
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 12, 2024

DCONST
Detection of Multiple-Mix-Attack Malicious Nodes Using Consensus-Based Trust in IoT
Networks
Ma, Zuchao; Liu, Liang; Meng, Weizhi

Published in:
Proceedings of 25

th
 Australasian Conference on Information Security and Privacy

Link to article, DOI:
10.1007/978-3-030-55304-3_13

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Ma, Z., Liu, L., & Meng, W. (2020). DCONST: Detection of Multiple-Mix-Attack Malicious Nodes Using
Consensus-Based Trust in IoT Networks. In J. K. Liu, & H. Cui (Eds.), Proceedings of 25

th
 Australasian

Conference on Information Security and Privacy (pp. 247-267). Springer. https://doi.org/10.1007/978-3-030-
55304-3_13

https://doi.org/10.1007/978-3-030-55304-3_13
https://orbit.dtu.dk/en/publications/a468c53a-339f-48aa-8820-6b46711e10e0
https://doi.org/10.1007/978-3-030-55304-3_13
https://doi.org/10.1007/978-3-030-55304-3_13


DCONST: Detection of Multiple-Mix-Attack
Malicious Nodes Using Consensus-based Trust

in IoT Networks

Zuchao Ma1, Liang Liu1 and Weizhi Meng2?

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, China

2 Department of Applied Mathematics and Computer Science, Technical University
of Denmark, Denmark

Abstract. The Internet of Things (IoT) is growing rapidly, which allows
many smart devices to connect and cooperate with each other. While for
the sake of distributed architecture, an IoT environment is known to be
vulnerable to insider attacks. In this work, we focus on this challenge and
consider an advanced insider threat, called multiple-mix attack, which
typically combines three sub-attacks: tamper attack, drop attack and re-
play attack. For protection, we develop a Distributed Consensus based
Trust Model (DCONST), which can build the nodes’ reputation by shar-
ing particular information, called cognition. In particular, DCONST can
detect malicious nodes by using the K-Means clustering, without disturb-
ing the normal operations of a network. In the evaluation, as compared
with some similar models, DCONST can overall provide a better detec-
tion rate by increasing around 10% to 40%.

Keywords: IoT network · Malicious Node · Trust Management · Con-
sensus · K-means Method.

1 Introduction

The Internet of Things (IoT) is becoming an increasingly popular infrastructure
to support many modern applications or services, like smart homes, smart health-
care, public security, industrial monitoring and environmental protection [14].
These IoT devices could be used to collect information from surroundings or
control units to help gather information and make suitable strategies. Also, these
devices can use various IoT protocols [20], with the aim of transferring their data
including ZigBee, WiFi, Bluetooth, etc.

The IoT topology is flexible (e.g., multihop network), but it also suffers from
many insider threats, where an attacker can launch an intrusion inside a network.
For example, attackers can compromise some devices in an IoT network and then
use these devices to infer sensitive information and tamper data. Therefore, it
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is very essential to design an effective security mechanism to identify malicious
nodes in IoT networks.

Motivation. Most existing studies often focus on a single attack scenario in
an IoT, but an advanced attacker may choose to perform several attacks simul-
taneously. Hence a stronger and more advanced attacker should be considered -
who can control some internal nodes in IoT networks and perform a multiple-
mix-attack. For example, Liu et al. [8] discussed a scenario of multiple-mix-attack
by combining data tampering, packet dropping and duplication. They proposed
a perceptron-based trust to help detect malicious nodes, but their method has to
inject many packets to analyze the nodes’ reputation, resulting in a disturbance
of network operations. In addition, their detection accuracy depends heavily on
network diversity and attack probability, i.e., the low network diversity and the
high attack probability may cause low detection accuracy.

Contributions. Motivated by the literature, our work develops a Distribut-
ed Consensus based Trust Model (DCONST), which can achieve the self-detection
via consensus among IoT nodes. It can work without disturbing the normal net-
work operations and build the nodes’ trust by sharing a kind of particular infor-
mation called cognition among nodes. To mitigate the impact caused by the low
network diversity and the high attack probability, DCONST makes a strategy
that malicious nodes should receive more punishment while benign nodes should
obtain more award. The contributions can be summarized as below.

– In this work, we formalize system models and propose DCONST by using
consensus of nodes to improve the detection performance. In particular, our
DCONST can generate punishment evidence to reduce the trust values of
potential malicious nodes, and provide award evidence to improve the repu-
tation of benign nodes. A base station can collect all cognitions of nodes to
complete a final trust evaluation.

– We use the K-Means method to cluster nodes into benign group and mali-
cious group. For the performance analysis, we compare our approach with
two similar approaches: Perceptron Detection with Enhancement (PDE) [8]
and Hard Detection (HD) [9]. The experimental results demonstrate that
DCONST could achieve better detection performance.

Organization. The remaining parts are organized as follows. Section 2 in-
troduces related work on trust-based detection in IoT networks. Section 3 for-
malizes the network model and message model. Section 4 describes DCONST in
detail. Section 5 discusses our experimental environment and analyzes evaluation
results. Finally, Section 6 concludes our work with future directions.

2 Related Work

The Internet of Things (IoT) is beneficial for its wide adoption and sustainable
development, which can be divided into four layers including perception layer,
network layer, middle-ware layer and application layer. Due to the distributed
architecture, insider attacks are one big challenge in IoT networks.
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Trust-based detection. Building a proper trust mechanism is a promising
solution to discover insider attacks [13]. For instance, Cho et al. [2] proposed
a provenance-based trust model, called PROVEST, for delay tolerant networks
to handle the trust evaluation of nodes by using both direct and indirect trust
information. Dinesh et al. [1] developed a detection scheme, named BAN-Trust
for identifying malicious nodes in body area networks according to the nature
acquired through the nodes by their own as well as partner nodes. BAN-Trust
could conceive the common behavior among nodes and gather the information
to measure the trust. Liu et al. [8] proposed a perceptron-based detection using
machine learning in the multiple-mix-attack environment. The trust is evaluated
according to the reputation of paths, but the detection accuracy depends heavily
on the network diversity. Some other related studies can refer but not limited to
[3,7,15,21].

Consensus-based trust. In this work, our goal is to detect malicious nodes
based on the knowledge of all network nodes, which is a typical group decision
making (GDM) problem. Consensus-based trust models are widely used in solv-
ing this problem with two typical steps: 1) trust estimation that evaluates the
trust from a single group member, and trust aggregation that predicts the trust
based on the aggregated knowledge from trust estimation. For example, Rathore
et al. [17] presented a consensus-aware sociopsychological model for detecting
fraudulent nodes in WSNs. They used three factors for trust computation, such
as ability, benevolence, and integrity. Sharma et al. [18] proposed a consensus
framework for mitigating zero-day attacks in IoT networks. Their approach uses
the context behavior of IoT devices as a detection mechanism, working with an
alert message protocol and a critical data sharing protocol. Mazdin et al. [12]
analyzed the application of a binary trust-consensus protocol in multi-agent sys-
tems with switching communication topology. The trust in their work represents
a belief of one agent that another one is capable of executing a specific task.
Some other related studies can refer to [4,5,22].

Advanced attack. In this work, similar to former work [8], we consider a
multiple-mix attack in which an insider can perform three typical attacks: tamper
attack, drop attack and replay attack. More specifically, tamper attack is one of
the most harmful internal threats, where malicious nodes along a multihop path
can modify the received packets (randomly or with specific goals) before they
reach the destination [6]. Under a drop attack, malicious nodes can drop received
packets (randomly or with specific goals) to prevent these packets from reaching
the destination [19]. The third attack is replay attack, where malicious nodes can
send the received packets repeatedly to cause overhanded data flow, aiming to
consume the link bandwidth and mislead network functions [11].

Most existing research studies focus mainly on a single / separate attack, but
in fact an advanced attacker can handle multiple types of attacks at the same
time. In such case, it is more difficult to identify malicious nodes precisely. Thus,
in this work, we consider an advanced attacker who can launch a multiple-mix-
attack by combining these three attacks with a probability.
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3 System Model

In this work, we adopt the same attack model in [8], called multiple-mix-attack,
which consists of tamper attack, drop attack and replay attack. This section
formalizes our network model and message model.

3.1 Network Model

Node Model. In this work, we consider that malicious nodes can make a tamper
attack, a drop attack and a replay attack at the same time or choose combining
some of them intentionally. We assume that a node can be represented by using
the following equation:

Node =< id, T, pu, pr, cogl, pTA, pDA, pRA > (1)

where, id represents the unique identifier of the node; T represents the trust of
the node; pu and pr represent a public-private key pair of the node to be used
for encryption and decryption when network nodes transfer data and cognitions;
cogl is the list of cognitions that includes all cognitions of the nodes about others.
pTA is the probability of node N making a tamper attack, pDA is the probability
of node N making a drop attack, and pRA is the probability of node N making
a reply attack. For a benign node, the probability of node’s pTA, pDA and pRA

should be all zero, whereas a malicious node’s pTA, pDA and pRA should be a
positive number.

Path Model. The path of a packet can be represented as:

Path =< node1, node2, node3...noden > (2)

where, if packet A arrives at destination with a Path = < node1, node2, node3
... noden >, then it means packet A is delivered through node1, node2, node3,
... noden in a sequence.

3.2 Message Model

We assume that the IoT network contains a trusted authority (TA) that can
distribute keys to provide IoT nodes with a shield to defeat both external attacks
and insider attacks. The key management method can refer to [2]. Distributed
keys can be divided into two types:
1. A symmetric key K for encryption to defend external attackers;
2. Asymmetric key pairs < pu, pr > used for encryption and signing to defeat
insider attackers, referred in Equ. (1).

Message can be formalized as

M = [(D)puR
, SiD, Cogx1,y1

, Six1,y1
, ..., Cogxm,ym

, Sixm,ym
]K (3)

where, D represents the original data that need to be transferred, puR rep-
resents using the public key of the receiver to encrypt the data, and SiD is the
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signature. Cogxi,yi
represents the cognition of node xi about node yi. Sixi,yi

represents the signature of Cogxi,yi
that is generated by node xi. Cognition will

be introduced in Section 4.3, which is the assessment about the node trust. K
means the symmetric key and K is used to encrypt the whole message.

To defend against insider attacks, the sender of the communication uses the
public key of the receiver to encrypt the data-part of transferred packets. The
cognition-part of packets do not need to be encrypted, because relay nodes in
the transferred path may need to access the cognition. Besides, it is important to
protect data and cognitions from being tampered and there should be a notifi-
cation if tampered behavior is detected. Hence the data owner and the cognition
should provide their signatures.

4 DCONST

This section introduces our proposed DCONST, including core workflow, trust
model, cognition, cognition aggregation, cognition sharing, punishment and award,
trust evaluation, and the K-means based detection.

4.1 Core Workflow

Fig. 1 shows the core workflow of DCONST, mainly consisting of trust evaluation
and detection of malicious nodes. For trust evaluation, nodes have to measure the
reputation of others within the network by sharing particular information, called
cognition (refer to Section 4.3). To identify malicious nodes, the base station in
the IoT network has to collect all cognitions from nodes and create the Cognition-
Matrix, where Cogxy represents the cognition of node x about node y. The base
station should perform a central trust evaluation and obtain the trustworthiness
of each node. For detection of malicious nodes, nodes’ trust should be forwarded
to the K-means clustering module. The output includes Tamper-malicious set
- malicious nodes that launch tamper attacks; Drop-malicious set - malicious
nodes that launch drop attacks; and Replay-malicious set - malicious nodes that
launch replay attacks; and Benign set - benign nodes.

4.2 Trust Model

To evaluate the reputation of nodes by considering three attack types, we de-
sign the trust model with three dimensions accordingly - honesty, volume and
straight. Honesty is the dimension that demonstrates whether a node tampers
the received data or not. An evidence about tamper behavior can reduce the
honesty of the node. Volume illustrates whether a node drops the received data
or not. An evidence about drop behavior can reduce the volume of the node. S-
traight validates whether a node replays the received data or not. An evidence
about replay behavior can reduce the straight of the node. Hence the trust of a
node can be formalized as follow:

Node.T =< H,V, S > (4)
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Fig. 1. Core Workflow

where, H represents the honesty; V represents the volume; S represents the
straight. All of them range from 0 to 100; the negative side is 0 and the positive
side is 100. The higher value reached by the H, V, S of a node, the better trust
it possesses. Note that H, V, S are all integers rather than decimals, which can
be space-saving in the data communication.

4.3 Cognition

Cognition is the assessment about the reputation of nodes in the view of the
cognition owner (a type of node). In DCONST, nodes obtain the trust of others
by exchanging their cognitions. We formalize the cognition as

Cog =< Sub,Obj,H, V, S, isNei > (5)

where, Sub represents the subject of the cognition and Obj represents the
object of the cognition. Cog means the cognition of Sub about Obj. The pa-
rameters of H, V , S are the same in Equ. (4). isNei represents whether Sub
is the neighbor of Obj. For example, if node X and node Y are neighbors, and
we set the honesty, the volume and the straight of node Y as 100, 100 and 50
respectively, then there is a cognition < X,Y, 100, 100, 50, 1 > of node X.

4.4 Cognition Aggregation

When a node receives a new cognition from other nodes, it updates its own cog-
nition via cognition aggregation. Essentially, cognition aggregation is the process
about mixing own cognition (old cognition) with the new cognition in a specific
ratio. This ratio depends on the credibility of the new cognition, which can be
evaluated from two aspects: Reliability and Fluctuation.

Reliability. If the new-cognition provider is reliable in the old-cognition of
the receiver, it makes sense to believe the new-cognition more. This is because
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the precision of cognition of a node could be affected by its malicious behavior.
For example, assume there is a packet passing a path that contains a malicious
node N . If this packet is attacked by node N , then there will be a punishment
evidence created, which we will discuss in Section 4.6. As this punishment evi-
dence is negative, the cognition of node N would lack persuasion. To evaluate
the reliability of a node n, we can have the following:

r(n) =
c.H + c.V + c.S

Hmax + Vmax + Smax
(6)

where, c is the cognition about the node n; parameters of H, V and S are
the same in Equ. (5); Hmax, Vmax and Smax are the maximum of H, V and S.
In our system, Hmax, Vmax and Smax are set as 100.

Fluctuation. If the new-cognition differs from the old-cognition greatly, the
new-cognition provider may be suspicious as the persuasion of the new-cognition
is poor. The apparent difference may be caused by a wrong cognition or some
negative evidence, and therefore we can reduce its weight in the aggregation.

To evaluate the fluctuation of a new-cognition compared to the old-cognition,
we can have the following:

f(ncog) =
|ncog.H + ncog.V + ncog.S − ocog.H − ocog.V − ocog.S|

Hmax + Vmax + Smax
(7)

where, ncog is the new-cognition; ocog is the old-cognition of the receiver;
Hmax, Vmax and Smax are the maximum of H, V and S.

Thus, the credibility of the new-cognition can be evaluated as

cred(ncog) =


ρd ∗ (1− f(ncog)) ∗ r(ncog.Sub) if ncog.Obj is a

neighbor of ncog.Sub

ρi ∗ (1− f(ncog)) ∗ r(ncog.Sub) otherwise

(8)

where, ncog is the new-cognition; ncog.Sub is the provider of the cognition that
can be referred in Equ. (5); whether ncog.Obj is a neighbor of ncog.Sub can be
concluded according to ncog.isNei in Equ. (5). ρd and ρi are the maximum of
the credibility with ρd > ρi. The setting of ρd and ρi is mainly based on the
common sense that a cognition from a node’s neighbor about the node can be
more objective and accurate.

Based on the credibility of the new-cognition, we update the old-cognition of
the receiver by aggregating the new-cognition as follows:

[ucog.H, ucog.V, ucog.S] =

[ log2(1 +
ncog.H ∗ cred(ncog) + ocog.H ∗ (1− cred(ncog))

Hmax
) ∗Hmax,

log2(1 +
ncog.V ∗ cred(ncog) + ocog.V ∗ (1− cred(ncog))

Vmax
) ∗ Vmax,

log2(1 +
ncog.S ∗ cred(ncog) + ocog.S ∗ (1− cred(ncog))

Smax
) ∗ Smax]

(9)
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where, ucog is the cognition of the receiver updated after the cognition ag-
gregation. The motivation of using the log function is due to that it needs more
positive cognitions if any H, V or S improves. On the contrary, H, V or S of a
node could decrease fast when there are negative cognitions.

4.5 Cognition Sharing

The cognition sharing of DCONST can be defined with two operations - Cog-
nition Extraction and Cognition Spread. Cognition Extraction is the process to
determine which cognition should be sent with the packet when the packet pass-
es a node. Considering the bandwidth of a network, it is not an efficient way
to send all cognitions, so that a wise strategy should balance both performance
and cost. Cognition Spread aims to check whether a cognition can be aggregated
by other nodes, as the aggregation process will bring some cost when the node
calculates the credibility of a new cognition.

– Cognition Extraction. When a packet is transferred by a node, the node
can create a new packet by adding three cognitions to the end of the packet.
As the new packet is sent by the node, the cognition of the node is spread.
For implementation, there are three prior queues, negative queue (NQ), re-
duction queue (RQ) and improvement queue (IQ) in the memory of each
node. NQ sorts cognitions by their sum of honesty, volume and straight (the
head of queue is the cognition having the smallest sum of honesty, volume
and straight); RQ sorts cognitions by their reduction (the head of queue is
the cognition that reduces the most and is updated recently); and IQ sorts
cognitions by their improvement (the head of queue is the cognition that im-
proves the most and is updated recently). A cognition exists in three queues,
and if it is removed from a queue then it will be also removed by other two
queues. DCONST selects the heads of these queues to spread including the
most negative cognition, the cognition with the latest and the largest reduc-
tion, and the cognition with the latest and the largest improvement that has
not been sent. That is, DCONST attempts to spread negative cognitions and
cognitions whose fluctuation is evident promptly.

– Cognition Spread. Cognition transferred with packets can be aggregated
by both relay nodes and destination node. The relay nodes can update their
cognitions when they receive packets. They also need to add their extracted
cognitions to the transferred packet and forward them to the next node.
During idle time, nodes can send their extracted cognitions to their neighbors
aiming to accelerate the process of updating cognitions.

The whole process of Cognition Sharing is shown in Fig. 2. Green blocks with
Cogi1, Cogi2 and Cogi3 represent the cognition selected from node ni. Green full-
line-arrow means the cognition can be aggregated by the pointed node. Green
dotted-line-arrow shows that nodes can send the extracted cognitions to their
neighbors during idle time.
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Fig. 2. DCONST Cognition Sharing

4.6 Punishment and Award

To identify malicious nodes in IoT networks, it is important to create the trust
gap between benign nodes and malicious nodes, through punishing malicious
nodes and awarding benign nodes. Essentially, award is the reverse process of
punishment, which aims to recover the correct cognition about those nodes that
are misunderstood by some wrong punishment evidence. The trigger of pun-
ishment is different from the trigger of award - one malicious transmission can
trigger one punishment while accumulating enough successful transmission may
only bring one award. This is because few successful transmission cannot prove
that there are no malicious nodes existing in the path. To analyze different attack
types, we design corresponding punishment and award as below.

Punishment of Tamper Attack. The evidence of punishment about tamper
attack is called Indirect Tamper Punishment Evidence(ITPE). Note that relay
nodes only check whether the cognition in the packet is tampered because they
do not have the key to decrypt the data part in the packet. Only the last node
(with the key) can check both the cognitions and the data. ITPE could be
generated in the following two cases:

Case A (Destination Punishment). Assume there is a packet transferred
via a path p =< s, n1, n2, n3, ..., nt, d > and node d checks whether the original
data or cognition is tampered with their signature. If a tamper attack is detected,
an ITPE will be created by node d. Then node d can use ITPE to update its
cognitions about n1, n2, n3, ..., nt. If the data part of a packet is tampered, n1,
n2, n3, ..., nt will be pointed by ITPE. While if Cognx,ny

(refer to Equ. (3)) is
tampered, ni(i > x) will be pointed by ITPE. This is because only latter nodes
can tamper the cognitions in the packet from previous nodes.

Case B (Middle Punishment). Assume there is a packet transferred via
a path p =< s, n1, n2, n3, ..., nt, d > and node nk checks whether the cognition is
tampered with their signature. If a tamper attack is detected, an ITPE can be
created by node nk. While if Cognx,ny

(refer to Equ. (3)) is tampered, ni(i > x)
will be pointed by ITPE. In this case, node nk can use ITPE to update the
cognition about nx+1, nx+2, ..., nk−1. To evaluate the punishment of tamper
attack, when an ITPE is created, the cognition about all nodes pointed by ITPE
will be updated by the producer of ITPE (the punishment provider) as below:

ucog.H = log2(1 +
ocog.H − θhi

Hmax
) ∗Hmax (10)
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where, ucog is the updated cognition of the punishment provider (i.e., relay
nodes and the destination node), ocog is the old cognition, and θhi is a parameter
that determines the reduction of the honesty with ITPE.

Award about No Tamper. Award about No Tamper is the reverse process
of Punishment of Tamper Attack. Cnthi is a counter in each node to record the
positive behavior of relay nodes. When the value of a node in this counter meets
the threshold σhi, an indirect honesty award evidence (IHAE) can be created
to increase the node’s honesty. We use Cnthi.n.val to represent the value of
node n in Cnthi. If a packet is successfully transmitted, all nodes related to the
packet will be awarded. Taking the above Case A as an example, if the tamper
attack does not exist, the value of each relay node in Cnthi can be increased
by 1, i.e., Cnthi.n1.val = Cnthi.n1.val+ 1, Cnthi.n2.val = Cnthi.n2.val+ 1, ...,
Cnthi.nt.val = Cnthi.nt.val + 1. Finally, if we have Cnthi.n.val = σhi, then an
IHAE about node n will be created. If an IHAE or an ITPE about node n is
created, Cnthi.n.val will be set as zero.

To evaluate the award of no tamper attack, when an IHAE is created, the
cognition about all nodes pointed by IHAE will be updated by the producer of
IHAE (the award provider) as below:

ucog.H = log2(1 +
ocog.H + θhi

Hmax
) ∗Hmax (11)

where, ucog is the updated cognition of the award provider and ocog is the
old cognition. θhi is a parameter that determines the improvement of the honesty
with IHAE and its value is equal to that in Equ. (10).

Punishment of Drop Attack. The evidence of punishment about drop attack
is called Indirect Drop Punishment Evidence (IDPE). Suppose there is a packet
transferred via a path p =< n0, n1, n2, n3, ..., nt, d > and if node d receives
the packet, it has to send an acknowledgement (ack) to node n0 with the path
rp =< d, nt, ..., n3, n2, n1, n0 >. If we assume the ack cannot be faked and the
node does not receive the ack after transferred the packet, then a drop attack
can be detected and an IDPE can be created. Node ni can use IDPE to update
the cognition of ni+1. For example, if node n3 is a malicious node that drops the
packet and node n0, n1, n2 cannot get the ack from node d, then node n0 can
create an IDPE about node n1; node n1 can create an IDPE about node n2; and
node n2 can create an IDPE about node n3. Thus, IDPE can be regarded as a
chain to connect all potential drop-malicious nodes.

To evaluate the punishment of drop attack, when an IDPE is created, the
cognition about the node pointed by IDPE will be updated by the producer of
IDPE (the punishment provider) as below:

ucog.V = log2(1 +
ocog.V − θvi

Vmax
) ∗ Vmax (12)
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where, ucog is the updated cognition of the punishment provider, ocog is
the old cognition, and θvi is a parameter that determines the reduction of the
volume with IDPE.

Award about No Drop. Award about No Drop is the reverse process of Pun-
ishment of Drop Attack. Cntvi is the counter to record the positive behavior
with the acknowledgement from the destination node. When the value of a n-
ode in this counter meets the threshold σvi, an indirect volume award evidence
(IVAE) can be created to increase the volume of the node. Similar to the award
about no tamper, if a packet successfully arrives at its destination, the value in
Cntvi of all nodes related to the packet can be increased by 1.

When an IVAE is created, the cognition about the node pointed by the IVAE
will be updated by the producer of IVAE (the award provider) as below:

ucog.V = log2(1 +
ocog.V + θvi

Vmax
) ∗ Vmax (13)

where, ucog is the updated cognition of the award provider and ocog is the old
cognition. θvi is a parameter that determines the improvement of the volume
with IVAE and its value is equal to that in Equ. (12).

Punishment of Replay Attack. The evidence of punishment about replay
attack is called Indirect Replay Punishment Evidence(IRPE). Assume there is a
packet transferred via a path p =< n0, n1, n2, n3, ..., nt, d > and if node d receives
the packet, it has to send an acknowledgement (ack) to node s with the path
rp =< d, nt, ..., n3, n2, n1, n0 >. If any nodes in the path receive redundant acks,
a replay attack can be detected. For example, when node n0 sends the packet
to node d, it should receive one ack about this packet from node d instead of
two acks or more. Once a replayed attack happens, node d will receive two or
more identical packets and return identical acks. In this case, node s, n1, n2, ...nt
can realize there is a replay attack, and create an IRPE. Then node ni can use
IRPE to update the cognition of node ni+1 except for node d. For example, if
node n3 is a malicious node that replays the packet once, then node d can get
two identical packets and return two identical acks to node s. Thus node s can
create an IRPE about node n1; node n1 can create an IRPE about node n2; and
node n2 can create an IRPE about node n3. Basically, IRPE can be regarded as
a chain to connect all potential replay-malicious nodes.

To evaluate the punishment of replay attack, when an IRPE is created, the
cognition about the node pointed by the IRPE will be updated by the producer
of IRPE (the punishment provider) as below:

ucog.S = log2(1 +
ocog.S − θsi

Vmax
) ∗ Vmax (14)

where, ucog is the updated cognition of the punishment provider and ocog is
the old cognition. θsi is a parameter that determines the reduction of the straight
with IRPE.
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Award about No Replay. Award about No Replay is the reverse process of
Punishment of Replay Attack. Cntsi is a counter to record the positive behavior
with the acknowledgement from the destination node. When the value of a node
in this counter meets the threshold σsi, an indirect straight award evidence
(ISAE) can be created to increase the straight of the node. If a packet successfully
arrives at its destination and no redundant acks are found, the value in Cntsi of
all nodes related to the packet can be increased by 1.

When an ISAE is created, the cognition about the node pointed by the ISAE
will be updated by the producer of ISAE (the award provider) as below:

ucog.S = log2(1 +
ocog.S + τsi

Smax
) ∗ Smax (15)

where, ucog is the updated cognition of the award provider and ocog is the
old cognition. τsi is a parameter that determines the improvement of the straight
with ISAE and its value is smaller than θsi in Equ. (14). Here is the explanation
about τsi < θsi: when a node receives the supposed ack, it increases the Cntsi
without considering whether it will receive a duplicated ack in the future. So if
the node receives the duplicated ack later (a replay attack is detected), it will
create an IRPE to reduce the straight of its next node, and τsi < θsi can guar-
antee the reduction of the straight could be larger than the increase. Otherwise,
the reduction and the increase of the straight will counteract each other, i.e.,
making the punishment about the replay attack invalid.

4.7 Trust Evaluation

Trust evaluation has to be executed in the base station of an IoT network, when
there is a need to analyze the security situation. The base station can collect all
cognitions of every node and perform a centralized process. The final trust of a
node should be evaluated based on the consensus (cognition) of all members.

In the base station, after all cognitions are collected, a Cognition Matrix can
be created and defined as below:

CogMat =


Cog1,1 Cog1,2 Cog1,3 ... Cog1,n
... ... ... ... ...

Cogn−1,1 Cogn−1,2 Cogn−1,3 ... Cogn−1,n

Cogn,1 Cogn,2 Cogn,3 ... Cogn,n

 (16)

where, Cogx,y represents the cognition of node x about node y. Note that we set
Cogx,x as < x, x, 0, 0, 0 >, indicating that the recognition of a node about itself
will be ignored.

Then we denote Reix as the reputation of node x according to node i. Reix
can be regarded as the weight on the cognition of node i in all nodes’ cognitions
(except node x), when evaluating the trust of node x. The reputation of a node
is based on the similarity with the cognition from their neighbors. It is believed
that the cognition from a node’s neighbors can help evaluate the reputation more
persuasively. This is because most evidence of punishment and award comes from



DCONST 13

neighbors directly. The higher the similarity is, the better the reputation can be.
We define Reix as below:

Reix =
wix∑n

k=1 wkx
(17)

where, wkx means the weight of the cognition when node k evaluates node
x. wkx can be defined as below:

wkx =

{
0 if k = x
1

n−1 + (1− Distance(Cogk,x,Aver(x))
Hmax+Vmax+Smax

) ∗ 1
n−1 otherwise

(18)

Distance(Cogk,x, Aver(x)) = |Cogk,x.H −Aver(x).H|+ |Cogk,x.V
−Aver(x).V |+ |Cogk,x.S −Aver(x).S|

(19)

where, Distance(Cogk,x, Aver(x)) is the function to evaluate the similarity
between Cogk,x and the cognition from neighbors of node x. Aver(x) is the aver-
age of the cognition from neighbors of node x. Cogj,x.H represents the honesty
of Cogj,x, Cogj,x.V represents the volume of Cogj,x, and Cogj,x.S represents the
straight of Cogj,x. In particular, Aver(x) can be defined as:

[Aver(x).H,Aver(x).V, Aver(x).S] =

[
∑
Cognei(x),x.H,

∑
Cognei(x),x.V,

∑
Cognei(x),x.S]

the count of the neighbors of node x

(20)

where, nei(x) represents the neighbor of node x. Finally, we can evaluate the
trust of node i.

[Nodei.T.H,Nodei.T.V,Nodei.T.S] =

[

n∑
j=1

[Cogj,i.H ∗Reji] ,
n∑

j=1

[Cogj,i.V ∗Reji] ,
n∑

j=1

[Cogj,i.S ∗Reji]]
(21)

4.8 Detection based on K-means Method

When obtaining the trust of all nodes, an intuitive way is to identify malicious
nodes by selecting a trust threshold: if the trust value of a node is higher than
the threshold, then this node is benign; otherwise, the node is malicious. Here
comes a question that how to choose a proper threshold in our scenario - when
there is a mix-attack, it is very hard to analyze the threshold, since all types of
attacks may influence the threshold selection. In this work, we advocate using
the clustering method to classify groups and then identify malicious nodes. The
adoption of K-means method in this work aims to facilitate the comparison with
similar studies like [9,10].
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Fig. 3. K-means based Malicious Node detection

K-means method has been widely adopted in practice, which is a typical
clustering method with unsupervised learning and the main argument is the
count of clusters [16]. To identify malicious nodes, we use K-means method to
cluster nodes in terms of honesty, volume and straight individually. That is, K-
means method will be executed three times to detect malicious nodes
with three attack types and the input of K-means will be changed
each time. The three different inputs of K-means method are the tuple of
honesty, the tuple of volume and the tuple of straight. In each cluster, we set the
count of clusters to be three, then we can classify all nodes into three clusters
- benign group, uncertain group and malicious group. Only the nodes in the
malicious group can be determined as malicious, and this strategy aims
to reduce the false positive rate. If the center of benign group and the center of
malicious group are very close (i.e., a distance less than 10 in our evaluation),
all nodes can be determined as benign. For example, when we input the tuple of
honesty to detect tamper-malicious nodes, all nodes can be classified to benign
group, uncertain group and malicious group. Those nodes in malicious group
can be identified as tamper-malicious nodes. It is vital to highlight that, a
node can be classified into different malicious groups at the same time
(e.g., tamper-malicious group and drop-malicious group) if it launches
multiple attacks.

The K-means based detection is described in Fig. 3. That is, malicious nodes
include all nodes in the tamper-malicious group, the drop-malicious group, and
the replay-malicious group. In this work, our main focus is to identify malicious
nodes (without distinguishing the attack types), while the detection performance
of different attack types will be addressed in our future work.

5 Evaluation

In the evaluation, we compare our DCONST with two similar approaches called
Hard Detection (HD) [9] and Perceptron Detection with enhancement (PDE) [8].
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Table 1. Environmental settings

Item Description

CPU Intel Core i7-4700MQ,
2.4GHz, 4Core(8 Threads)

Memory Kingston DDR3L 8GB*2
OS Ubuntu 18.04 LTS
Python 3.6.8
Scikit-learn 0.20

In more detail, HD is a mathematical method to detect malicious nodes that
can perform a tamper attack. As the focus of HD is not fully the same in this
work, we tune HD to make it workable in a multiple-mix attack environment. In
particular, we added a module to help detect duplicated packets corresponding to
replay attack, and enabled HD to search replay-attack malicious nodes. PDE is
a detection scheme that uses both perceptron and K-means method to compute
IoT nodes’ trust values and detect malicious nodes accordingly. It also adopts
an enhanced perceptron learning process to reduce the false alarm rate.

We use the accuracy as the main metric to evaluate the performance. When a
malicious node is identified as malicious (even the attack type is labeled wrong-
ly), it will be a True Positive (TP). When a benign node is identified as benign,
it will be a True Negative (TN). Thus, if the total number of predictions is S,
we can define accuracy = (TP + TN)/S.

5.1 Experimental Setup

In our environment, all IoT nodes are deployed in a 100 x 100m2 rectangle area
discretely, and each node’s communication range is 10m-15m. Our IoT network is
generated randomly but it has a feature - for each node, there is at least one path
from the node to the base station, enabling IoT devices to be connected. Fig. 4
shows an example of the distribution, where the green node is the base station,
blue nodes are normal and red nodes are malicious - Na is tamper-malicious, Nb

is drop-malicious, Ne is replay-malicious.

To avoid result bias, we ran our simulation for each experiment
in 10 rounds with 10 different networks. We then selected the average
value to represent the final experimental result. In particular, we used Python
to realize all algorithms, and used the scikit-learn, which is a famous machine
learning tool library, to help cluster nodes according to their trust values via the
K-means method. Our detection was deployed at the base station. Table 1 shows
the detailed experimental settings. Besides, we set ρd in Equ. (8) as 0.4; ρi in
Equ. (8) as 0.1; σhi in Section 4.6 as 3; σvi in Section 4.6 as 3; σsi in Section 4.6
as 3; θhi in Equ. (10) as 40; θvi in Equ. (12) as 40 and θsi in Equ. (14) as 40;
and τsi in Equ. (15) as 10, accordingly.
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5.2 Impact of the Number of Nodes

This variable means the scale of the topology, which can affect the detection per-
formance of malicious nodes. To explore the performance, we consider a typical
IoT network and a multiple-mix-attack, with the number of nodes as 7, 12, 17,
22 and 27, respectively. In this experiment, we set the number of passing packets
as 20000; the probability of attack is 0.5; the percentage of malicious nodes as
0.3; and the diversity of network is all-type (use all paths).

Fig. 5 shows that when the IoT network is small-scale, all schemes can reach a
high accuracy rate in which PDE performed the best. With the increase of nodes,
the accuracy of HD and PDE has an obvious decrease. By contrast, DCONST can
maintain stable and outperform HD and PDE when the network scale becomes
large. This is because when the network scale is too small, numerous passing
packets may cause too many redundant cognitions and make the cognitions of
all nodes similar to each other, resulting in a worse case for DCONST.

A small network scale indicates few paths available in the network, in which
malicious nodes can be easily identified by HD and PDE. On the other hand,
Fig. 5 shows that when the number of nodes reaches 17 or more, the network
topology may become more complicated and it is more difficult for HD and PDE
to identify all malicious nodes. In such scenario, our DCONST can outperform
the other two schemes. As PDE can reduce the false alarm rate by applying
perceptron, it can perform much better than HD.

5.3 Impact of Attack Probability

In practice, insider attackers (malicious nodes) can choose a strategy to launch
attacks with a certain probability, which would influence the detection perfor-
mance. To explore this variable, we set the probability of multiple-mix-attack to
be 0.1,0.3,0.5,0.7 and 0.9, respectively. In this experiment, we set the number of
nodes as 27; the number of passing packets as 2000; the percentage of malicious
nodes as 0.3; and the diversity of network is all-type (use all path).
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Fig. 6 shows that our DCONST could outperform HD in all cases, and the
accuracy of HD had a significant decrease when the probability of attack reaches
0.9. When the attack probability is very low (like 0.1), PDE could outperform
DCONST, while with the increase of attack probability, DCONST could work
better than PDE. The main reasons are analyzed as below.

– It is more beneficial for DCONST to detect malicious nodes with the high
attack probability than with the low attack probability. This is because high
attack probability can trigger numerous punishment evidence and few award
evidence to malicious nodes. However, when the attack probability is low, the
most accurate cognitions are often owned by neighbors of the malicious node.
Cognitions owned by other nodes of the network are not accurate and the
cognition aggregation from those non-neighbor nodes may cause a negative
impact on detection accuracy. With the increase of attack probability, there
is a better chance to obtain accurate cognitions.

– On the other hand, it is difficult for HD and PDE to handle high attack
probability like 0.9. This is because the detection accuracy of HD and PDE
depends on the reputation of paths. If there is a node with a high attack
probability along a path, then the path reputation might become very low,
making it hard to analyze the trust of all nodes within this path.

5.4 Impact of the Percentage of Malicious Nodes

The percentage here means the number of malicious nodes in the IoT network,
which may have an impact on the detection accuracy. In the experiment, we set
the percentage of malicious nodes under multiple-mix-attack to be 0.1, 0.2, 0.3,
0.4 and 0.5, respectively. In this experiment, we set the number of nodes as 27;
the number of injected packets as 2000; the probability of attack as 0.5; and
the diversity of network is all-type (use all paths). Fig. 7 shows the detection
performance, and below are the main observations.

– It is found that DCONST could outperform HD and PDE in all cases. When
the percentage of malicious nodes is small, there is a very obvious gap be-
tween DCONST and HD, i.e., DCONST could perform the best while HD
only achieved the lowest accuracy. This is because when the percentage is
small, only limited nodes can be pointed by punishment evidence while most
nodes should be pointed by award evidence, making it more accurate for D-
CONST to identify malicious nodes from the whole network. By contrast,
for HD and PDE, a small percentage may result in a high false positive since
there are fewer malicious nodes in a path. Again, PDE can achieve better
performance than HD by reducing the false rates via perceptron.

– When the percentage of malicious nodes increases, the performance of both
PDE and DCONST could decrease gradually. This is because with more
malicious nodes, the fewer award evidence can be obtained pointing to benign
nodes, which may cause more errors. While DCONST could still outperform
the other two schemes under such scenario.
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5.5 Impact of Network Diversity

The diversity presents the type of paths through which packets can be delivered.
To explore the detection performance under the multiple-mix-attack, we set the
rate of valid paths to be 0.2, 0.4, 0.6, 0.8 and 1, respectively. In this experiment,
we consider the number of nodes as 27; the number of injected packets as 2000;
the probability of attack as 0.5, and the percentage of malicious nodes as 0.3.

Fig. 8 shows that when the network diversity is very low like 0.2, the detection
accuracy of HD and PDE could not work well. This is because the detection of
malicious nodes depends on analyzing the same nodes in different paths. As an
example, assume that a path includes node A and node B. If there is an attack
detected, either node A or node B could be malicious. We can only know node
B is benign based on the other paths that include node B as well. If node B
is determined, then it is easy to determine node A. This is why the detection
accuracy could be increased with more valid paths.

As a comparison, the network diversity does not have a significant impact
on the accuracy of DCONST. This is because DCONST relies on the strategy
that enabling malicious nodes to receive more punishment and providing benign
nodes with more award. In such case, even when the network diversity is low,
DCONST can work well as long as there is an extra communication channel
among benign nodes. For example, suppose there is a path p =< n1, n2, n3, n4 >
where n2 is a malicious node. If n3 and n4 have another data communication
channel, then they can award each other and improve their trust during the
detection. This self-healing feature is a special merit of DCONST.

Discussion. Based on the above results, our proposed DCONST could out-
perform the similar schemes of HD and PDE in most cases. In particular, the
low network diversity and the high attack probability would cause a big impact
on HD and PDE, while DCONST could still maintain the detection accuracy.
Hence we consider that the performance of DCONST is overall better than HD
and PDE, and in practice, PDE and DCONST can complement each other.
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6 Conclusion and Future Work

Due to the distributed nature of IoT networks, there is a significant need to de-
sign proper security mechanisms to defeat insider attacks. Most existing studies
mainly consider a single attack, but we notice that an advanced intruder may
perform several attacks simultaneously to make a more harmful impact. In this
work, we target on this issue and focus on a multiple-mix attack including three
typical sub-attacks: tamper attack, drop attack and replay attack. We develop
DCONST that uses both the consensus of nodes and the K-means method to
help measure nodes’ trust and detect malicious nodes. Our experimental results
demonstrate that DCONST can provide a better detection rate by around 10%
to 40% as compared with two similar methods of Hard Detection (HD) and
Perceptron Detection with Enhancement (PDE).

As our work is an early study in applying consensus, there are some open
challenges that can be considered in our future work. First, DCONST is a method
based on consensus of distributed nodes and the detection could be affected by
each node. Thus, it is hard to provide a sufficient strategy to control the whole
detection process. Then, the parameters of DCONST could be further optimized
to deal with different network settings (i.e., improving accuracy and stability).
Also, our future work can further investigate the impact of attack types and the
number of passing packets on the detection performance.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China under Grant No.61402225 and the Science and Technology
Funds from National State Grid Ltd. (The Research on Key Technologies of
Distributed Parallel Database Storage and Processing based on Big Data).

References

1. Anguraj, D.K., Smys, S.: Trust-based intrusion detection and clustering approach
for wireless body area networks. Wireless Personal Communications 104(1), 1–20
(2019)

2. Cho, J.H., Chen, R.: Provest: provenance-based trust model for delay tolerant
networks. IEEE Transactions on Dependable and Secure Computing 15(1), 151–
165 (2016)

3. Cho, J., Swami, A., Chen, I.: A survey on trust management for mobile ad hoc
networks. IEEE Communications Surveys and Tutorials 13(4), 562–583 (2011)

4. Hongning, L., Xianjun, L., Leilei, X.: Analysis of distributed consensus-based spec-
trum sensing algorithm in cognitive radio networks. In: 2014 Tenth International
Conference on Computational Intelligence and Security. pp. 593–597. IEEE (2014)

5. Kaveri, A., Geetha, K., Kaveri, A., Geetha, K.: Enhanced secure data transmission
in manet networks using consensus based and trust aware protocol. International
Journal 4, 14–25 (2018)

6. Komninos, N., Philippou, E., Pitsillides, A.: Survey in smart grid and smart home
security: Issues, challenges and countermeasures. IEEE Communications Surveys
& Tutorials 16(4), 1933–1954 (2014)



20 Z. Ma et al.

7. Li, W., Meng, W., Kwok, L., Ip, H.H.: Enhancing collaborative intrusion detection
networks against insider attacks using supervised intrusion sensitivity-based trust
management model. J. Network and Computer Applications 77, 135–145 (2017)

8. Liu, L., Ma, Z., Meng, W.: Detection of multiple-mix-attack malicious nodes using
perceptron-based trust in iot networks. Future Generation Computer Systems 101,
865–879 (2019)

9. Liu, X., Abdelhakim, M., Krishnamurthy, P., Tipper, D.: Identifying malicious
nodes in multihop iot networks using diversity and unsupervised learning. In: 2018
IEEE International Conference on Communications (ICC). pp. 1–6. IEEE (2018)

10. Liu, X., Abdelhakim, M., Krishnamurthy, P., Tipper, D.: Identifying malicious n-
odes in multihop iot networks using dual link technologies and unsupervised learn-
ing. Open Journal of Internet Of Things (OJIOT) 4(1), 109–125 (2018)

11. Mahmoud, R., Yousuf, T., Aloul, F., Zualkernan, I.: Internet of things (iot) se-
curity: Current status, challenges and prospective measures. In: 2015 10th Inter-
national Conference for Internet Technology and Secured Transactions (ICITST).
pp. 336–341. IEEE (2015)

12. Mazdin, P., Arbanas, B., Haus, T., Bogdan, S., Petrovic, T., Miskovic, N.:
Trust consensus protocol for heterogeneous underwater robotic systems. IFAC-
PapersOnLine 49(23), 341–346 (2016)

13. Meng, W.: Intrusion detection in the era of iot: Building trust via traffic filtering
and sampling. Computer 51(7), 36–43 (2018)

14. Meng, W., Choo, K.R., Furnell, S., Vasilakos, A.V., Probst, C.W.: Towards
bayesian-based trust management for insider attacks in healthcare software-defined
networks. IEEE Trans. Network and Service Management 15(2), 761–773 (2018)

15. Meng, W., Li, W., Xiang, Y., Choo, K.K.R.: A bayesian inference-based detection
mechanism to defend medical smartphone networks against insider attacks. Journal
of Network and Computer Applications 78, 162–169 (2017)

16. Nahiyan, K., Kaiser, S., Ferens, K., McLeod, R.: A multi-agent based cognitive
approach to unsupervised feature extraction and classification for network intru-
sion detection. In: International Conference on Advances on Applied Cognitive
Computing (ACC). pp. 25–30 (2017)

17. Rathore, H., Badarla, V., Shit, S.: Consensus-aware sociopsychological trust model
for wireless sensor networks. ACM Transactions on sensor networks (TOSN) 12(3),
21 (2016)

18. Sharma, V., Lee, K., Kwon, S., Kim, J., Park, H., Yim, K., Lee, S.Y.: A consensus
framework for reliability and mitigation of zero-day attacks in iot. Security and
Communication Networks 2017 (2017)

19. Wang, C., Feng, T., Kim, J., Wang, G., Zhang, W.: Catching packet droppers and
modifiers in wireless sensor networks. In: 2009 6th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.
pp. 1–9. IEEE (2009)

20. Withanage, C., Ashok, R., Yuen, C., Otto, K.: A comparison of the popular home
automation technologies. In: Innovative Smart Grid Technologies-Asia (ISGT Asi-
a), 2014 IEEE. pp. 600–605. IEEE (2014)

21. Yun, J., Seo, S., Chung, J.: Centralized trust-based secure routing in wireless net-
works. IEEE Wireless Commun. Letters 7(6), 1066–1069 (2018)

22. Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M.A., Li, L.: A proof-of-trust consensus
protocol for enhancing accountability in crowdsourcing services. IEEE Transactions
on Services Computing (2018)


	DCONST: Detection of Multiple-Mix-Attack Malicious Nodes Using Consensus-based Trust in IoT Networks

