Skip to main content

Exploiting IoT Data Crossings for Gradual Pattern Mining Through Parallel Processing

  • Conference paper
  • First Online:
ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium (TPDL 2020, ADBIS 2020)

Abstract

Today, with the proliferation of Internet of Things (IoT) applications in almost every area of our society comes the trouble of deducing relevant information from real-time time-series data (from different sources) for decision making. In this paper, we propose a fuzzy temporal approach for crossing such data sets with the ultimate goal of exploiting them for temporal gradual pattern mining. A temporal gradual pattern may take the form: “the higher the humidity, the lower the temperature, almost 15 min later”. In addition, we apply parallel processing on our implementation and measure its computational performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Availability of Materials

The source code for our FuzzTX algorithm is available at our GitHub repository: https://github.com/owuordickson/data-crossing.git. All the results of our test runs are available at our GitHub link: https://github.com/owuordickson/meso-hpc-lr/tree/master/results/fuzztx. Data employed in the research study came from OREME’s Coastline Observation System (https://oreme.org/observation/ltc/) and an OREME observatory which recorded the meteorological measurements at the Puéchabon site. This data is licensed under a Creative Commons Attribution 4.0 License and the site is annually supported by Ecofor, Allenvi and ANAEE-F (http://www.anaee-france.fr/fr/).

Notes

  1. 1.

    https://oreme.org.

References

  1. Ayouni, S., Yahia, S.B., Laurent, A., Poncelet, P.: Fuzzy gradual patterns: what fuzzy modality for what result? In: Proceedings of the 2010 International Conference of Soft Computing and Pattern Recognition, SoCPaR 2010, pp. 224–230 (2010). https://doi.org/10.1109/SOCPAR.2010.5686082

  2. Boukerche, A., Mostefaoui, A., Melkemi, M.: Efficient and robust serial query processing approach for large-scale wireless sensor networks. Ad Hoc Netw. 47, 82–98 (2016). https://doi.org/10.1016/j.adhoc.2016.04.012

    Article  Google Scholar 

  3. da Costa, R.A.G., Cugnasca, C.E.: Use of data warehouse to manage data from wireless sensors networks that monitor pollinators. In: 2010 Eleventh International Conference on Mobile Data Management, pp. 402–406, May 2010. https://doi.org/10.1109/MDM.2010.72

  4. Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large databases. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 297–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_26

    Chapter  Google Scholar 

  5. Eager, D.L., Zahorjan, J., Lazowska, E.D.: Speedup versus efficiency in parallel systems. IEEE Trans. Comput. 38(3), 408–423 (1989). https://doi.org/10.1109/12.21127

    Article  Google Scholar 

  6. Ecofor, A.: Flux measurements and garrigue ecosystem functioning: Puéchabon site (2019). https://data.oreme.org/puechabon/graphs

  7. Fernández, A.M., Gutiérrez-Avilés, D., Troncoso, A., Martínez-Álvarez, F.: Real-time big data analytics in smart cities from LoRa-based IoT networks. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 91–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20055-8_9

    Chapter  Google Scholar 

  8. Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Martínez-Álvarez, F.: Multi-step forecasting for big data time series based on ensemble learning. Knowl.-Based Syst. 163, 830–841 (2019). https://doi.org/10.1016/j.knosys.2018.10.009

    Article  Google Scholar 

  9. Gonçalves, N.M., dos Santos, A.L., Hara, C.S.: Dysto-a dynamic storage model for wireless sensor networks. J. Inf. Data Manag. 3(3), 147 (2012)

    Google Scholar 

  10. Grothe, M., van den Broecke, J., Linda, C., Volten, H., Kieboom, R.: Smart emission - building a spatial data infrastructure for an environmental citizen sensor network. In: Geospatial Sensor Webs Conference 2016, vol. 1762, pp. 29–31, August 2016

    Google Scholar 

  11. Hajj-Hassan, H., et al.: Multimapping design of complex sensor data in environmental observatories. In: Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics WIMS 2016, pp. 2:1–2:10. ACM, New York (2016). https://doi.org/10.1145/2912845.2912856

  12. Hajj-Hassan, H., Arnaud, N., Drapeau, L., Laurent, A., Lobry, O., Khater, C.: Integrating sensor data using sensor observation service: towards a methodology for the o-life observatory. Sens. Transducers 194(11), 99 (2015)

    Google Scholar 

  13. Hajj-Hassan, H., Laurent, A., Martin, A.: Exploiting inter- and intra-base crossing with multi-mappings: application to environmental data. Big Data Cogn. Comput. 2(3) (2018). https://doi.org/10.3390/bdcc2030025

  14. Huang, C.Y., Wu, C.H.: A web service protocol realizing interoperable internet of things tasking capability. Sensors 16(9) (2016). https://doi.org/10.3390/s16091395

  15. Kotsev, A., et al.: Extending INSPIRE to the Internet of Things through SensorThings API. Geosciences 8(6) (2018). https://doi.org/10.3390/geosciences8060221

  16. Laurent, A., Lesot, M.-J., Rifqi, M.: GRAANK: exploiting rank correlations for extracting gradual itemsets. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS (LNAI), vol. 5822, pp. 382–393. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04957-6_33

    Chapter  Google Scholar 

  17. Liang, S., Huang, C.Y., Khalafbeigi, T.: OGC SensorThings API part 1: sensing, version 1.0. (2016)

    Google Scholar 

  18. Małysiak-Mrozek, B., Lipińska, A., Mrozek, D.: Fuzzy join for flexible combining big data lakes in cyber-physical systems. IEEE Access 6, 69545–69558 (2018). https://doi.org/10.1109/ACCESS.2018.2879829

    Article  Google Scholar 

  19. Małysiak-Mrozek, B., Stabla, M., Mrozek, D.: Soft and declarative fishing of information in big data lake. IEEE Trans. Fuzzy Syst. 26(5), 2732–2747 (2018). https://doi.org/10.1109/TFUZZ.2018.2812157

    Article  Google Scholar 

  20. Mandal, S.N., Choudhury, J., Chaudhuri, S.B.: In search of suitable fuzzy membership function in prediction of time series data. Int. J. Comput. Sci. Issues 9, 293–302 (2012)

    Google Scholar 

  21. Owuor, D., Laurent, A., Orero, J.: Mining fuzzy-temporal gradual patterns. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE, New York, June 2019. https://doi.org/10.1109/FUZZ-IEEE.2019.8858883

  22. Pitarch, Y., Laurent, A., Poncelet, P.: Summarizing multidimensional data streams: a hierarchy-graph-based approach. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 335–342. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_33

    Chapter  Google Scholar 

  23. Ronzhin, S., et al.: Next generation of spatial data infrastructure: lessons from linked data implementations across europe. Int. J. Spat. Data Infrastruct. Res. 14, 84–106 (2019)

    Google Scholar 

  24. Sahoo, D., et al.: FoodAI: food image recognition via deep learning for smart food logging. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 2019. ACM Press (2019). https://doi.org/10.1145/3292500.3330734

  25. Vaidehi, V., Devi, D.S.: Distributed database management and join of multiple data streams in wireless sensor network using querying techniques. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 594–599, June 2011. https://doi.org/10.1109/ICRTIT.2011.5972459

  26. Wang, L., Chen, L., Papadias, D.: Query processing in wireless sensor networks. In: Aggarwal, C. (ed.) Managing and Mining Sensor Data, pp. 51–76. Springer, Boston (2013). https://doi.org/10.1007/978-1-4614-6309-2_3

    Chapter  Google Scholar 

  27. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work is part of a Ph.D. thesis and the authors would like to thank the French Government through the office of Co-operation and Cultural Service (Kenya) and the office of Campus France (Montpellier) for their involvement in creating the opportunity for this work to be produced. This work has been realized with the support of the High Performance Computing Platform: MESO@LR (https://meso-lr.umontpellier.fr/faq/), financed by the Occitanie/Pyrénées-Méditerranée Region, Montpellier Mediterranean Metropole and Montpellier University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dickson Odhiambo Owuor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Owuor, D.O., Laurent, A., Orero, J.O. (2020). Exploiting IoT Data Crossings for Gradual Pattern Mining Through Parallel Processing. In: Bellatreche, L., et al. ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium. TPDL ADBIS 2020 2020. Communications in Computer and Information Science, vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-55814-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55814-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55813-0

  • Online ISBN: 978-3-030-55814-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics