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Abstract

This work presents a new adaptive approach for the numerical simulation of a phase-
field model for fractures in nearly incompressible solids. In order to cope with locking
effects, we use a recently proposed mixed form where we have a hydro-static pressure as
additional unknown besides the displacement field and the phase-field variable. To fulfill
the fracture irreversibility constraint, we consider a formulation as a variational inequality
in the phase-field variable. For adaptive mesh refinement, we use a recently developed
residual-type a posteriori error estimator for the phase-field variational inequality which is
efficient and reliable, and robust with respect to the phase-field regularization parameter.
The proposed model and the adaptive error-based refinement strategy are demonstrated
by means of numerical tests derived from the L-shaped panel test, originally developed
for concrete. Here, the Poisson’s ratio is changed from the standard setting towards the
incompressible limit ν → 0.5.
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1 Introduction

Crack propagation is one of the major research topics in mechanical, energy, and environ-
mental engineering. A well-established variational approach for Griffith’s [5] quasi-static
brittle fracture was introduced by Francfort and Marigo [3]. Miehe et al. [10] introduced
the name ‘phase-field modeling’ for this variational approach. If the observed solid is
assumed to be nearly incompressible, the classical phase-field fracture model fails due to
volume-locking. In this work, we combine the mixed problem formulation, recently pro-
posed by the authors in [7], with the adaptive numerical solution based on a residual-type
error estimator for the arising phase-field variational inequality [6, 11]. This allows to
simulate crack propagation on adaptive refined meshes in nearly incompressible materials
by using the phase-field method.
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2 A Phase-field Model for Nearly Incompressible
Solids

2.1 Notation and Spaces

We emanate from a two-dimensional, open and smooth domain Ω ⊂ R2. Let I be a
loading interval [0,T], where T > 0 is the end time value. A displacement function
u : (Ω × I) → R2 is defined on the domain Ω. On a subset ΓD ⊂ ∂Ω of the boundary, we
enforce Dirichlet boundary conditions. For the phase-field variable ϕ : (Ω × I) → [0, 1]
with ϕ = 0 in the crack and ϕ = 1 in the unbroken material, we have homogeneous
Neumann values ∇ϕ · n = 0 on the whole boundary, where n is the unit outward normal to
the boundary. The physics of the underlying problem ask to enforce crack irreversibility,
i.e., that ϕ is monotone non-increasing with respect to t ∈ I.

By (a, b) :=
∫
Ω

a ·b dx for vectors a, b, the L2 scalar-product is denoted. The Frobenius
scalar product of two matrices of the same dimension is defined as A : B :=

∑
i
∑

j ai jbi j
and therewith the L2-scalar product is given by (A, B) :=

∫
Ω

A : B dx.
For a weak problem formulation, we consider a subdivision 0 = t0 < . . . < tN = T of

the interval I. In each time step, we define approximations (un, ϕn) ≈ (u(tn), ϕ(tn)) and
hence the irreversibility condition is approximated by ϕn ≤ ϕn−1 for all n = 1, . . . , N .
To simplify the notation, we omit the superscript (·)n and set u := un and ϕ := ϕn,
whenever it is clear from the context. The phase-field space is W := H1(Ω) with a
feasible set K := {ψ ∈ W | ψ ≤ ϕn−1 ≤ 1}. Further, we define the function spaces
V := (H1

0 (Ω))
2 := {w ∈ (H1(Ω))2 | w = 0 a.e. on ΓD}, U := L2(Ω), and X := {Λ ∈

W∗ | Λ ≥ 0}, whereW∗ is the dual space ofW. Further, let uD ∈ (H1(Ω))2 ∩ C0(ΓD)
be a continuation of the Dirichlet-data. For the classical phase-field fracture model, we
refer to Miehe et al. [10]. In the next section, the mixed form of the phase-field fracture
model is formulated.

2.2 Mixed Phase-field Fracture Model

The stress tensor σ(u) is given by σ(u) := 2µElin(u) + λtr(Elin(u))I with the Lamé
coefficients µ, λ > 0. The linearized strain tensor therein is defined as Elin(u) := 1

2 (∇u +
∇uT ). By I, the two-dimensional identity matrix is denoted. For a mixed formulation of
the problem, we define

p := λ∇ · u,

with p ∈ U, such that the pure elasticity equation reads as follows:
Find u ∈ V and p ∈ U such that

2µ(Elin(u), Elin(w)) + (∇ · w, p) = 0 ∀w ∈ V,
(∇ · u, q) − 1/λ(p, q) = 0 ∀q ∈ U.

Following [9], we consider the tensile (σ+(u, p)) and compressive (σ−(u, p)) parts of
the stress tensor. For this reason, the positive part of the pressure p+ ∈ L2(Ω) has to be
defined as p+ := max{p, 0}, and E+lin(u) is given as the projection of Elin(u) onto positive
semidefinite matrices. Now, we can split the stress tensor σ(u, p) as:

σ+(u, p) := 2µE+lin(u) + p+I,
σ−(u, p) := 2µ(Elin(u) − E+lin(u)) + (p − p+)I.

In the following, the critical energy release rate is denoted by Gc and a degradation
function is defined as g(ϕ) := (1 − κ)ϕ2 + κ, with a small regularization parameter κ > 0.
Next, we can formulate the mixed phase-field problem in incremental form [7]:
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Problem 1 (Mixed Phase-field Formulation) Given the initial data ϕn−1 ∈ K, find u :=
un ∈ {uD +V}, p := pn ∈ U and ϕ := ϕn ∈ K for loading steps n = 1, 2, . . . , N such
that

g(ϕn−1)(σ+(u, p), Elin(w)) + (σ−(u, p), Elin(w)) = 0 ∀ w ∈ V,
(∇ · u, q) − 1/λ(p, q) = 0 ∀ q ∈ U,

(1 − κ)(ϕσ+(u, p) : Elin(u), ψ − ϕ) + Gc(−1/ε(1 − ϕ), ψ− ϕ)
+Gcε(∇ϕ,∇(ψ − ϕ)) ≥ 0 ∀ ψ ∈ K ⊂ W,

where ε > 0 describes the bandwidth of the transition zone between broken and unbroken
material. This weak formulation in Problem 1 can be reformulated to a complementarity
system by introducing a Lagrange multiplier Λ ∈ X, see [6, 7].

The numerical treatment of the phase-field system in a monolithic fashion including
the discretization as well as the adaptive refinement strategy are discussed in the following.

2.3 Numerical Treatment and Programming Code

Based on the complementarity formulation of Problem 1, with the help of a Lagrange
multiplier, the crack irreversibility constraint is enforced, see [7, Section 4.1]. For the
discretization in space, we employ a Galerkin finite element method in each loading
step. To this end, the domain Ω is partitioned into quadrilaterals. To fulfill a discrete
inf-sup condition, Taylor-Hood elements with biquadratic shape functions (Q2) for the
displacement field u and bilinear shape functions (Q1) for the pressure variable p as well
as for the phase-field variable are used. For further details on the stable mixed form of
the classical phase-field fracture model as well as the handling of the crack irreversibility
condition and the numerical solving steps, we refer to [7].
The overall implementation is done in DOpElib [2, 4] using the finite element library
deal.II [1].

2.4 Adaptive Refinement

A residual-type a posteriori error estimator η for the classical phase-field fracture model,
presented and tested in [6], provides a robust upper bound. Here, robust means that the
unknown constant in the bound does not depend on ε such that the quality of the estimator
is independent of ε . The mesh adaptation is realized using extracted local error indicators
from the a posteriori error estimator in [6, Section 3.2] on the givenmeshes over all loading
steps.

In the following, Mn denotes the mesh in the incremental step n and In
h
is the corre-

sponding nodal interpolation operator on the meshMn. The searched discrete quantities
are denoted by an index (·)h , i.e., the displacement un

h
, the phase-field variable ϕn

h
, the

pressure pn
h
, and the Lagrange multiplier Λn

h
. The adaptive solution strategy is given in

the following.
Algorithm 1 Given a partition in time t0 < . . . < tN , and an initial mesh Mn = M for
all n = 0, . . . , N .

1. Set ϕ0
h
= I0

h
ϕ0 and solve the discrete complementarity system to obtain the discrete

solutions un
h
, ϕn

h
, pn

h
,Λn

h
for all n = 1, . . . , N .

2. Evaluate the error estimator in order to obtain ηn for each incremental step.
3. Stop, if

∑N
n=1(η

n)2 and ‖In
h
ϕn−1 − ϕn−1‖ are small enough for all n = 1, . . . , N .

4. For each n = 1, . . . N , mark elements inMn based on ηn according to an optimiza-
tion strategy, as implemented in deal.II [1].

5. Refine the meshes according to the marking and satisfaction of the constraints on
hanging nodes.

6. Repeat from step 1.
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3 Numerical Results

In this section, the mixed phase-field model formulation is applied to simulate crack
propagation in an L-shaped specimen with the help of adaptive refined meshes. First, the
setup of the L-shaped panel test and the corresponding material and numerical parameters
are given. Afterwards, the load-displacement curves and the crack paths are discussed for
three different Poisson ratios from the standard setting towards the incompressible limit
ν → 0.5.

3.1 Configuration of the L-shaped Panel Test

The L-shaped panel test was originally developed by Winkler [12] to test the crack pattern
of concrete experimentally and numerically. Concrete is compressible with a Poisson ratio
of ν = 0.18. To simulate fracture propagation in nearly incompressible materials, within
this work, the Poisson’s ratio is increased towards an incompressible solid.

500mm
Γtopy

500mm

250mm
Γmeasured

x

250mm

Γuy
30mm

Figure 1: Geometry and boundary condi-
tions of the L-shaped panel test.

Parameter Description Value

µ Lamé coefficient 10.95kN/mm2

λ Lamé coefficient 6.16kN/mm2

ν Poisson’s ratio 0.18
Gc Critical energy rate 8.9 × 10−5kN/mm
h Discretization parameter 7.289mm
ε Bandwidth 14.0mm
δt Incremental size 10−4s
I End time 0.4s
κ Regularization parameter 10−10

Table 1: Standard settings of the material and
numerical parameters for the L-shaped panel
test.

In Figure 1, the test geometry of the L-shaped panel test is declared. In the right
corner Γuy on a small stripe of 30mm at the boundary, a special displacement condition
is defined as a loading-dependent non-homogeneous Dirichlet condition:

uy = t ·mm/s, for t ∈ I := [0; 0.4s],

where t denotes the total time and T = 0.4s is the end time which corresponds to a
displacement of 0.4mm. The time interval I is divided into steps of the loading size δt.

Remark 1 To avoid developing unphysical cracks in the singularity on the boundary Γuy ,
the domain where the phase-field inequality is solved, is constrained to the subset given
by x <= 400mm similar to [8]. For x > 400mm we assume ϕ = 1.
In Table 1, the required material and numerical parameters for the L-shaped panel test are
listed. Keep in mind, that the given values for µ and λ fit to the original material concrete
and are changed for other values of ν in the following numerical tests, as listed in Table 2.
Further, the discretization parameter h in Table 1 changes within the refinement steps, so
h is the starting mesh parameter on the coarsest mesh before adaptive refining.

In Table 3, the minimal and maximal number of degrees of freedom are given for
three different test cases ν = 0.18, ν = 0.40 and ν = 0.49. The adaptive computations
are based on a three times uniform refined mesh and three adaptive refinement steps. For
comparison, also the load-displacement curves for tests, executed on a four times uniform
refinedmesh, are added in Figure 2. The load-displacement curves in Figure 2 indicate that
the higher the Poisson ratio, the higher is the maximal loading value before the crack starts
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ν µ λ

0.18 10.95 · 103 6.18 · 103

0.40 10.95 · 103 42.36 · 103

0.49 10.95 · 103 51.89 · 104

Table 2: Tests with different
Poisson’s ratios.

ν min. #DoF max. #DoF

0.18 uniform 213, 445
0.18 53, 925 125, 599
0.40 uniform 213, 445
0.40 53, 925 121, 709
0.49 uniform 213, 445
0.49 53, 925 91, 574

Table 3: The minimal and
maximal number of degrees
of freedom (DoF) per in-
cremental step on adaptive
meshes.

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Displacement u [mm]

Lo
ad

F y
[N
]

ν = 0.18 uniform
ν = 0.18 adaptive
ν = 0.40 uniform
ν = 0.40 adaptive
ν = 0.49 uniform
ν = 0.49 adaptive

Figure 2: Load-displacement curves for the L-shaped
panel test with different Poisson ratios and adaptively re-
fined meshes versus uniform refinement. Weighted load-
ing measured on the lower left boundary Γmeasured labeled
in Figure 1.

propagating. Further, the path of the load-displacement curves for ν = 0.18, in particular
for the adaptive test run in Figure 2, coincide with the numerical and experimental results
in concrete [12]. In general, the adaptive computations exhibit a faster crack growth as it
is expected in brittle materials, and may call for additional adaptive refinement of the time
discretization for which models and indicators still need to be developed. As a second
quantity of interest, in Figure 3, the crack path can be observed in certain incremental
steps on adaptive refined meshes, exemplary for ν = 0.40. The refinement strategy based
on the error indicators steers the resolution of the crack area, especially of the crack tip as
visualized in Figure 4.

4 Conclusion

We have combined and extended [7] and [6] to adaptive refinement based on robust
residual-type a posteriori error estimators for phase-field model for fractures in nearly
incompressible materials. The method is demonstrated on a numerical test for the L-
shaped panel test. Therefore, we proposed three test cases in Section 3 with different
Poisson ratios ν approximating the incompressible limit ν = 0.5. The load- displacement
curves of the three tests show a correlation between an increasing Poisson ratio and a
stronger loading force. In view of mesh adaptivity, we observed very convincing findings:
the mesh refinement is localized in the area of the (a priori unknown) fracture path and
allows to resolve the crack tip region. Further, our adaptive refined meshes allow for a
faster crack growth compared to uniformly refined meshes.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 392587580. It is part of the Priority Program
1748 (DFG SPP 1748) Reliable Simulation Techniques in Solid Mechanics. Development
of Non-standard Discretization Methods, Mechanical and Mathematical Analysis.
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Figure 3: Poisson’s ratio ν = 0.40. Snapshots of the phase-field function after three adaptive
refinement steps in the incremental steps 0.2082, 0.209, 0.2099, 0.2136, 0.2323 and 0.2997s
on the current adaptive mesh.

Figure 4: Poisson’s ratio ν = 0.40. Enhanced extract of the phase-field function in the crack
tip after three adaptive refinement steps in the incremental steps 0.2099, 0.2176 and 0.2997s.
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