Skip to main content

Machine Learning Strategies to Distinguish Oral Cancer from Periodontitis Using Salivary Metabolites

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1252))

Abstract

Development of non-invasive diagnostic tests which can immediately yield guidance in clinics, reducing the number of samples sent for laboratory testing, has the potential to revolutionize medical diagnostics improving patient outcomes, doctor’s workloads, and healthcare costs. It is difficult to imagine a testing method less invasive than measurement of salivary metabolites by swab or spit. Coupling data from this incredibly convenient measurement to an automated decision-making engine can provide clinicians with immediate feedback on the status of their patients. The aim of this research is to lay the foundation for a system, which when employed in dental practices can help to stratify between patients with periodontitis and oral cancers and illuminate metabolic networks important to both diseases. We built machine learning models trained on QSAR descriptors of metabolites whose concentrations changed drastically between the two diseases and used these same metabolites to illuminate networks important in the development of each disease. The Neural Network developed in TensorFlow performed best, achieving 81.29% classification accuracy between metabolites of periodontitis and oral cancers, respectively. We compared effects of two attribute selection methods, ranking by Correlation and Information Gain coefficients, on the accuracy of the models and employed principal component analysis to the data for dimensionality reduction before training. Models trained on attributes ranked by Information Gain coefficients regularly outperformed those ranked by Correlation coefficients across machine learning methods while relying on fewer principal components.

E. Romm, J. Li and V. L. Kouznetsova—Contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, B., Meng, M.Q.: Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans. Inf. Technol. Biomed. 16(3), 323–329 (2012). https://doi.org/10.1109/titb.2012.2185807

    Article  Google Scholar 

  2. Vansant, G., Jendrisak, A., Sutton, R., Orr, S., Lu, D., Schonhoft, J., Wang, Y., Dittamore, R.: Functional cell profiling (FCP) of ~ 100,000 CTCs from multiple cancer types identifies morphologically distinguishable CTC subtypes within and between cancer types. J. Clin. Oncol. 37(15_Suppl.), e14553 (2019). https://doi.org/10.1200/JCO.2019.37.15_suppl.e14553

  3. Dame, Z.T., Aziat, F., Mandal, R., Krishnamurthy, R., Bouatra, S., Borzouie, S., Guo, A.C., Sajed, T., Deng, L., Lin, H., Liu, P., Dong, E., Wishart, D.S.: The human saliva metabolome. Metabolomics 11(6), 1864–1883 (2015). https://doi.org/10.1007/s11306-015-0840-5

    Article  Google Scholar 

  4. Lohavanichbutr, P., Zhang, Y., Wang, P., Gu, H., Nagana Gowda, G.A., Djukovic, D., Chen, C.: Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 13, e0204249 (2018). https://doi.org/10.1371/journal.pone.0204249

    Article  Google Scholar 

  5. Wong, D.T.W., Tomita, M., Sugimoto. M., Hirayama, A., Soga, T.: Salivary metabolic biomarkers for human oral cancer detection. US Patent application US20100210023A1 (2010)

    Google Scholar 

  6. Barnes, V.M., Kennedy, A.D., Panagakos, F., Devizio, W., Trivedi, H.M., Jönsson, T., Guo, L., Scannapieco, F.A.: Global metabolomic analysis of human saliva and plasma from healthy and diabetic subjects, with and without periodontal disease. PLoS ONE 9, e105181 (2014). https://doi.org/10.1371/journal.pone.0105181

    Article  Google Scholar 

  7. Aimetti, M., Cacciatore, S., Graziano, A., Tenori, L.: Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics 8, 465–474 (2012). https://doi.org/10.1007/s11306-011-0331-2

    Article  Google Scholar 

  8. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551

  9. Schiffman, J.D., Fisher, P.G., Gibbs, P.: Early detection of cancer: past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015, 57–65 (2015). https://doi.org/10.14694/EdBook_AM.2015.35.57

    Article  Google Scholar 

  10. Patel, K.N., Shah, J.P.: Neck dissection: past, present, future. Surg. Oncol. Clin. North America 14(461–477), vi (2005). https://doi.org/10.1016/j.soc.2005.04.003

    Article  Google Scholar 

  11. Yuvaraj, M., Udayakumar, K., Jayanth, V., Rao, A.P.: Fluorescence spectroscopic characterization of salivary metabolites of oral cancer patients. J. Photochem. Photobiol. B: Biol. 30, 153–160 (2014). https://doi.org/10.1016/j.jphotobiol.2013.11.006

    Article  Google Scholar 

  12. Mikkonen, J.J., Singh, S.P., Herrala, M., Lappalainen, R., Myllymaa, S., Kullaa, A.M.: Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodontal Res. 2015, 431–437 (2015). https://doi.org/10.1111/jre.12327

    Article  Google Scholar 

  13. Ishikawa, S., Sugimoto, M., Kitabatake, K., Sugano, A., Nakamura, M., Kaneko, M., Ota, S., Iino, M.: Identification of salivary metabolomic biomarkers for oral cancer screening. Sci. Rep. 6, 31520 (2016). https://doi.org/10.1038/srep31520

    Article  Google Scholar 

  14. Chuang, L.Y., Wu, K.C., Chang, H.W., Yang, C.H.: Support vector machine-based prediction for oral cancer using four SNPs in DNA repair genes. In: Proceedings of International Multiconference of Engineers and Computer Scientists, 1, IMECS 2011, March 16–18, 2011, Hong Kong (2011)

    Google Scholar 

  15. Shams, W.K., Htike, Z.Z.: Oral cancer prediction using gene expression profiling and machine learning. Int. J. Appl. Eng. Res. 12, 4893–4898 (2017)

    Google Scholar 

  16. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., Xia, J.: MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018). https://doi.org/10.1093/nar/gky310

    Article  Google Scholar 

  17. Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Prokopenko, V.V.: Virtual computational chemistry laboratory—design and description. J. Comput.-Aided Mol. Des. 19, 453–463 (2005). https://doi.org/10.1007/s10822-005-8694-y

    Article  Google Scholar 

  18. Frank, E., Hall, M.A., Witten, I.H., Pal, C.J.: Appendix B: The WEKA workbench. In: Data Mining, 4th edn. Morgan Kauffmann Publishers, Cambridge, Mass, pp. 553–571 (2017). https://doi.org/10.1016/b978-0-12-804291-5.00024-6

  19. Abadi, M., Agarwal, A., Barham, P., Zheng, X.: TensorFlow: learning functions at scale. ACM SIGPLAN Notices 51, 1 (2016). https://doi.org/10.1145/3022670.2976746

    Article  Google Scholar 

  20. Wohlgemuth, G., Haldiya, P.K., Willighagen, E., Kind, T., Fiehn, O.: The chemical translation service—a web-based tool to improve standardization of metabolomic reports. Bioinformatics 26, 2647–2648 (2010). https://doi.org/10.1093/bioinformatics/btq47

    Article  Google Scholar 

  21. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: OpenBabel: an open chemical toolbox. J. Cheminform. 3, 33 (2011). https://doi.org/10.1186/1758-2946-3-33

    Article  Google Scholar 

  22. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., Tanabe, M.: New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2018). https://doi.org/10.1093/nar/gky962

    Article  Google Scholar 

  23. Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vázquez-Fresno, R., Sajed, T., Scalbert, A.: HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018). https://doi.org/10.1093/nar/gkx108

    Article  Google Scholar 

  24. Kouznetsova, V.L., Li, J., Romm, E.L., Tsigelny, I.M.: Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral Diseases (2020, in press)

    Google Scholar 

  25. Kim, D., Kwon, N.H., Kim, S.: Association of Aminoacyl-tRNA synthetases with cancer. In: Kim, S. (eds.) Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current Chemistry, vol. 344. Springer, Dordrecht (2013)

    Google Scholar 

  26. Elia, I., Broekaert, D., Christen, S., Boon, R., Radaelli, E., Orth, M.F., Verfaillie, C., Fendt, S.-M.: Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017). https://doi.org/10.1038/ncomms15267

    Article  Google Scholar 

  27. Phang, J.M., Liu, W., Hancock, C.N., Fischer, J.W.: Proline metabolism and cancer. Curr. Opin. Clin. Nutr. Metab. Care 18, 71–77 (2015). https://doi.org/10.1097/mco.0000000000000121

    Article  Google Scholar 

  28. Kim, S.-Y.: Cancer energy metabolism: shutting power off cancer factory. Biomol. Therapeutics 26, 39–44 (2018). https://doi.org/10.4062/biomolther.2017.184

    Article  Google Scholar 

  29. Wise, D.R., Thompson, C.B.: Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010). https://doi.org/10.1016/j.tibs.2010.05.003

    Article  Google Scholar 

  30. Sousa, C.M., Biancur, D.E., Wang, X., Halbrook, C.J., Sheman, M.H., Zhang, L., Kimmelman, A.C.: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016). https://doi.org/10.1038/nature19084

    Article  Google Scholar 

  31. Juhász, C., Nahleh, Z., Zitron, I., Chugani, D.C., Janabi, M.Z., Bandyopadhyay, S., Ali-Fehmi, R., Mangner, T.J., Chakraborty, P.K., Mittal, S., Muzik, O.: Tryptophan metabolism in breast cancers: molecular imaging and immunohistochemistry studies. Nucl. Med. Biol. 39, 926–932 (2012). https://doi.org/10.1016/j.nucmedbio.2012.01.010

  32. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., Melino, G.: Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014). https://doi.org/10.1016/j.tibs.2014.02.004

    Article  Google Scholar 

  33. Locasale, J.W.: Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013). https://doi.org/10.1038/nrc3557

    Article  Google Scholar 

  34. Uematsu, H., Sato, N., Hossain, M.Z., Ikeda, T., Hoshino, E.: Degradation of arginine and other amino acids by butyrate-producing asaccharolytic anaerobic Gram-positive rods in periodontal pockets. Arch. Oral Biol. 48, 423–429 (2003). https://doi.org/10.1016/s0003-9969(03)00031-1

    Article  Google Scholar 

  35. Ozer, L., Elgun, S., Ozdemir, B., Pervane, B., Ozmeric, N.: Arginine–nitric oxide–polyamine metabolism in periodontal disease. J. Periodontol. 82, 320–328 (2011). https://doi.org/10.1902/jop.2010.100199

    Article  Google Scholar 

  36. Marcinkiewicz, J., Kontny, E.: Taurine and inflammatory diseases. Amino Acids 46(1), 7–20 (2012). https://doi.org/10.1007/s00726-012-1361-4

    Article  Google Scholar 

  37. Yatsuoka, W., Ueno, T., Miyano, K., Uezono, Y., Enomoto, A., Kaneko, M., Ota, S., Soga, T., Sugimoto, M., Ushijima, T.: Metabolomic profiling reveals salivary hypotaurine as a potential early detection marker for medication-related osteonecrosis of the jaw. PLoS One 14, e0220712 (2019). https://doi.org/10.1371/journal.pone.0220712

  38. Bains, V.K., Bains, R.: The antioxidant master glutathione and periodontal health. Dental Res. J. 12, 389–405 (2015). https://doi.org/10.4103/1735-3327.166169

    Article  Google Scholar 

  39. El-Sharkawy, H., Aboelsaad, N., Eliwa, M., Darweesh, M., Alshahat, M., Kantarci, A., Hasturk, H., Van Dyke, T.E.: Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J. Periodontol. 81, 1635–1643 (2010). https://doi.org/10.1902/jop.2010.090628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor F. Tsigelny .

Editor information

Editors and Affiliations

Ethics declarations

There is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romm, E., Li, J., Kouznetsova, V.L., Tsigelny, I.F. (2021). Machine Learning Strategies to Distinguish Oral Cancer from Periodontitis Using Salivary Metabolites. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1252. Springer, Cham. https://doi.org/10.1007/978-3-030-55190-2_38

Download citation

Publish with us

Policies and ethics