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Abstract. The Eternity II (E2) challenge is a well-known instance of
the set of Edge Matching Puzzles (EMP), which are examples of com-
binatorial problem spaces of the worst-case complexity. Transformation
of the domain space to consider pieces at the 2 × 2 level increases the
total number of elements but is shown to result in orders of magnitude
smaller search spaces. While the original domain space has uniform car-
dinality, the transformed space exhibits statistically exploitable features.
Two heuristics are proposed and compared to both the original search
space and the raw transformed search space. The efficacy of the two
heuristics is empirically demonstrated. An explanation of how the map-
ping results in an overall decrease in the number of nodes in the solution
search space of the transformed problem is outlined.

Keywords: Worst-case Complexity, Transformed Search Space, Edge
Matching Puzzle, EMP, Eternity II (E2) challenge

1 Introduction

A new methodology for pre-processing EMPs, in which the variables and domain
elements are transformed into a different EMP problem, is presented. The use of
heuristics to exploit the structure of the transformed domains are investigated.

EMPs belong to the NP-complete (NP-C) problem set. Depending on the
objective function chosen, solution optimization is an NP-hard problem [1]. This
work focuses upon two-set Framed Generic Edge Matching Puzzles (GEMP-F)
[2] that adhere to the structural characteristics of the Eternity II problem (E2-
style). The E2-Style GEMP-F has an n× n board with n2 slots and four-edged
pieces and possess a distinguishing border pattern and two sets of patterns for
edge and inner matches [2]. Each tile must be placed such that pairwise adja-
cent tiles have matching patterns. E2-style GEMP-F are designed to eliminate
statistical information inherent within the characteristics of both the pieces and
distribution of edge patterns. This feature is designed to minimize the ability
of Solution Algorithms to reorder domain variables via some form of metric
function in order to improve search space traversal efficiency.
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This paper presents a transformation of the variables such that the resulting
domains do exhibit statistical weaknesses not apparent in the original E2-style
GEMP-F problem sets. This involves considering all valid 2× 2 tiling combina-
tions that can be generated from four single tiles within a problem instance. The
transformed EMP problems have several properties that make each instance eas-
ier to solve. First, transforming these problem instances results in a collapse of
the depth of the search space tree by a factor of four. Second, unlike the original
variables, the domains of the transformed variables have statistically exploitable
features allowing heuristic search tree trimming thus enabling directed search-
ing towards solutions. The results of this study demonstrate that performing the
domain transformation and reordering tiles according to the presented heuristics
does reduce the median number of nodes traversed to approach a global solution.
This approach effectively solves the smallest sized puzzles, with the impact of
the transformation becoming less pronounced for larger puzzle sizes as the total
number of variables within the domain space increases.

After examining the E2-style GEMP-F literature (Section 2), the impacts
of variable transformation on the EMP problem space and its generation of
statistically exploitable features are presented (Section 3). Two efficient search
space traversal heuristics are outlined (Section 4). The results of applying these
heuristics to problem instances are presented and discussed (Section 5). Future
research avenues are outlined in Section 6.

2 Literature Review

E2-style problems were developed following the claimant of the £1 million cash
prize offered for the solution of the first Eternity puzzle [3]. The winners of the
original Eternity prize were contracted to collaboratively develop the Eternity
II puzzle and were likely given the task of eliminating the combinatorial flaws
used to solve the original puzzle. The result was an GEMP-F, of size n = 16,
possessing structural characteristics that cannot be as readily used to reduce the
problem search space. Harris et al. [4] describes a process for generating E2-style
GEMP-F instances. The 3-partition problem has been proven to be NP-Hard [5],
with E2-style puzzles the worst-case instances of NP-hard problems [2].

Strategies for solving E2-style GEMP-F have used algorithms belonging to
methodologies such as Evolutionary Algorithms [6], Boolean satisfiability [2, 7,
8] and constraint satisfaction [9, 10]. These algorithms employed heuristics and
meta-heuristics, e.g. tabu search, look-ahead, back jumping and arc consistency,
to reduce total search space size and optimize the scores.

Extending the Eternity II challenge, the 3rd International Conference on
Metaheuristics and Nature Inspired Computing (META’10, 2010), provided four
online downloadable E2-style GEMP-F instances of size n = {10, 12, 14, 16} [11].
The winning approach of the META’10 challenge, which coincidentally did not
fully solve any of the problem instances, was the application of a two-phase
guide-and-observe hyper-heuristic solution algorithm with a score of 461/480 on
the size n = 16 problem instance [12]. The heuristics utilized involved swap and
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rotate moves at both the single, double and triple tile level. The work of Wauters
et al. [13] considered the number of inner matches for all 4 × 4 regions in the
puzzle, an extension of the 3×3 objective that provided promising results. These
experiments showed that by first optimizing an objective besides the raw score of
the puzzle and switching to this objective, a higher average score is reached [13].
The work of Salassa et al. [14] applied a hybrid local search approach through
both mixed-integer linear programming and Max-Clique formulation, building
complete solutions by constructing optimal sub-regions across the problem space.
The application of both greedy and backtracking constructive heuristics resulted
in maximum scores of 459/480 for the commercial E2 instance and the META’10
size n = 16 problem instance [14].

Recently it was shown that the computational overheads involved in heuris-
tics that reduce search space size are greater than those for brute force imple-
mentations imposed upon a static variable instantiation scheme [4]. This is due
to E2-style EMP’s design having no statistically exploitable weaknesses. The
Zero-Look Ahead (ZLA) algorithm was shown to outperform all other Solution
Algorithms (in 40 of the 48 benchmarks) and was up to 3 orders of magnitude
faster than previous published solvers [4].

Many variable transformation techniques have been used while the area
of NP-Complete problems has been studied, e.g. variable transformation for
Latin Hyper-cubes [15] and in published attempts at solving the real-world
Car Sequencing Challenge, with instances provided by Renault [16]. Given the
widespread opinion that P 6= NP (e.g. [17]) each transformation is a problem
specific creation. To date, there have been no published variable domain trans-
formations for the E2-style EMP. This paper develops such a transformation
specifically for the E2 problem and which can be applied to all other EMPs.

3 Variable Transformation

The domain elements of the variables for E2-style GEMP-F problems are single
tiles, each being square, non-symmetrically patterned and unique. Each tile ro-
tation (C4 geometric symmetry) represents a valid placement into the variables
of the problem space. The elements of an EMP are each piece in each possible
rotation, providing the total variable space. Satisfaction of the constraints of
each placement determines if the final configuration (all variables instantiated
as shown in Fig. 1) represents a valid solution or not to the problem. Consider
all 2× 2 tiling combinations to be generated from 4 single tiles (Fig. 1). A 2× 2
piece is the valid aggregation of four individual pieces all with matching inner
edges. The resultant 2× 2 combination is an individual piece (domain element)
of a higher order.

The characteristics of 2 × 2 pieces used when further solving EMP are its
outer edge patterns and the four individual pieces making up the transformed
variable (Fig. 1). If all possible 2×2 combinations are generated then the original
single tile n× n problem can be transformed into an n

2 ×
n
2 problem (assuming

n is even – a requirement for an EMP problem to belong to the E2 class).
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Fig. 1. 2 × 2 tiling generated from four single tiles.

The number of variables has been reduced from n2 to n2

4 . As the combinatorial
problem space grows with n, this reduction in the number of levels in the search
space tree is associated with a combinatorial decrease in the number of nodes in
the transformed search space.

Note that transforming the variables of an EMP to the 2 × 2 domain space
results in more variables available for assignment than there are positions on
the board. The transformed problem instance thus involves the assignment of a
subset of these variables to the domains of a 2 × 2 piece board of size = n

2 . A
constraint upon the variables of an EMP is that each single piece is used once
only. As 2×2 pieces comprise four individual pieces, when a 2×2 piece is placed
onto the board, all other 2× 2 pieces that feature any identical individual pieces
are removed from the variable domain space. This 2× 2 domain transformation
produces an important effect upon piece types, i.e. corner, edge and inner pieces.
Piece types at the 2×2 level feature a combination of one, two or all three piece-
types at the individual level (see Fig. 2).

Fig. 2. The Three 2 × 2 Piece Types.

The distinction between solving for the frame and inner sections of the board
is blended at the 2 × 2 level as assigning frame pieces onto the board reduces
available inner pieces and vice versa. This characteristic of 2×2 pieces results in
a collapse of the branching factor of the expanded search space as 2 × 2 pieces
are assigned. This leads to faster backtracking of Solution Algorithms, increasing
the speed of search space traversal.
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Although the domain transformation results in a collapse of the number of
levels of the search space, the number of branches from each node in the trans-
formed 2× 2 tiling space increases in conjunction with the increased number of
elements. Sadly, no known analytic method can determine, a priori, if the trade-
off between: (a) the decrease in tree depth and (b) the increase in the average
branching factor at each node in the transformed tree, results in a significant
reduction in search space size. Instead empirical examination of randomly gen-
erated E2-style GEMP-F is required.

Pre-processing pieces by performing a domain transformation is classified as
pre-processing as the propagation of variables within CSP Solution Algorithms
need be applied only once per problem instance. Processing time for the pre-
processing of pieces before they are utilized in a Solution Algorithm is, therefore,
not considered in evaluating the efficiency of Solution Algorithms.

Table 1. GEMP-F 2 × 2 Frequency of Piece Types and Pattern IDs.

Puzzle Size Corner Pieces Edge Pieces Inner Pieces Total Patterns

4 180 0 0 32

6 727 5,138 6,866 73

8 2,138 26,570 77,108 113

META’10-10 2,280 58,388 342,046 180

META’10-12 3,536 136,832 1,033,686 240

META’10-14 3,512 165,592 1,888,540 376

META’10-16 5,180 290,864 4,079,776 459

Eternity II-16 5,824 292,012 4,059,952 459

The number of elements of 2×2-EMP elements demonstrates neither a com-
binatorial nor exponential increase in size with increasing n (Table 1), leading
to the possibility in net increase in Solution Algorithm performance as a re-
sult of the corresponding combinatorial decrease in the number of nodes in the
search space. Efficient traversal and indexing of these elements will be necessary
to effectively utilize 2 × 2 elements within a Solution Algorithm. For solving
2×2-EMP’s to be more efficient than for the original (untransformed) EMP, the
benefit of an increase in efficiency of search space traversal will have to outweigh
the cost of the increase in total variable domain sizes.

3.1 Effect Upon Edge Pattern Distribution

One of the properties of E2-style GEMP-F is a uniform distribution of edge
patterns. That is, there is no statistical information about the distribution that
could be used to determine the order in which to instantiate variables (assuming
a SAT/CSP methodology). The pattern distribution of the original Eternity II
puzzle is shown in Fig. 3.

The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-55789-8_19
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Fig. 3. The Eternity II Puzzle Pattern ID Distribution.

The consequence of this uniformity of pattern distribution is to maximise en-
tropy thereby making variable selection heuristics and guided search techniques
ineffective at both reducing and identifying solution rich regions of the search
space. In terms of statistical frequency, there is no reason to target pieces of
one pattern over another. If the pattern distribution was not uniform, domain
minimizing heuristics can be used to select pieces that are the most constrained
(have the least number of patterns of the puzzle). These are the pieces most likely
to collapse the search space and instigate backtracking. This is very similar in
methodology to the first Eternity puzzle solver [3]. Nonetheless, the pattern dis-
tribution for the transformed variable space exhibits statistical features that can
be exploited. Fig. 4 shows the distribution of the Eternity II puzzle in its 2× 2
space.

The most important result of the transformation to the 2 × 2 phase space
is the effect this transformation has on the pattern frequency distribution of
the 2× 2 elements. The difficulty of the commercial E2 instance was optimized
through careful assignment of both the number of patterns and the distribution
they possess. The patterns were not however optimized in any way at the 2× 2
level as is dramatically shown in Fig. 4.

The pre-processing of E2-Style GEMP-F by generating 2 × 2 elements in-
troduces statistical information within the pattern distributions and variable
domains. Thus, by definition, pre-processing elements has transformed the prob-
lem instance into one that is no longer an E2-style problem. The non-uniform
distribution of the edge patterns in the transformed puzzle enables the use of
heuristics and CSP techniques, such as arc consistency and dynamic ordering
of variable instantiation, to reduce the search space compared to a pure brute
force approach. This systemic process of traversing the search space, as opposed
to randomly instantiating elements and traversing through root nodes, results
in an increase in Solution Algorithm performance.
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Fig. 4. The Eternity II Puzzle 2 × 2 Pattern ID Distribution.

At the 2× 2 level the presence of more elements than variables on the board
might allow statistical information to be used to distinguish between solution
and non-solution pieces. If this is possible, then there may be ways to reorder
the variables of the elements to search elements that feature in a solution rich
search space. Furthermore, as 2× 2 pieces (elements) are placed onto the board,
the domains and subsequent pattern distribution of remaining domain elements
change, since piece placement in the 2× 2 problem results in immediate domain
size reduction across all related non-instantiated domains. This suggests two
domain variable ordering heuristics, which are now proposed and discussed.

4 Domain Variable Ordering Heuristics

Two variable selection heuristics are proposed to filter the problem space to
search in regions that contain a statistically higher likelihood of containing a
global solution. These heuristics do so by increasing the rate at which solution
2×2 pieces that are a subset of a global solution are analysed by a 2×2 Solution
Algorithm. A domain characteristic of 2× 2-EMP is that it possesses more 2× 2
piece elements than there are positions upon the board for variable assignment.
Thus a subset of these 2×2 elements belong in a global solution, and, therefore,
belong to a solution rich region of the search space. If the benefit of a more
efficient search space traversal outweighs the computational cost of possessing
all 2 × 2 pieces within the domain space, then the net Solution Algorithm per-
formance will increase. This is as a result of pre-processing elements to the 2×2
space and running variable selection heuristics upon them.

The two variable selection heuristics are inspired by Bayesian statistical the-
ory and attempt to determine the probabilistic likelihood that a 2 × 2 element
matches a given position. The goal of reordering the variable elements by these
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metrics is to rank them by this probabilistic likelihood, to be used in the filter-
ing of domains. Call the two heuristics H1 and H2, with H2 being an iterative
improvement upon H1. The heuristics construct metrics equal to the product of
the domain sizes of each border edge, i.e. the number of 2 × 2 pieces that can
form a valid placement. Fig. 5 displays the edge matches per 2× 2 piece type.

Fig. 5. Domain Ordering Metrics per 2 × 2 Piece Type.

Heuristic 1 (H1): the product of the domain sizes of each border edge.∏
ni (1)

Then index the 2 × 2 pieces according to their metric to enable the piece with
the highest metric value to be chosen first during the traversal of the search
tree. Eliminate any 2× 2 piece for which the metric is 0. The higher the value of
H1, the more likely a 2× 2 element can be placed into a partial solution, as the
metric has calculated more adjacent matches to this element than others. Fig. 6
provides an example of the application of H1 with valid matches.

Fig. 6. Heuristic 1 applied to a 2 × 2 Corner Piece.

Heuristic 2 (H2): the product of the domain sizes of each border edge such
that pieces with common single tiles are not counted twice.∏

(ni − xi) (2)

Index the 2 × 2 pieces by metric to enable the piece with the highest metric
value to be chosen first during the traversal of the search tree. Eliminate any
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2× 2 piece for which the metric is 0. The additional condition of Heuristic 2 is
that the elements that make up matching 2 × 2 pieces must be unique. Fig. 7
provides an example of valid and invalid pairings of 2 × 2 pieces. Although the
edge patterns for n1 form a valid match of these 2 × 2 pieces, the individual
elements that make up these 2× 2 pieces are not unique, resulting in an invalid
match of these 2×2 pieces. The edge patterns for n2, however, form a valid match
with no duplicate elements, thus forming a valid match of these 2×2 pieces. The
additional constraint provided by H2 results in a product function that is always
lower than H1 at the cost of more computationally intensive pre-processing.

Fig. 7. Example of valid (n2) and invalid (n1) pairing.

5 Results and Discussion

The solution generation algorithm applied at both the single and 2× 2 tile level
was a brute force approach featuring no forward checking, back jumping or k-arc
consistency, as first proposed in the work of Harris et al. [4]. This algorithm has
been empirically determined to outperform all previous results that utilized the
aforementioned domain trimming tactics [4]; it was argued that this is a con-
sequence of E2-style GEMP-F possessing zero statistically exploitable features.
For this initial work on the transformation of the variable space, it was deter-
mined to utilize this particular Solution Algorithm for both the untransformed
and transformed problem spaces.

Solution Algorithms for the single tile and 2 × 2 tile approaches were im-
plemented in Pascal on a current generation IntelTMCoreTM i9-8950HK CPU @
2.90GHz. The heuristics were applied to border 2 × 2 pieces within this work
and were encoded separately to the Solution Algorithm, computed as the 2× 2
input pieces were generated from the corresponding single piece element file.
Consequently, no runtime search time was required for the various heuristics;
it was entirely absorbed in the input file generation phase. These implementa-
tions of the Solution Algorithm output the number of nodes traversed before a
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global solution was generated for each problem instance presented to it. This
enabled a direct comparison between the median number of nodes (as suggested
by Ansótegui [7]) traversed to find a solution as a function of E2 puzzle size n.

Sets of 20 randomly generated single tile E2-style GEMP-F instances were
created of puzzle sizes n = {4, 6, 8} with differing border and inner colour com-
binations (see Table 2). Table 2 presents the results of running the Solution
Algorithm at both the single and 2 × 2 tile level, with two variable domain
heuristics applied at the 2× 2 level.

Table 2. Comparison of the Effect of Nodes Traversed by Puzzle Size, Domain Trans-
formation and Domain Ordering Metrics.

Puzzle Size 4 4 6 6 6 8 8
Border : Inner 3:3 3:4 3:5 3:6 3:7 3:6 3:7

Single Tiles 88 63 305,428 179,379 25,421 14,012,064 542,359,516

2x2 Tiles 14 6 103,648 94,499 8,800 11,151,356 399,094,862

Heuristic 1 10 5 91,730 101,713 4,789 4,967,412 433,661,359

Heuristic 2 7 4 83,689 96,052 5,052 6,309,757 393,869,489

The results above clearly demonstrate the efficacy of the heuristics, particu-
larly when applied to lower puzzle sizes. Indeed, we can see that the size n = 4
puzzles are for all intents and purposes a solved problem: the reordering of the
tiles according to either heuristic when approached as a search space spanning
problem solves the puzzle. In all of the other puzzles we can see that the inclu-
sion of additional constraints to the heuristics leads to a reduction in the total
number of nodes traversed per solution.

The general trend of the above results indicates that the impact of the trans-
formation was less dramatic for larger puzzle sizes. In this work, the heuristics
were only applied to the border pieces and although the border pieces increase
linearly with puzzle size n, the number of inner pieces increases at least quadrat-
ically as a function of n. It is thus not too surprising to note that for this initial
study, applying the heuristics to solely the border pieces has its greatest impact
when there are no inner pieces (size n = 4) and the least impact for the largest
puzzle instances (size n = 8).

6 Conclusion and Future Work

This paper has presented a transformation of the variable and domain space for
E2-style GEMP-F which is shown to exhibit statistical structure which should
be able to be used to reduce the size of the search space. Two heuristics are
proposed to exploit this observed structure, albeit of just the border pieces,
and an empirical study demonstrates their effectiveness. It is noted that the
impact of the heuristics is smaller for larger n, a consequence of the border
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pieces increasing linearly in n whilst the inner pieces grow quadratically. Given
the results above, and taking into account the factorial increase in nodes per
solution as a function of n, it is not surprising that in the literature to date there
has been no report of solving a single n = 10 instance of the E2-style GEMP-F.
Given this is the first attempt to transform the E2 problem into a problem with
statistically exploitable features, these initial results appear very promising. It is
fair to assume that similar heuristics, developed specifically for the inner pieces,
would reduce the nodes traversed in especially the n = 8 puzzles, bringing the
overall effectiveness more into line with the observed results of the n = 4 and
n = 6 puzzles.

The potential research tree is vast, especially as pre-processing elements to a
2× 2 phase space on Eternity II has not been explored previously. This includes
extensions of the present empirical analysis; development of a 2 × 2 Solution
Algorithm; development of further 2×2 variable selection metrics, especially for
inner pieces, and the construction of analytical proofs of the empirically observed
characteristics of EMP in this research. Calculating multiple global solutions to
an EMP instance may provide associated insights into why specific 2×2 elements
are filtered to the top of the reordered variables. If it were observed that the
metric filtered solution pieces across multiple solutions that the EMP possesses,
it would be further evidence of changes to solution density of the search space
at the upper percentiles of the reordered variables.

The value of pre-processing 2× 2 elements of an EMP as well as the scaling
ability of the Solution Algorithm could be empirically verified through the de-
velopment of a 2×2 Solution Algorithm. This Solution Algorithm could be used
to analyse net change in search space efficiency and solving time as a result of
transforming the domains of EMP’s and the reordering according to suggested
variable selection heuristics. This would require an efficient indexation of the
large numbers of 2×2 variables as well as update the variable space to eliminate
invalid elements as pieces featuring identical individual pieces were placed into a
solution. This would also provide evidence as to whether or not the transformed
problem space features puzzle hardness equal to an E2-style GEMP-F.

The creation of new domain reordering heuristics is suggested to further
determine the likelihood that an element belongs to a certain position on the
board. Performing Monte-Carlo simulations as the 2 × 2 Solution Algorithm
traverses the search space of an EMP could be used in an attempt to extract
statistical information inherent within the domain variables of elements. This
would determine the probabilistic likelihood that an element is a subset of a
global solution in each position on the board of the EMP. The implementation
of a 2 × 2 Solution Algorithm, using Monte-Carlo simulations to generate this
new variable selection metric, is the next natural step recommended to continue
this research.

Finally, it is proposed that the use of a transformation to 3× 3 pieces be in-
vestigated and applied to n = 6 puzzles. This may very well, in conjunction with
the heuristics proposed above, reduce the n = 6 puzzle into a solved problem,
much as has been demonstrated here for the n = 4 puzzle sizes.
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