Skip to main content

Push Recovery and Active Balancing for Inexpensive Humanoid Robots Using RL and DRL

  • Conference paper
  • First Online:
Book cover Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

Push recovery of a humanoid robot is a challenging task because of many different levels of control and behaviour, from walking gait to dynamic balancing. This research focuses on the active balancing and push recovery problems that allow inexpensive humanoid robots to balance while standing and walking, and to compensate for external forces. In this research, we have proposed a push recovery mechanism that employs two machine learning techniques, Reinforcement Learning and Deep Reinforcement Learning, to learn recovery step trajectories during push recovery using a closed-loop feedback control. We have implemented a 3D model using the Robot Operating System and Gazebo. To reduce wear and tear on the real robot, we used this model for learning the recovery steps for different impact strengths and directions. We evaluated our approach in both in the real world and in simulation. All the real world experiments are performed by Polaris, a teen-sized humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buja, A., Stuetzle, W., Shen, Y.: Loss functions for binary class probability estimation and classification: Structure and applications. Working draft. Accessed 3 Nov 2005

    Google Scholar 

  2. Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization based full body control for the atlas robot. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 120–127. IEEE (2014)

    Google Scholar 

  3. Gil, C.R., Calvo, H., Sossa, H.: Learning an efficient gait cycle of a biped robot based on reinforcement learning and artificial neural networks. Appl. Sci. 9(3), 502 (2019)

    Article  Google Scholar 

  4. Google. Tensorflow (2017). URL https://www.tensorflow.org

  5. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  6. Haarnoja, T., Zhou, A., Ha, S., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning (2018). arXiv preprint arXiv:1812.11103

  7. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175

    Chapter  Google Scholar 

  8. Hosseinmemar, A.: Push recovery and active balancing for inexpensive humanoid robots. PhD thesis, Department of Computer Science, University of Manitoba, Winnipeg, Canada (2019)

    Google Scholar 

  9. Hosseinmemar, A., Baltes, J., Anderson, J., Lau, M.C., Lun, C.F., Wang, Z.: Closed-loop push recovery for an inexpensive humanoid robot. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 233–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_22. ISBN 978-3-319-92058-0

    Chapter  Google Scholar 

  10. Hosseinmemar, A., Baltes, J., Anderson, J., Lau, M.C., Lun, C.F., Wang, Z.: Closed-loop push recovery for inexpensive humanoid robots. Appl. Intell. 49(11), 3801–3814 (2019). https://doi.org/10.1007/s10489-019-01446-z

    Article  Google Scholar 

  11. Kim, D., Lee, J., Sentis, L.: Robust dynamic locomotion via reinforcement learning and novel whole body controller (2017). arXiv preprint arXiv:1708.02205

  12. Kuindersma, S., et al.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Rob. 40(3), 429–455 (2015). https://doi.org/10.1007/s10514-015-9479-3

    Article  Google Scholar 

  13. Kumar, A., Paul, N., Omkar, S.: Bipedal walking robot using deep deterministic policy gradient (2018). arXiv preprint arXiv:1807.05924

  14. Morimoto, J., Cheng, G., Atkeson, C.G., Zeglin, G.: A simple reinforcement learning algorithm for biped walking. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2004, vol. 3, pp. 3030–3035. IEEE (2004)

    Google Scholar 

  15. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: Deepmimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. (TOG) 37(4), 143 (2018)

    Google Scholar 

  16. Robocup. Robocup technical challenge (2018). http://www.robocuphumanoid.org/wp-content/uploads/RCHL-2018-Rules-Proposal_final.pdf

  17. Sadeghnejad, J.S., et al.: Autman humanoid kid size team description paper (2016)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Hosseinmemar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosseinmemar, A., Anderson, J., Baltes, J., Lau, M.C., Wang, Z. (2020). Push Recovery and Active Balancing for Inexpensive Humanoid Robots Using RL and DRL. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics