Skip to main content

Mathematical and Numerical Models of Atherosclerotic Plaque Progression in Carotid Arteries

  • Conference paper
  • First Online:
  • 1682 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

Abstract

We propose a mathematical model for the description of plaque progression in carotid arteries. This is based on the coupling of a fluid-structure interaction problem, arising between blood and vessel wall, and differential problems for the cellular evolution. A numerical model is also proposed. This is based on the splitting of the coupled problem based on a suitable strategy to manage the multiscale-in-time nature of the problem. We present some preliminary numerical results both in ideal and real scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Calvez, J.G. Houot, N. Meunier, A. Raoult, and G. Rusnakova. Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM: Proceedings, 30, 2010.

    Google Scholar 

  2. M. Cilla, E. Peña, and M. Martínez. Mathematical modelling of atheroma plaque formation and development in coronary arteries. Journal of the Royal Society, Interface/the Royal Society, 11:20130866, 2014.

    Article  Google Scholar 

  3. P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput., 33:1598–1622, 2011.

    Article  MathSciNet  Google Scholar 

  4. S. Deparis, D. Forti, G. Grandperrin, and A. Quarteroni. Facsi: A block parallel preconditioner for fluid-structure interaction in hemodynamics. Journal of Computational Physics, (327):700–718, 2016.

    Article  MathSciNet  Google Scholar 

  5. G. Di Tomaso, V. Diaz-Zuccarini, and C. Pichardo-Almarza. A multiscale model of atherosclerotic plaque formation at its early stage. IEEE transactions on bio-medical engineering, 58:3460–3, 2011.

    Article  Google Scholar 

  6. J. Donea, S. Giuliani, and J.P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33:689–723, 09 1982.

    Google Scholar 

  7. M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. International Journal for Numerical Methods in Engineering, 69(4):794–821, 2007.

    Article  MathSciNet  Google Scholar 

  8. B. Guerciotti, C. Vergara, L. Azzimonti, L. Forzenigo, A. Buora, P. Biondetti, and M. Domanin. Computational study of the fluid-dynamics in carotids before and after endarterectomy. Journal of Biomechanics, 49, 11 2015.

    Google Scholar 

  9. C.W Hirt, A.A Amsden, and J.L Cook. An arbitrary lagrangian-eulerian computing method for all flow speeds. Journal of Computational Physics, 14:227–253, 03 1974.

    Google Scholar 

  10. D. Ku, D. Giddens, C. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation - positive correlation between plaque location and low and oscillating shear-stress. Arteriosclerosis (Dallas, Tex.), 5:293–302, 05 1985.

    Google Scholar 

  11. F. Nobile, M. Pozzoli, and C. Vergara. Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics. Computers and Fluids, 86, 11 2013.

    Article  MathSciNet  Google Scholar 

  12. F. Nobile, M. Pozzoli, and C. Vergara. Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics. Journal of Computational Physics, 273:598–617, 2014.

    Article  MathSciNet  Google Scholar 

  13. F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Scientific Computing, 30:731–763, 01 2008.

    Google Scholar 

  14. E.W. Swim and P. Seshaiyer. A nonconforming finite element method for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 195(17–18):2088–2099, 2006.

    Article  MathSciNet  Google Scholar 

  15. M. Thon, A. Hemmler, A. Glinzer, M. Mayr, M. Wildgruber, A. Zernecke-Madsen, and M. Gee. A multiphysics approach for modeling early atherosclerosis. Biomechanics and Modeling in Mechanobiology, 17, 2017.

    Google Scholar 

  16. Y. Yang, M. Jager, W. and Neuss-Radu, and T. Richter. Mathematical modeling and simulation of the evolution of plaques in blood vessels. Journal of mathematical biology, 72, 2015.

    Google Scholar 

  17. T. Zohdi, G. Holzapfel, and S.A. Berger. A phenomenological model for atherosclerotic plaque growth and rupture. Journal of theoretical biology, 227:437–43, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pozzi, S., Vergara, C. (2021). Mathematical and Numerical Models of Atherosclerotic Plaque Progression in Carotid Arteries. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_109

Download citation

Publish with us

Policies and ethics