects like individual driver de-
cision making and path routing influencing traffic flows of is not considered. Although
there are traffic simulation that consider driver behaviour, an assumption of average
behaviour is made without considering real-world variations [2]. Only few work is
known that incorporates crowd sensing data (one example can be found in [3]).
Machine learning can be used to improve traffic flow control and user experience on
macro- and micro-scale level (local optimisation). But the required training of ML
models cannot be performed in real-world environments.

Simulations can overcome this limitation and can be used to (pre-)train machine
learners and to investigate different traffic flow control and machine learning algo-
rithms. But simulation relies commonly on simplified, averaged and unified behaviour
models, simplified environments and situations. Agent-based modelling and simulation
(ABMS) is suitable for large-scale, distributed, and complex dynamic systems with lo-
cal interaction models [4]. Considering traffic and traffic control, agents are auto-
nomous entities satisfying constraints.

To improve simulation results and to increase the robustness of control models to indi-
vidual entity variations, the simulation can be extended by injecting digital twins of
real entities (vehicles, humans). The behaviour model of the digital twins are derived
from surveys performed via agent-based crowd sensing (CWS) and delivering sensor
data suitable to compute a model parameter set (see [4] for details of augmented virtu-
ality approaches).

Using CWS for traffic prediction was already evaluated as a valuable method by Wan
et al. [5], but mainly distinguishing Vehicle to Infrastructure (V2I) and Vehicle to Vehi-
cle (V2V) communications. The multi-agent system (MAS) architecture and framework
enables the seamless coupling of MAS modelling, simulation, and distributed comput-
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ing outside the simulation environment (e.g., performing mobile crowd sensing).

Traffic flow control should be achieved on three levels:

1. Ensemble control by the environment (using traffic signals and signs) using common
traffic control algorithms based on sensor data (collected, e.g., by street cameras);

2. Individual control by driving entities. e.g., influencing routing and decision making
of individuals via social media or navigation systems;

3. Local automatic group control (i.e., car-to-car communication and control) using lo-
cal interaction agents.

In [6] and [7], self-organising traffic control was applied to traffic light signal switch-
ing. In this work, there is a focus on self-organising traffic flow control on individual
level (level 2) by support decision making processes of drivers (or automatic or more
advanced of autonomous vehicles), particular addressing short- and long-range routing.

In previous work. the influence of behaviour model variations from an average
behaviour of traffic entities (drivers, passengers) were investigated by using ABMS
with digital twins derived from CWS [4]. Commonly, agent-based simulation and
agent-based distributed computing (ABC) performing the traffic control are separated.
The approach from [4] unites simulation and real-world data processing by an unified
mobile agent-model covering ABM, ABS, and ABC, enabling the tight coupling of real
and virtual (simulation) worlds in real-time.

This work addresses therefore two paradigms to create smart traffic control:

1. Cooperating and interacting multi-agent systems;

2. Reinforcement learning (RL);

3. Self-organisation and self-adaptivity.

Due to hard predictable short-range interaction between traffic entities (traffic lights
and signals, drivers, vehicles), behaviour variations (e.g., drivers not respecting con-
straints like speed limits) and the effect on global system behaviour, a model-free
agent-based reinforcement learning approach is used and evaluated in this work to ad-
dress self-organising traffic flow control on micro-scale entity level [1]. Self-organising
is in this case implicitly performed by solving or rewarding constraints between physi-
cal entities and sensor feedback, e.g., distances between vehicles, spatial street con-
straints, and so on.

RL is closely related to the agent model. In [8], multi-agent systems perform distribut-
ed traffic signal control. Among distributed learning (that can be a challenge to imple-
ment it and to achieve stable convergence), distributed learning-agents can be deployed,
each operating on a local state and optimising a sub-set set or one particular target
variable. This approach requires co-ordination to optimise on global level implementing
distributed co-ordination of exploration and exploitation (DCEE, introduced by Brys et
al. [11]).
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The main objective of this work is to find a multi-agent-based and self-organising ur-
ban traffic control architecture suitable to optimise traffic flow, i.e., increasing the aver-
age traffic flow speed, minimising or completely avoiding jams, minimising the travel-
ling times with respect to passengers, and minimising energy for mobility. In contrast
to other work ([1], [8], [9], [10], [11]) controlling traffic lights and signals only, this
work will focus on the control of decision making processes of vehicles, drivers, and
passengers only (e.g., influencing routing) incorporating experience and history situa-
tions. For the first time, conventional static traffic signal switching is assumed.

Furthermore, in contrast to major simulation work, the simulation in this work does not
use a static entity behaviour (mobility) model. Instead, a parameterisable interaction
and mobility model is used represented by agents. The simulation starts with agents
posing an average parameter set extended with agents posing parameter set variants ob-
tained by crowd sensing. The crowd sensing (that can be performed in real-time at
simulation time) aims to create digital twins of traffic entities. A traffic entity is a part
of a set of multiple classes consisting of vehicles (individual and domestic mobility),
drivers, passengers, and traffic lights and signals.

The hypothesis to be tested in this work is the possibility to improve traffic flows by
individual control of traffic participants with the goal to influence individual decision
making processes like routing by using RL, even in the absence of adaptive TSC.

A novel hybrid agent architecture based on an coupled reactive rule-based and
learning-based action selection is introduced.

2. Agent-based Modelling and Simulation of Traffic

This section summarises the unified agent model and simulation framework used in this
work for studying traffic flows and traffic management. Details can be found in [4]. Fi-
nally, an extended agent architecture coupling the original activity and rule-based agent
model with RL.s

2.1 Computational and Physical Agents

There are two classes of agents covered by one unified agent model that is used in this
work:

1. Physical behavioural agents representing physical entities in virtual worlds (simula-
tion) like vehicles or individual artificial humans;

2. Computational agents representing mobile software in real and virtual world, i.e.,
used for distributed data processing and digital communication, and used for imple-
menting chat bots;
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Both types of agents are used in the simulation, but only computational agents can mi-
grate between the simulation world and real world environments. The computational
agents are required for seamless integration of mobile crowd sensing into the simula-
tion (optionally in real-time), discussed in the next sub-section. The agents are pro-
grammed in AgentJS, which is syntactilly generic JavaScript with some semantic
modifications.

Details of the unified agent model can be found in [12], and details about the used
agent processing platform JAM can be found in [4].

The agent behaviour model is purely reactive and state-based, shown in Fig. 1. An
agent consists of code and private data (body variables). The code describes the agent
behaviour consisting of activities executing actions. There are conditional and uncondi-
tional transitions between activities. The conditions access agent body variables only.
Both code and data are mobile and an agent process snapshot is capable to migrate
between two agent platforms. Activities of an agent represent intentions and micro
goals, e.g., changing the spatial position, modifying the environment, communicating
with other agents, and agent replication. Agents processes support the concept of
blocking, i.e., the agent processing can be suspended during waiting for an event or the
satisfaction of a constraint condition.

In contrast to commonly used reactive agent behaviour models, the ATG can be
modified by the agent itself offering self-adaptivity. An agent can remove or add activi-
ties and transitions, either providing sub-classing (specialisation) or learning.

Agents can communicate via tuple spaces (data driven) or by using signal messages
(agent driven). Physical and computational agents can communicate via signals to syn-
chronise or to exchange data.
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Figure 1: Activity-Transition Graph (ATG) behaviour and data model of an agent for a
specific class AC. Physical and computational agents differ in their action set (right
side).

2.2 Mobile Crowd Sensing

Among well generated and computed synthetic sensor data, real world data acquired
from sensors is required to perform accurate simulations, too.

Commonly, simulation is performed with artificial agent models derived from theoreti-
cal considerations or experimental data. Augmented virtuality enables dynamic simula-
tions with agents representing real entities (devices, vehicles, or crowds). By using
crowd sensing it is possible to create digital twins of real entities based on a
parameteriseable behaviour and interaction model (discussed later). The parameters of
artificial entities in the simulation represented by physical agents are collected by sen-
sor data, i.e., surveys optionally fusioned with physical sensors like GPS. The pro-
posed self-organising traffic control is relying on crowd sensing. Crowd sensing can
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happen between machines (Machine-Machine Interaction, MMI) and between humans
and machines (HMI).

The crowd sensing via mobile agents (chat bots in case of HMI) enable the interaction
of real world entities with mobile computational agents and digital twins derived from
crowd sensing in the simulation world in real-time and vice versa. The digital twins as
well as the artificial physical agents in the simulation can interact via communication
agents and in the case of HMI by dynamically created (influenced) chat dialogues
reflecting the state of the simulation world.

2.3 Simulation Framework SEJAM2

The framework couples virtual and real worlds by integrating simulations with human
interactions by using computational agents (chat bots) and physical behavioural agents
inside the simulation.

The entire simulation architecture coupling real- and virtual worlds consists of the fol-
lowing components, shown in Fig. 2:

1. Unified Agent Processing Platform based on JavaScript: JavaScript Agent Machine
(JAM) with two architecture sub-classes

• Physical Platform

• Virtual Platforms (of a physical platform)

2. Crowd Sensing Software (Mobile App, WEB Browser using JAM, or Embedded
Computer using JAM);

3. Agent-based Simulation on top of JAM with Internet connectivity supporting two
different agent types:

• Physical behavioural agents

• Computational agents

4. Chat dialouges, Chat bots and Mobile Agents collecting user and device sensor data;

Virtual JAM nodes are used in the simulation to implement physical entities like vehi-
cles, traffic control entities, or artificial humans. Physical and computational agents can
interact and communicate with each other either by using the computational method of
tuple-spaces and signals or in the case of physical agents only a shared-world and
shared-memory method with a dedicated (NetLogo compatible) API.

7

Stefan Bosse http://orcid.org/0000-0002-8774-6141



Figure 2: Principle concept of closed-loop simulation for augmented virtuality: (Left)
Simulation framework based on the JAM platform (Right) Mobile and non-mobile dev-
ices executing the JAM platform connected with the virtual simulation world (via the
Internet) [4]

The mixed-model simulation world consists of physical and computational agents
bound to logical (virtual) platforms (host of the agent) that are arranged or located on
a lattice to provide world discretisation (although, spatial positions in the simulation
world are not restricted to a grid world). The agents are mobile. Computational agents
as mobile software processes can migrate between platforms (both in virtual and real
digital worlds), whereas physical agents are fixed to their platform and only the plat-
form is mobile (virtual world).

The agents are programmed in JavaScript executed by JAM that can be deployed on a
wide range of host platforms (mobile devices, servers, IoT devices, WEB browser [4]).
JAM provides virtualisation by the Agent Input-Output System (AIOS), tuple spaces,
and virtual (logical) nodes bound to a world contained in one physical JAM node. Each
physical or logical JAM node can be connected with an unlimited number of remote
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JAM nodes by physical links (UDP/TCP/HTTP using the AMP protocol). Logical
nodes can be connected by virtual links. Links provide agent process migration, signal
(message) and tuple propagation.

The JAM platform provides a set of ML algorithms including different RL algorithms.
JAM agents are mobile, i.e., they can migrate between logical and physical JAM nodes
by transferring the state and code of the agent. The platform splits learned models from
algorithms enabling mobile models (e.g., decision trees or neural networks). Addition-
ally, these models can be shared by different agents or be inherited.

2.4 Parameterised Agent Model

Physical agents representing traffic entities are modelled as reactive state-based agents

percept : Sen× Per → Per

next : St× Per × Par ×R× C → St

action : St× Par → Act

with the following parameterisable behaviour model (with parameter set Par):

(1)

The perception function percept maps sensor input on perception states, optionally
parameterised (e.g., by defining weight parameters). The parameters have impact on the
state transition function next and the selection of appropriate actions from a set of ac-
tions Act by the action function action. For example, a vehicle controller agent sup-
ports a set of actions Act:

• Keep preferred direction

• Change direction (turn)

• Follow current route

• Change vehicle speed

• Change distance to front vehicle

• Start/stop driving

• Overtake

The internal state set St represents activities of the agent and therefore is a composition
of the control and internal data state of the agent. Parameters from the set can select
sub-sets of actions to adapt to specific situations. The computation of the next agent
state (and partially the action selection) bases basically on a set of rules R and con-
straints C.

The behaviour model of JAM agents is an activity-transition graph (ATG) with activi-
ties performing actions (representing the action function and sub-goals of the agent)
and (conditional) transitions between activities representing state transitions and the
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next function.

2.5 Hybrid Rule- and Learning-based Agent Architecture

Although RL agents itself pose a well defined architecture, in this work the RL in-
stance is used as a co-function for the state transition and action computation, shown in
Fig. 3. Now there are two output functions action and RL that select appropriate ac-
tions to be executed by a controller agent (i.e., controlling the vehicle). Although both
output functions can select actions from the same set of actions Act, it is feasible to
split the action set in two sub-sets Act1 and Act2 used by the two output functions,
respectively. A final fusion of both action selections (that can be contrary or cross-
forbidden) is performed by the fusion function.

There are three different RL algorithms mapping state variables on actions available for
the agent:

• Temporal Difference Learning

• Dynamic Programming

• Deep Q Learning

percept : Sen× Per → Per

next : St× Per × Par ×R× C → St

action : St× Par → Act1

rl : r × Per× → Act2

reward : Act2 × Per × Par → r[−1, 1]

fusion : Act1 ×Act2 → Act

The addition of the RL function extends the functional agent model of Eq. 1:

(2)

The parameter set can be changed at run-time by the agent itself to adapt to specific
known or new situations, eventually modified by the RL instance, too. The parameters
define the superposition of rule-based and learning-based action selection (in the range
from 0-100%) enabling switching between both architecture and behaviour models.

The fusion function is basically a lazy constraint solver that checks the two actions
provided by the rule-based action function and the predicted action from the RL func-
tion. The constraint solver checks for contradiction and invalid actions. That means it
refuses invalid actions with respect to the current agent state. For instance, changing
the direction is currently not possible (spatial constraints) or re-routing exceeds a
specific frequency. The selected action output of the fusion is feed back to the reward
function (comparing the fusioned and the predicted action).
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Figure 3. The proposed hybrid parameterised agent architecture combining reactive
state-based action selection with RL

3. Coupling Multi-Agent Systems and Reinforcement Learning for Traffic
control

The self-organised traffic control (in sense of optimisation) MAS consists of the fol-
lowing agent classes:

• Local vehicle controller agents performing basic rule-based car control and short-
range navigation

• Communication agents (bridging vehicles and TSC entities)

• Navigation agents (coupled to vehicles) performing adaptive and optimised long-
range navigation using Reinforcement learning (RL)

• Global and local traffic controller agents (rather simple in this work)

The simulation adds the following agents:
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• Entity agent (e.g., driver, vehicle, ..) representing an artificial entity;

• Digital Twin agent representing a real entity; and a

• Simulation controller agent (world agent).

Reinforcement learning is commonly modelled as a Markov decision process (MDP)
and is used to learn and optimise sequential decision making processes, typical in
traffic and navigation. An RL instance maps environmental states on actions that are
performed by a physical or computational agent. RL can be classified in model-based
and model-free learning (e.g., Q-learning, applied to traffic control [9]). Only the latter
class is considered in this work because it is commonly not possible or meaningful to
derive interaction models in complex traffic scenarios.

RL can be applied to traffic signal control (RL-TSC) on global or local environmental
domain level and/or to entity control on individual level, e.g., vehicle control. Hierarch-
ical and domain-based learning was proposed by Abdoos et al. [10]. An RL instance is
associated to a learner agent that can be coupled to other agents, like traffic control or
driver agents. The RL agent outputs a recommendation for actions to be considered by
a controller agent, e.g., speed limitation, traffic light switching, or route planning and
decision making. There are centralised Single Agent RL (SARL) and decentralised
Multi Agent RL (MARL) approaches. This work covers a hierarchical MARL ap-
proach.

RL requires sensor input s and a feedback via utility and conflict functions defining the
reward function u(s). An RL model outputs an action a from a set of possible actions A
executed by a controller agent. The sensor system for traffic lights is usually based on
stationary vehicle detectors, like inductive loops or cameras using vision algorithms to
identify vehicle flows. Most traffic control algorithms consider only actual traffic situa-
tions without considering predictions of future variations, flows, and context changes.
The sampling of vehicle data is often inaccurate, e.g., the speed of vehicles, introduc-
ing sources of error. Other variables influencing traffic like crowd flows, events (emer-
gencies, work closings, shopping), and time-specific crowd flow variations are com-
monly not considered in traffic flow control. Sensory input from social media and oth-
er urban sensors can be considered by ML, too.

The main issue in RL-TSC is the determination of the state of the environment from
sensors that is represented to the RL agent. Typical state variables (on a macro-scale
level) are:

• Queue length ql

• Waiting time qt

• Flow rate fr

• Averaged vehicle speed (normalised to speed limit) va

• Signal change times and delays
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• Energy (electrical energy or fuel consumption)

• User satisfaction (overall utility) of all traffic participants (including pedestrians)

Commonly, RL agents act autonomously and individually. RL agents can interact via
communication, but there is no initial coupling of the learning instances themselves.
Another approach for coupling RL agents is a hierarchical organisation of the learners
shown in Fig. 4. There are different domains ranging from a macro-level (city, urban
area, spatially in the kilo meter range) to a micro-level (streets, crossroads, and indivi-
dual entities with interaction in the meter range).

Figure 4. Hierarchical decomposition of machine learning instances for urban traffic
control

The environmental domains are covered by different learning instances. In case of hy-
brid learning systems, the output of lower learning instance levels can be used as sen-
sors input for higher levels and vice versa.

With respect to the micro-scale level, further state variables are introduced to provide
sensors S of variables capable to detect traffic situations from the view of point of sin-
gle vehicles:

• Normalised average speed v0

• Distance to front and back neighbour vehicles df0, db0

13

Stefan Bosse http://orcid.org/0000-0002-8774-6141



• Distance to destination de, progress Δde0

• Direction to destination td0

• Direction of vehicle r0

• Queuing time qt0

• Possible driving and turning directions (with respect to street constraints) in left,
right, and backward directions tl, tr, tb

• A set of possible paths from current position to destination P

These state variables are primarily used to adapt the vehicle driving control based on
self-organisation of local ensembles and to recognise jam situations (present and future
situations). For each state variable x0 there is a desired value x1. Fig. 5 shows the prin-
ciple MAS configuration, the sensors of the agents, and their communication paths.
Vehicle agents (consisting of a coupled controller and learner agent pair) can sense
their neighbourhood using their own sensors, the sensors from neighbouring vehicles,
and the sensors of nearby traffic light signals stations.

The traffic agent uses the following sensor variables:

• Queuing length ql

• Queuing time qT

• Average vehicle flow speed vf

• Flow rate fr
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Figure 5. Agents, their sensors (sx with respect to the sensor variable x), and agent
communication paths (Agts: Traffic sign agent, Agv: Vehicle agent)

The reward function returning a value in the range [-(a+b+c),(a+b+c)] (a,b,c are weight
factors) of the vehicle agent uses the superposition of the ration of actual and average

r = a
v0 − v0

max(v0, v0)
+ b

qt0 − qt0
max(qt0, qt0)

+ c
sd− sd

max(sd, sd)

speed, actual and average queuing time, and the progress to reach the destination:

(3)

Vehicle agents can communicate with neighbouring nodes to get group (vehicle ensem-
ble) sensor data (e.g., queue length). Additionally, vehicle agents nearby a traffic light
signal can communicate with the traffic controller agent to get switching information
(remaining time of green/red phase, switching times, ..) and traffic flow sensor data.

As learned RL models are portable and mobile, they can be shared (copied) by a set of
agents selecting the best trained models from a set of models. Since RL is an incre-
mental learning method, the pre-trained models are improved during run-time (applica-
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tion and learning) with new feedback (reward).

4. Agent Behaviour

To summarise the vehicle controller agent, as long as a vehicle is moving it recalcu-
lates the speed, direction, and turns for re-routing the path from a source to a destina-
tion location. There is a set of rules and activities enabling driving fusioned with a set
of actions to change routing based on learning and sensor data to improve the reward
(i.e., satisfying individual goals).

The more general agent behaviour introduced in the previous section is now refined
and simplified to reduce the degree of freedom in the action space and to reduce the
state space.

4.1 Vehicle Agent

The vehicle agent is responsible to implement decision tree and rule-based automatic
driving to satisfy the following constraints:

1. Driving on the right side of a street in the currently selected direction (North, South,
West, East)

2. The vehicle speed v may not be higher than the speed limit on the current road:
v<vmax

3. The distance to the next vehicle ahead may not be lower than a speed-dependent dis-
tance limit: df < dfmin

4. There may no collision (two vehicle may not occupy the same place): (xa,ya) ≠
(xb,yb)

Any violation of the above constraints results in the execution of an action of the set of
actions A:

1. Moving one step left, right, or ahead: |Δ|=1;

2. increasing or decreasing the vehicle speed;

3. stopping movement.

A rule-based decision tree is used to select an action a of the set of actions A;
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4.2 Navigation Agent

The navigation agent is responsible for long-range navigation to optimise the following
target variables (odometry measures):

1. Path distance AB

2. Mean velocity for path AB

3. Mean travelling time for path AB

The odometry measures are normalised to the never reachable shortest and fastest path
routing possible without any traffic control and only one vehicle moving on a street.

5. Experimental Results by Simulation

The experiments were performed with the SEJAM2 simulation framework. The simula-
tion world (shown in Fig. 6) consists of an artificial street map with 14 long streets (36
street segments), 49 crossroads and junctions, and 144 traffic light signals. For the sake
of simplicity the world is discretised by a mesh grid (100 × 100 cell patches). the
simulation tool is not limited to discrete simulations world. The dark grey fields
between streets are occupied by buildings and parking areas. The entire street area is
segmented in 3330 patches. A crossing can be occupied by up to 9 vehicles. Each vehi-
cle occupies one patch field. Up to 12 vehicles can occupy a street segment between
crossings in each direction, resulting in a global maximal capacity of 2016 vehicles
(although, any mobility is inhibited with this maximal population). Simulations show
an increase of a jam probability starting already with 15% of street coverage!

The simulation was carried out with 100, 200 and 300 vehicles carrying a vehicle con-
trol and navigation twin agent with a static parameter set. The vehicle agent represents
a physical vehicle and performs rule-based short-range navigation (collision avoidance,
track following, trap/jam escape control).

A driver navigation agent (twin) performing rule- and learning-based long-range navi-
gation was assigned to each vehicle agent composing a mobile agent group.

For a first evaluation of the new micro-level traffic control approach, fixed green-red
cycles (50%-50% duty cycle) and mutual exclusive switching of perpendicular cross-
ings of streets are assumed.

17

Stefan Bosse http://orcid.org/0000-0002-8774-6141



Figure 6. The simulation world consists of streets, street segments, traffic light signals,
crossroads (junctions), and vehicles occupying street patches

Each vehicle agent has a randomly chosen start and end point. After a vehicle agent
reaches its destination it restarts driving to its original starting point and vice versa.
After some start-up time the simulation has a constant average number of vehicles.

A simplified RL function was chosen with a sub-set of vehicle state variables and a

rl(tl, tr, tb, de, df, db, qt, ql, r) : (tl, tr, tb, de, df, db, qt, ql, r) →
{left, right, backward, speed+, speed−}

sub-set of vehicle control actions:

(4)

All three available RL algorithms (TBD, DP, DQNN) were available and compared.
The Deep Q-Learning algorithm with a neural network suggesting actions to be per-
formed is the only suitable algorithm since it relies on a non-finite state world. It
showed good convergence but with high learning time requirements. The DQN algo-
rithm is used in the following simulations only.
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Some examples of simulation results are shown in Fig. 7 and Fig. 8 with training runs
of navigation agents. The simulation starts with a fixed population of vehicles placed
randomly on street locations. The RL instances of each vehicle are initialised with ran-
dom neural network weights.

The learning is performed on-line by the navigation agents with an increasing influence
on the route planning (short-scale and long-scale). The training phase was performed
with vehicles driving between a start and end point (randomly chosen). Each time a
vehicle reaches (the randomly chosen) destination the source and destination points are
exchanged and the navigation starts again.

A first approach used randomly initialised (i.e., untrained) RL networks (models). First
navigation attempts are purely random walk. A second approach uses pre-training that
was performed (with four vehicles) selecting a set of the best trained navigators finally
passed to the post-training phase with a large number of vehicles.

The average vehicle speed was 1/5 world grid steps / simulation step and about 5000
training events (rewarding actions) were applied to each the RL instance. The entire
simulation run consist of 1 Million simulation steps (real running time about 300 CPU
computation minutes).

The path efficiency η is the mean ratio of the actual routed path length and the shortest
possible path. The time efficiency τ is the mean ratio of actual path travelling time and
the shortest possible time (assuming the shortest path and the default vehicle speed).
The mean navigation error accumulates wrong predictions of a direction change by the
navigation RL instance. Not possible direction changes are filtered by an higher rule-
based level using vehicle sensors and constraints.

The second plot shows the accumulated mean average reward of all navigation RL in-
stances (starting with negative values at the beginning of the simulation that is not
shown in the plot). Again, the navigation RL models were not pre-trained and therefore
there is an expected increase of the navigation error in first learning phase up to 10k
simulation steps.
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Figure 7. Progress of navigation path efficiency, navigation error fraction, and travel-
ling time efficiency over learning time (simulation steps, with 200 vehicles, total occu-
pied street capacity 10%, no pre-trained RL networks)

Figure 8. Progress of global accumulated learning reward (again comparing with pro-
gress of navigation error prediction fraction and navigation efficiency) over learning
time (simulation steps, with 200 vehicles, total occupied street capacity 10%, no pre-
trained RL networks)
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Figures 9 and 10 show simulations results with the half of vehicles (100). There is no
significant difference compared with the 200 vehicle simulation.

Figure 9. Progress of navigation path efficiency, navigation error fraction, and travel-
ling time efficiency over learning time (simulation steps, with 100 vehicles, total occu-
pied street capacity 5%, no pre-trained RL networks)

Figure 10. Progress of global accumulated learning reward (again comparing with
progress of navigation error prediction fraction and navigation efficiency) over learn-
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ing time (simulation steps, with 100 vehicles, total occupied street capacity 5%, no
pre-trained RL networks)

The simulation with 300 vehicles starting from scratch (without any pre-trained
models) results in large clusters and jams (mostly in the corner of the city world) with
a high probability within the first 50k simulation steps, shown in Figure 11. Although,
the automatic low-level short range navigation control contains trap escaping algo-
rithms a highly populated area with restricted escape choices is not able to overcome
this jam trap situation (just by missing choices to change the current position). Block-
ing situations and jams result in a significant increase of computation time slowing
down the simulation significantly by an order of 10.

Figure 11. Clustering and jams after 10k simulation steps (300 vehicles, total occupied
street capacity 15%, no pre-trained RL networks)

But by using pre-trained RL navigation models there are no clustering or jams ob-
served. Each navigation agent of a vehicle uses a pre-trained model randomly selected
from a set of four models. The results are shown in Figure 12 and 13. The averaged
global travelling path efficiency reaches a value about 0.5 quickly. There is only a
small progress by post-training (applied again continuously during simulation) with
respect to path efficiency and reward. The results from Figure 7 and 9 (η > 0.6) will
not be reached. This can be a result of missing model variance (only a set of four pre-
trained models were provided for all 300 navigation agents following totally different
paths). The global average reward is also lower (r = 2) compared with the not pre-
trained system.
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Figure 12. Progress of navigation path efficiency, navigation error fraction, and trav-
elling time efficiency over learning time (simulation steps, with 300 vehicles, total oc-
cupied street capacity 15%, with pre-trained RL networks)

Figure 13. Progress of global accumulated learning reward (again comparing with
progress of navigation error prediction fraction and navigation efficiency) over learn-
ing time (simulation steps, with 300 vehicles, total occupied street capacity 15%, with
pre-trained RL networks)
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To conclude: The deployment of self-organising micro-level vehicle control just by in-
dividual decision making and re-routing based on local environmental sensors can be
used to implement self-adaptive and self-organising route navigation to avoid jams and
slowdowns in traffic and to increase the global travelling efficiency in terms of
route/path lengths and travelling times.

6. Conclusion

In contrast to common traffic management controlling traffic lights and signals only,
this work addressed traffic flow optimisation on micro-level by adapting decision mak-
ing processes of vehicles, primarily long-range navigation and re-routing, optionally
with vehicle speed control.

In a simulation vehicles were represented by vehicle agents provided with an extended
set of sensors. The behaviour model of agents is an activity-transition graph (ATG)
with activities performing actions (representing the action function and sub-goals of the
agent) and (conditional) transitions between activities representing state transitions and
the next function. The agent model is related to the classical reactive state-based agent
model. Rule-based action selection was extended by an hybrid approach with RL and
reward functions. The learning navigation agents can be used directly in real-world
vehicles since the agent processing platform used in the simulation is usable in techni-
cal systems, too. The agent behaviour has only be modified slightly.

Training of reinforcement learning navigation agents by thousands of trial-and-error cy-
cles requires a long time to reach a satisfying navigation strategy better than random
walk and is only possible in simulation worlds. Otherwise domestic traffic would col-
lapse if performed in real world.

Simulation results from an agent-based simulation of an artificial urban area show that
the deployment of such a micro-level vehicle control just by individual decision mak-
ing, learning, and re-routing based on local environmental sensors can reach near op-
timal routing still under high traffic densities (regarding total route length and travel-
ling times).

Further investigations have to be carried out to evaluate the global emergence and sta-
bility. The decision making of vehicle agents relies on rules and a black-box function
learned from only a few state variables. One highly interesting aspect to be considered
and evaluated is the possibility to transfer already learned models to other vehicle
agents introducing multi-agent co-operation.
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