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Abstract

In this note we introduce a mixed dimensional Stokes-Darcy coupling
where a d dimensional Stokes’ flow is coupled to a Darcy model on the
d − 1 dimensional boundary of the domain. The porous layer introduces
tangential creeping flow along the boundary and allows for the modelling
of boundary flow due to surface roughness. This leads to a new model of
flow in fracture networks with reservoirs in an impenetrable bulk matrix.
Exploiting this modelling capability, we then formulate a fluid-structure
interaction method with contact, where the porous layer allows for me-
chanically consistent contact and release. Physical seepage in the contact
zone due to rough surfaces is modelled by the porous layer. Some numer-
ical examples are reported, both on the Stokes’-Darcy coupling alone and
on the fluid-structure interaction with contact in the porous boundary
layer.

1 Introduction

In numerous environmental or biomedical applications there is a need to model
the coupling between a flow in a reservoir and flow in a surrounding porous
medium. This is particularly challenging if the porous medium is fractured
and the bulk matrix has very low permeability. Typically the fractures are
modelled as d− 1 dimensional manifolds, embedded in a d dimensional porous
bulk matrix. For the modelling of the fractured porous medium we refer to
[3]. Observe however that if the bulk permeability is negligible the fluid in
the reservoir can not penetrate into the fractures since the d − 1 dimensional
manifolds have an intersection of the reservoir boundary of d− 1 measure zero.
This means that such a model can not be used for the fluid flow between two
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reservoirs connected by a fracture in an impenetrable medium. Here we propose
to introduce a Darcy equation for the tangential flow on the boundary of the
reservoir. Since this equation is set on a d − 1 dimensional manifold it can
provide an interface allowing for flow from the reservoir to the cracks. The flow
on the boundary communicates with the flow in the cracks through continuity
of pressure and conservation expressed by Kirchhoff’s law. This gives a cheap
and flexible model for flow in reservoirs connected by fractures.

Our original motivation for this model is the particular case of fluid struc-
ture interaction with contact where the situation described above occurs when
two boundaries enter in contact provoking a change of topology of the fluid do-
main. It has recently been observed by several authors [1, 4] that the consistent
modelling of fluid-structure interaction with contact requires a fluid model, in
particular a pressure, also in the contact zone. Indeed, some seepage is expected
to occur due to permeability of the contacting bodies or their surface rough-
ness. Otherwise there is no continuous mechanism for the release of contact
and non-physical voids can occur. For instance, it was argued in [1] that a
consistent modelling of FSI with contact requires a complete modelling of the
FSI-poroelastic coupling. Similar ideas were introduced in [4], but for computa-
tional reasons. Indeed, in the latter reference an elastic body immersed in a fluid
enters in contact with a rigid wall and to allow for a consistent numerical mod-
elling the permeability of the wall is relaxed. This motivates the introduction of
an artificial porous medium whose permeability goes to zero with the mesh-size.
Both approaches allow for the seepage that appears to be necessary for physical
contact and release. However, in case the contacting solids are (modelled as)
impenetrable, this seepage must be due to porous media flow in a thin layer
in the contact zone due to surface roughness. The complete modelling of the
poroelastic interaction of [1] or the bulk porous medium flow of [4] then appears
artificial and unnecessarily expensive. For such situations the mixed dimen-
sional modelling suggested above can offer an attractive compromise between
model detail and computational cost.

In this note, we will focus exclusively on the modelling aspect. The coupled
Stokes-Darcy model is introduced in section 2. Then, in section 3, we show
how the ideas of [4] can be used to model FSI with contact together with the
mixed-dimensional fluid system. Finally, we illustrate the two model situations
numerically in section 4. First, the Stokes’-Darcy reservoir coupling (section
4.1) and then the full FSI with contact (section 4.2). In the latter case, we
also give comparisons with the results from [4]. The numerical analysis of the
resulting methods will be the subject of future work.

2 The coupled Stokes-Darcy system

We consider the coupling of a Darcy system in a thin-walled domain Ωl =
Σl × (− ε

2 ,
ε
2 ) ∈ Rd for d = 2, 3 with a Stokes equation in the bulk domain Ωf .
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The Darcy problem on Ωl writes{
ul +K∇pl = 0

∇ · ul = 0
in Ωl, (1)

where ul denotes the Darcy velocity, pl the Darcy pressure and K is a d × d
matrix that allows for the decomposition

K∇pl = Kτ∇τpl +Kn∂npl.

We denote the upper boundary of Ωl which couples to Ωf by γf and the outer
boundary by γo. The normal vector n of the middle surface Σl of Ωl is chosen
in such a way that it points towards γo.

By averaging across the thickness ε, Martin, Jaffré and Roberts derived in
[3] an effective equation for the averaged pressure across the thickness

Pl :=
1

ε

∫ ε
2

− ε2
pl.

Under the modelling assumption that the average pressure is equal to the mean
of the pressures on the upper and lower boundary

Pl =
1

2
(pl|γf + pl|γo) in Σl, (2)

the authors derived the system
−∇τ · (εKτ∇τPl) = ul,n|γf − ul,n|γo

pl|γf = Pl +
εK−1

n

4
(ul,n|γo + ul,n|γf )

in Σl. (3)

Here, ul,n = ul · n denotes the normal component of the velocity and τ is a
tangential vector of Σl. We will couple (3) to Stokes flow in Ωf{

ρf∂tuf −∇ · σf (uf , pf ) = 0

∇ · uf = 0
in Ωf , (4)

where uf denotes the fluid velocity, pf the pressure, ρf the fluid density,

σf (uf , pf ) := µ(∇uf +∇uTf )− pfI,

the fluid Cauchy stress tensor and µ the dynamic viscosity. We assume that the
coupling to the Darcy system (1) on γf takes place via the interface conditions

σf,nn = −pl
τTσfn = 0

uf,n = ul,n

on γf , (5)
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where σf = ∇uf − pfI and σf,nn = nTσfn. In the lower porous wall γo we
assume for simplicity that ul,n = 0. Then, the relations (3) can be written as

−∇τ · (εKτ∇τPl) = uf,n

σf,nn = −Pl −
εK−1

n

4
uf,n

in Σl.

Note that the only remaining porous medium variable is the averaged pressure
Pl. In the limit of permeability Kn → 0, the system converges to a pure Stokes
system with slip conditions on γf with an extension of the fluid forces into the
porous medium pressure Pl.

We have the following coupled variational problem for (uf , pf , Pl):
ρf (∂tuf , vf )Ωf + (σf (uf , pf ),∇vf )Ωf + (qf ,∇ · uf )Ωf

+
(
Pl, vf,n

)
Σl

+
εK−1

n

4

(
uf,n, vf,n

)
Σl

= 0,

(εKτ∇τPl,∇τql)Σl − (uf,n, ql
)

Σl
= 0,

(6)

for all vf , qf , ql, where n = nf is the outer normal of the fluid domain Ωf .

3 The fluid-structure-poroelastic-contact inter-
action system

Now, we consider a fluid-structure-contact interaction system with a thin porous
layer on the part of the exterior boundary, where contact might take place. The
moving boundary of the solid is denoted by Σ(t) and the porous layer by Σl. In
absence of contact, we have the following system of equations{

ρf∂tuf −∇ · σf (uf , pf ) = 0

∇ · uf = 0
in Ωf (t),

ρs∂tḋ−∇ · σs(d) = 0 in Ωs(t),

uf = ḋ, σsn = σfn in Σ(t),

−∇τ · (εKτ∇τPl) = ul,n|γf

σf,nn = −Pl −
εK−1

n

4
ul,n|γf︸ ︷︷ ︸

σp

τTσfn = 0

in Σl, (7)

where, in addition to the quantities introduced above, ρs denotes the solid
density, d stands for the solid displacement and σs denotes the tensor of linear
elasticity

σs =
λs
2

(
∇d+∇dT

)
+
µs
2

tr
(
∇d+∇dT

)
.
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In addition, we impose that the solid Ωs can not penetrate into the porous
medium Σl

dn − g ≤ 0, λ ≤ 0, λ(dn − g) = 0 on Σ(t). (8)

Here, g denotes the gap function to Σl and λ is a Lagrange multiplier for the
no-penetration condition defined by

λ = σs,nn − σf,nn on Σ(t) \ Σl,

λ = σs,nn − σp on Σ(t) ∩ Σl.

The “switch” on the right-hand side occurs, as the solid on one side of Σ(t)
couples either to the fluid Ωf or the porous medium Σl on the other side of
Σ(t). The conditions (8) can equivalently be written as

λ = γC
[
dn − g − γ−1

C λ︸ ︷︷ ︸
Pγ

]
+

on Σ(t)

for arbitrary γC > 0. Using this notation, we can characterise the zone of
“active” contact as follows

Σc(t) =
{
x ∈ Σ(t) |Pγ > 0

}
.

To summarise, we have the following interface conditions:

• Contact condition on Σ(t):

dn − g ≤ 0, λ ≤ 0, λ(dn − g) = 0 on Σ(t).

• Kinematic coupling on Σfsi(t) = Σ(t)\Σl

uf = ḋ on Σfsi(t).

• Dynamic coupling on Σ(t):

σsn = λn− σpn = γC [Pγ ]+n− σpn on Σ(t) ∩ Σl,

σsn = λn− σfn = γC [Pγ ]+n− σfn on Σ(t) \ Σl.

We have the following Nitsche-based variational formulation: Find uf ∈ Vf , pf ∈
Lf , d ∈ Vs, Pl ∈ Vl such that

(∂tuf , v)Ωf + (∂tḋ, w)Ωs + af
(
uf , pf ; v, q

)
+ as(d,w)

− (σfn, v − w)Σ(t)\Σl − (uf − ḋ, σf (v,−q))Σ(t)\Σl +
γfsi

h
(uf − ḋ, v − w)Σ(t)\Σl

− (σp, v · n)Σl\Σ(t) − (σp, w · n)Σl∩Σ(t) +
(
[Pγ ]+, w · n

)
Σ(t)

+ (εKτ∇τPl,∇τql)Σl −
(
uf,n, ql

)
Σl\Σ(t)

−
(
ḋn, ql

)
Σl∩Σ(t)

= 0

∀v ∈ Vf , q ∈ Lf , w ∈ Vs, ql ∈ Vl.
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The porous stress σp is given by

σp = −Pl +
εK−1

n

4
ul,n|γf =

{
−Pl +

εK−1
n

4 uf,n on Σl \ Σ(t)

−Pl +
εK−1

n

4 ḋn on Σl ∩ Σ(t).
(9)

4 Numerical experiments

Here we will report on some numerical experiments using the above models.
First we consider the mixed dimensional Stokes’-Darcy system and then the
fluid-structure interaction system with contact and porous layer in the contact
zone.

4.1 Stokes-Darcy example

In this example, we consider two disconnected fluid reservoirs, the domain Ωf ,
connected through a thin-walled porous media located on the bottom wall Σl, as
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(0,0.8)
<latexit sha1_base64="kQbEkRwIWKf7+fuuyqvgESoqwtY=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBEqyLJbEXssevFYwX5Au5Rsmm1Ds9klyQpl6Y/w4kERr/4eb/4b03YP2vpg4PHeDDPzgkRwbVz3G62tb2xubRd2irt7+weHpaPjlo5TRVmTxiJWnYBoJrhkTcONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjpXbFvXSd2kW/VHYddw68SryclCFHo1/66g1imkZMGiqI1l3PTYyfEWU4FWxa7KWaJYSOyZB1LZUkYtrP5udO8blVBjiMlS1p8Fz9PZGRSOtJFNjOiJiRXvZm4n9eNzVhzc+4TFLDJF0sClOBTYxnv+MBV4waMbGEUMXtrZiOiCLU2ISKNgRv+eVV0qo63pVz/VAt12/zOApwCmdQAQ9uoA730IAmUBjDM7zCG0rQC3pHH4vWNZTPnMAfoM8f/NGOCA==</latexit>

(0,0.9)
<latexit sha1_base64="pG2AfMRYZ6Jcf7g5HVp84kYgal0=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJUkCVbEfVW9OKxgv2AdinZNNuGZrNLkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBYng2mD87aysrq1vbBa2its7u3v7pYPDpo5TRVmDxiJW7YBoJrhkDcONYO1EMRIFgrWC0d3Ubz0xpXksH804YX5EBpKHnBJjpVYFn2P35qxXKmMXz4CWiZeTMuSo90pf3X5M04hJQwXRuuPhxPgZUYZTwSbFbqpZQuiIDFjHUkkipv1sdu4EnVqlj8JY2ZIGzdTfExmJtB5Hge2MiBnqRW8q/ud1UhNe+xmXSWqYpPNFYSqQidH0d9TnilEjxpYQqri9FdEhUYQam1DRhuAtvrxMmlXXu3AvH6rl2m0eRwGO4QQq4MEV1OAe6tAACiN4hld4cxLnxXl3PuatK04+cwR/4Hz+AP5Wjgk=</latexit>

Figure 1: Geometrical configuration for the Stokes model with a thin-walled
porous medium on the bottom wall.

shown in Figure 1. The physical parameters are µ = 0.03, ρf = 1, ε = 0.01 and
Kτ = Kn = 1. We impose a pressure drop across the two parts of the boundary
ΓNf . The purpose of this example is to illustrate how the porous model is able to
connect the fluid flow between the two containers. This can be clearly inferred
from the results reported in Figure 2, which respectively show a snapshot of
the fluid velocity, the elevation of the fluid pressure and the associated porous
pressure.

4.2 Fluid-structure interaction with contact

To test the FSI-contact model, we consider flow in a 2-dimensional pipe, where
the upper wall is elastic, see Figure 3. Due to the application of a large pressure
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Figure 2: Top left: Snapshot of the fluid velocity. Top right: Elevation of the
fluid pressure. Bottom: Porous pressure.

P on the left and right boundary, the upper wall is deflected downwards until
it reaches the bottom. Note that when contact occurs, the configuration is
topologically equivalent to the situation in section 4.1. Shortly before the time of
impact we set P to zero, such that contact is realeased again after a certain time.
This model problem is taken from [4], where further details on the configuration
and the discretisation can be found. To deal with the topology change in the
fluid domain at the impact, we apply a Fully Eulerian approach for the FSI
problem [2]. In order to obtain a continuous and physically relevant transition
from FSI to solid-solid contact, we use the FSI-contact model derived in section 3
and place a thin porous domain Σl on the lower boundary.

In Figure 4 we compare this model for different parameters K = Kτ = Kn

and ε with the approaches for FSI-contact problems introduced in [4] in terms
of the minimal distance of the solid to Σp over time. In [4] two approaches were
presented in order to extend the fluid stresses to the contact region during solid-
solid contact, namely a so-called relaxed and an artificial fluid approach. It was
observed that for the artificial fluid approach contact happens earlier, as pene-
tration of the fluid flow into the artificial region is prevented only asymptotically,
i.e. uf,n → 0 (h → 0) on Σp, in contrast to uf,n = 0 for the relaxed approach.
In the model presented here, we have similarly from (7) and ul,n = uf,n on Σp

uf,n = −∇τ · (εKτ∂τPl)→ 0 (εKτ → 0).

For this reason we observe in Figure 4 that the impact happens earlier for a
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Figure 3: Geometrical configuration for the FSI-contact model. We apply a
porous medium model on the (rigid) lower wall, where contact might take place.
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Figure 4: Minimal distance of Ωs to the lower wall Σp over time. Right:
zoom-in around the contact interval. We compare the new approach presented
in Section 3 for different parameters with the artificial fluid and the relaxed
contact approach studied in [4].

larger value of εKτ . The time of the release seems to depend also on εK−1
n , which

appears in the definition of σp (9). A detailed investigation of this dependence
and the investigation of stability and convergence of the numerical method are
subject to future work.
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