Skip to main content

Parameter Synthesis and Robustness Analysis of Rule-Based Models

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12229))

Included in the following conference series:

Abstract

We introduce the Quantitative Biochemical Space Language, a rule-based language for a compact modelling of probabilistic behaviour of complex parameter-dependent biological systems. Application of rules is governed by an associated parametrised rate function, expressing partially known information about the behaviour of the modelled system. The parameter values influence the behaviour of the model. We propose a formal verification-based method for the synthesis of parameter values (parameter synthesis) which ensure the behaviour of the modelled system satisfies a given PCTL property. In addition, we demonstrate how this method can be used for robustness analysis.

This work has been supported by the Czech Science Foundation grant 18-00178S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/sybila/eBCSgen.

  2. 2.

    An additional case study targeting a tumour growth is available in Appendix A.

References

  1. Backenköhler, M., Bortolussi, L., Wolf, V.: Moment-based parameter estimation for stochastic reaction networks in equilibrium. TCBB 15(4), 1180–1192 (2018)

    Google Scholar 

  2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  3. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: An intermediate language for the stochastic simulation of biological systems. TCS 410(33–34), 3085–3109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of biological systems with uncertain kinetic rates. TCS 419, 2–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. arXiv preprint arXiv:1309.0866 (2013)

    Google Scholar 

  6. Bock, C., Bortolussi, L., Krüger, T., Mikeev, L., Wolf, V.: Model-based whole-genome analysis of DNA methylation fidelity. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 141–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_8

    Chapter  Google Scholar 

  7. Bonzanni, N., Feenstra, K.A., Fokkink, W., Krepska, E.: What can formal methods bring to systems biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_2

    Chapter  Google Scholar 

  8. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inform. Comput. 247, 235–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear temporal properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_23

    Chapter  MATH  Google Scholar 

  10. Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 63–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38874-3_3

    Chapter  MATH  Google Scholar 

  11. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  12. Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic biochemical systems. PLoS ONE 9(4), e94553 (2014)

    Article  Google Scholar 

  13. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. ENTCS 194(3), 103–117 (2008)

    MATH  Google Scholar 

  14. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

    Article  MATH  Google Scholar 

  15. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

    Chapter  MATH  Google Scholar 

  17. Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

    Chapter  Google Scholar 

  18. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  19. Faeder, J.R., Blinov, M.L., Hlavacek, W.S., et al.: Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)

    Article  Google Scholar 

  20. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239 (2007)

    Article  Google Scholar 

  21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  22. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT 13(1), 3–19 (2011)

    Article  Google Scholar 

  23. Hasson, H., Jonsson, B.: A logic for reasoning about time and probability. FAOC 6, 512–535 (1994)

    Google Scholar 

  24. Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a rule-based language of parameterised objects. TCS 335, 49–66 (2017)

    MATH  Google Scholar 

  25. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation. Pearson Education India (2008)

    Google Scholar 

  26. Hutschenreiter, L., Baier, C., Klein, J.: Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination. arXiv preprint arXiv:1709.02093 (2017)

  27. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_31

    Chapter  Google Scholar 

  28. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7_15

    Chapter  Google Scholar 

  29. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/

  30. Khalid, A., Jha, S.K.: Calibration of rule-based stochastic biochemical models using statistical model checking. In: 2018 IEEE BIBM, pp. 179–184 (2018)

    Google Scholar 

  31. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007)

    Article  Google Scholar 

  32. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker PRISM. ENTCS 153(2), 5–31 (2006)

    Google Scholar 

  33. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. FAOC 19(1), 93–109 (2007)

    MATH  Google Scholar 

  34. Liu, B., Faeder, J.R.: Parameter estimation of rule-based models using statistical model checking. In: 2016 IEEE BIBM, pp. 1453–1459. IEEE (2016)

    Google Scholar 

  35. Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of stochastic reaction networks. BMC Syst. Biol. 10(1), 98 (2016)

    Article  Google Scholar 

  36. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017)

    Article  Google Scholar 

  37. Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. J. Biol. Rhythms 22(1), 69–80 (2007)

    Article  Google Scholar 

  38. Nedbal, L., Červený, J., Schmidt, H.: Scaling and integration of kinetic models of photosynthesis: towards comprehensive e-photosynthesis. In: Laisk, A., Nedbal, L., Govindjee (eds.) Photosynthesis in Silico. AIPH, pp. 17–29. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9237-4_2

  39. Pedersen, M., Phillips, A., Plotkin, G.D.: A high-level language for rule-based modelling. PLoS ONE 10, 1–26 (2015)

    Google Scholar 

  40. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4

    Chapter  MATH  Google Scholar 

  41. Romers, J.C., Krantz, M.: rxncon 2.0: a language for executable molecular systems biology. bioRxiv (2017)

    Google Scholar 

  42. Troják, M., Šafránek, D., Brim, L.: Executable biochemical space for specification and analysis of biochemical systems. In: SASB (2018, to appear)

    Google Scholar 

  43. Troják, M., Šafránek, D., Hrabec, J., Šalagovič, J., Romanovská, F., Červený, J.: E-Cyanobacterium.org: a web-based platform for systems biology of cyanobacteria. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 316–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0_20

    Chapter  Google Scholar 

  44. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Troják .

Editor information

Editors and Affiliations

A Tumour Growth

A Tumour Growth

Tumour growth is based on mitosis (i.e. cell division). The cell cycle is the process between two mitoses and it consists of four phases: the resting phase \(G_1\), the DNA replication phase S, the resting phase \(G_2\), and the mitosis phase M in which the cells segregate the duplicated sets of chromosomes between daughter cells. The three phases \(G_1\), S, and \(G_2\) constitute the pre-mitotic phase, also called interphase.

We have adopted the model of tumour growth  [44] to our language. It considers two populations of tumour cells: those in interphase and those in mitosis. We represent the tumour cell as an agent \(\mathsf {T}\). The current phase is expressed with an atom \(\mathsf {phase}\) in its composition, which can have two different states – \(\mathsf {i}\) for interphase and \(\mathsf {m}\) for mitosis. For simplicity, we omit the compartment from the rules since it does not change and plays no important role in this model.

Fig. 5.
figure 5

Rules of the tumour growth model. The first rule describes the change of the phase of a cell from interphase to mitosis. The second rule describes the duplication of the cell to two daughter cells. Note that both start in interphase. The last two rules describe the death of cells in both possible states.

Fig. 6.
figure 6

Visualisation of results of parameter synthesis (left) and quantitative model checking using sampling (right) for property \(\phi \) for tumour growth model. The horizontal axis represents values of the parameter \(a_1 \in [0, 3]\) and the vertical axis represents values of the parameter \(d_2 \in [0.001, 0.5]\). The probability threshold 0.5 from the property \(\phi \) is visible in both sampling (approximately the yellow line) and parameter synthesis (the grey line). It shows that the parameter synthesis method gives us a very precise result and is in agreement with quantitative model checking. (Color figure online)

The rules of the model are available in Fig. 5. Note that this model is a demonstration where all rules are reaction-based, i.e. they do not describe an abstract rule, only modification of concrete agents.

Given rate functions of rules are parametrised. Parameters \(\mathsf {a_1}\) and \(\mathsf {a_2}\) are present in rules responsible for change of phase and cell division, while parameters \(\mathsf {d_1}\) and \(\mathsf {d_2}\) are in the rules where the cell disappears or dies. The values \(\mathsf {a_2} = 0.5\) and \(\mathsf {d_1} = 0.3\) are constant the other two parameters are given by admissible ranges: \(\mathsf {a_1} \in [0 ; 3]\) and for \(\mathsf {d_2} \in [0.001; 0.5]\).

For the initial state, we assume a single agent \(\mathsf {T}^{1}(\mathsf {phase}\{\mathsf {i}\})\). Please note that the model gives rise to infinite pMC since the second rule can generate additional agents. To obtain a finite abstract probabilistic model, we have heuristically limited the number of states of the model. Particularly, we generate all the states having the number of individuals of both species less or equal to 5 and we introduce a special abstract state which represents all the other states, which limits the size of possible state space to \(6^2\). This approximation is incorrect only in cases when one wants to reach a state which is represented by the special state.

We are interested in property whether the population of tumour cells will reach almost its maximum with the probability higher than 0.5, meaning that the growth is not random but has rather tendency to grow without limitations. This property can be expressed as . In Fig. 6, there is a visualisation of parameter synthesis. The results show that the higher values of the parameter \(a_1\) (cell division) and the lower values of the parameter \(d_2\) increase the probability of property satisfaction. This result is quite expected, because both parameters directly influence cell division (\(a_1\)) and degradation (\(d_2\)) of cells. We have also computed the global robustness degree of the property, which is approximately 0.24. It can be interpreted as 24% of parameter space satisfies the property \(\mathsf {True}~\mathbf {U}~\mathsf {T}^{j}(\emptyset ) > 8\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Troják, M., Šafránek, D., Mertová, L., Brim, L. (2020). Parameter Synthesis and Robustness Analysis of Rule-Based Models. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55754-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55753-9

  • Online ISBN: 978-3-030-55754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics