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Abstract Parabolic fully nonlinear equations may be found in various applications,
for instance in optimal portfolio management strategy. A numerical method for the
approximation of a canonical parabolic Monge-Ampère equation is investigated in
this work. A second order semi-implicit time-stepping method is presented, coupled
to safeguarded Newton iterations A low order finite element method is used for space
discretization. Numerical experiments exhibit appropriate convergence orders and a
robust behavior.

1 Introduction

Fully nonlinear equations, and among them the elliptic Monge-Ampère equation,
have raised a lot of interest from the theoretical and numerical communities [1, 7, 9,
10], and also from the authors [4, 6]. We focus here on a time-evolutive, parabolic,
Monge-Ampère equation that has raised much less attention from a computational
perspective. Some known applications of interest arise, e.g., in finance [12], or in
mesh adaptation techniques [2, 3]. Numerical results for parabolic fully nonlinear
equations, including the equation that we study here, are given, e.g., in [8].

The purpose of this work is to introduce a second-order semi-implicit numerical
scheme for the approximation of the time-evolutive Monge-Ampère equation. It
extends the Newton-based approaches in [1, 10] to the non-stationary case by means
of a midpoint time-stepping algorithm. Continuous, low order, finite elements are
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used for the space discretization. Numerical validation is achieved with simple
examples, and appropriate convergence results are obtained from a computational
perspective.

2 Model problem

LetΩ be a smooth bounded convex domain ofR2, andT > 0 a fixed time horizon.We
consider a time evolutive two-dimensional Monge-Ampère equation, with Dirichlet
boundary conditions, which reads as follows: find u : Ω × (0,T ) → R satisfying




∂u
∂t
− det D2u = f in Ω × (0,T ),

u = g in ∂Ω × (0,T ),
u(0) = u0 in Ω.

(1)

Here f = f (x, t), g = g(x, t) and u0 = u0(x) are given functions with the required
regularity, and D2u(:= D2

xu) is the Hessian of the unknown function u (with respect

to the space variable x), defined by D2u = (D2
i ju)1≤i, j≤2, and D2

i ju =
∂2u

∂xi∂x j
.

We assume in the sequel that u0 is convex, in order to favor the regularity of a
smooth transient. A constraint on the time step may have to be enforced to make sure
that the numerical solution remains convex at all times. Numerical results will show
that the right-hand side f may change sign, as long as the numerical solution remains
convex and the operator in the parabolic Monge-Ampère equation remains coercive.
Following [9], the Monge-Ampère operator can be rewritten under a divergence
form, namely

det D2u =
1
2
∇ ·

(
cof(D2u)∇u

)
.

The differential operator of (1) can thus be written as

∂u
∂t
−

1
2
∇ ·

(
cof(D2u)∇u

)
= f in Ω × (0,T ), (2)

meaning that (1) can be interpreted as a, strongly nonlinear, parabolic equation
reminiscent of a nonlinear heat equation. When looking for a convex solution, if the
nonlinearity cof(D2u) remains positive definite, then the operator is well-posed. The
challenge becomes thus to capture convex solutions, and to derive numericalmethods
that take into account accurately the strongly nonlinear diffusion and guarantee the
coercivity of the diffusion operator at all times.

Remark 1 In [9], an alternative formulation is considered, which consists in augment-
ing the differential equation into a differential system. This approach has proved to
be very efficient in capturing a stationary solution. However, numerical experiments
have shown that it is not efficient to approximate the whole transient trajectory of
the evolutive problem.
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In the sequel, we thus propose a second-order numerical method for the numerical
approximation of the solution of (1), which relies on an implicit time-stepping
scheme and a Newton’s method.

3 Numerical algorithm

Let ∆t > 0 be a constant given time step, tn = n∆t, n = 1, 2, . . ., to define the
approximations un ' u(tn). The numerical algorithm proposed hereafter relies on
a discretization of the formulation (1) In order to handle the stiff behavior of the
Monge-Ampère equation, a semi-implicit time discretization of (1) is considered. In
this case, we advocate a midpoint rule and, un being known, we look for the next
time step approximation un+1 satisfying

un+1 − un

∆t
− det

(
D2un+1/2

)
= f n+1/2 n = 0, 1, . . . , (3)

where un+1/2 :=
un+1 + un

2
and f n+1/2 := f

(
tn+1 + tn

2

)
. Then (3) can be written as

un+1/2 −
1
2
∆t det D2un+1/2 = un +

1
2
∆t f n+1/2, (4)

and
un+1 = 2un+1/2 − un. (5)

Let us define bn := un + 1
2∆t f n+1/2. Relationship (4) is rewritten at each time step as

F (un+1/2) := un+1/2 −
∆t
2

det(D2un+1/2) − bn = 0.

This nonlinear problem is solved with a safeguarded Newton method at each time
step. For the ease of notation, we denote un+1/2 by v. Starting from the initial guess
v0 = un, the increments δvk of the Newton method are obtained by solving

DF (vk )δvk = −F (vk ), k = 0, 1, 2, . . . , (6)

then, the next iterate is given by vk+1 = vk + δvk , until some stopping criterion
is satisfied at step M , and set un+1/2 := vM . At the end of the Newton loop, the
approximation of the solution at the next time step is given by (5). In order to write
the variational formulation corresponding to (6) we use the following identity which
holds for 2 × 2 symmetric matrices (see, e.g., [1]):

det D2(a + b) = det(D2a) + det(D2b) + tr(A∗D2b), (7)

where A∗ = cof(D2a) = det(D2a)(D2a)−1. This yields

tr(A∗D2b) = cof(D2a):D2b = ∇ · (cof(D2a)∇b),
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where A : B := tr(ATB) is the Frobenius inner product for A, B ∈ R2×2. Equation
(7) becomes,

det D2(a + b) = det(D2a) + ∇ · (cof(D2a)∇b) + det(D2b). (8)

We thus have, for s ∈ R,

F (vk+sδv) = vk+sδv−
∆t
2

(
det(D2vk ) + ∇ · (cof(D2vk )s∇δv) + s2 det(D2δv)

)
−bn.

We thus compute DF (vk ) as follows:

DF (vk )δv = lim
s→0

F (vk + sδv) − F (vk )
s

= δv −
∆t
2
∇ ·

(
cof(D2vk )∇δv

)
. (9)

In order to incorporate (9) in the variational formulation corresponding to (6), let us
define Vg =

{
w ∈ H1(Ω) : w |∂Ω = g

}
, and V0 = H1

0 (Ω). Using (9), the variational
formulation corresponding to the Newton system (6) can be explicited into : find
δvk ∈ V0, for k = 0, 1, 2, . . ., such that∫

Ω

δvkwdx +
∆t
2

∫
Ω

cof(D2vk )∇(δvk ) · ∇wdx =

−

∫
Ω

(
vk −

∆t
2

det(D2vk ) − bn
)
wdx, (10)

for all w ∈ V0. This Newton’s variational problem is coupled with a safeguarding
strategy (Armijo’s rule) when needed. In addition, the method guarantees that the
matrix cof(D2vk ) remains positive definite. This procedure is achieved by computing
the SVD of this matrix, and truncating its negative eigenvalues to zero.

4 Finite Element Discretization

In order to avoid the construction of finite element sub-spaces of H2(Ω) and to handle
arbitrary shaped domains, we consider a mixed low order finite element method for
the approximation of (10) see, e.g., [4, 6]. Let us thus denote by Th a regular finite
element discretization of Ω ⊂ R2 in triangles. From Th , we approximate the spaces
L2(Ω), H1(Ω) and H2(Ω), respectively H1

0 (Ω) and H2(Ω) ∩ H1
0 (Ω), by the finite

dimensional space Vh , respectively V0h , defined by:

Vh =
{
v ∈ C0

(
Ω
)
, v |K ∈ P1, ∀K ∈ Th

}
, V0,h = Vh ∩ H1

0 (Ω), (11)

with P1 the space of the two-variables polynomials of degree one. Moreover, let us
defineVg,h =

{
v ∈ C0

(
Ω
)
, v |K ∈ P1, ∀K ∈ Th, v |∂Ω = g

}
. As in [6], for a function
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ϕ being given in H1(Ω), we approximate the differential operators D2
i j by D2

hij
, for

1 ≤ i, j ≤ 2, defined by D2
hij

(ϕ) ∈ V0h and

∫
Ω

D2
hij (ϕ)vdx = −

1
2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+
∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈ V0h . (12)

As emphasized in [11], the a priori estimates for the error on the second derivatives of
the solution ϕ are, in general,O(1) in the L2-normwhen using piecewise linearmixed
finite elements. Therefore the convergence properties of the solution method depend
strongly on the type of triangulations one employs. To cure the non-convergence
properties associated with the approximations of D2

hij
(ϕ), we use a regularization

procedure as in [6], and we replace (12) by: find D2
hij

(ϕ) ∈ V0h , 1 ≤ i, j ≤ 2, such
that

∫
Ω

D2
hij (ϕ)vdx + C

∑
K ∈Th

|K |
∫
K

∇D2
hij (ϕ) · ∇vdx =

−
1
2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+
∂ϕ

∂x j

∂v

∂xi

]
dx,

where C ≥ 0 and |K | = meas(K ), Set u0
h
be an approximation of u0 in Vg,h . At each

time step, the numerical approximation of (10) is computed as follows: let v0
h

:= un
h

at each time iteration; then, for k = 0, 1, 2, . . ., we search for δvk
h
∈ V0,h such that:

∫
Ωh

δvkhwhdx +
∆t
2

∫
Ωh

cof(D2vkh )∇(δvkh ) · ∇whdx =

−

∫
Ω

(
vkh −

∆t
2

det(D2vkh ) − bnh

)
whdx, (13)

for all wh ∈ V0,h . Then we set vk+1
h

:= vk
h
+ δvk

h
; when some stopping criterion

is satisfied at step M , we set un+1/2
h

:= vM
h
. To progress to the next time step, we

compute un+1
h
= 2un+1/2

h
− un

h
.

5 Numerical Experiments

Numerical results are presented to validate the method for convex solutions. In the
following examples, Ω = (0, 1)2 and T = 1. Both a triangular structured asymmetric
mesh and an unstructured isotropic mesh are used. The mesh size h and the time step
∆t vary together. The stopping criterion for the Newtonmethod is | |vk+1

h
−vk

h
| |L2 (Ω) ≤

10−12, with a maximal number of 200 Newton iterations. The Newton method
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typically needs 9 − 12 iterations to converge, depending on the mesh size and the
time step. The parameter C is set to 1 (unless specified otherwise). The convergence
of the error e = u − uh is quantified by the following quantities

| |e| |L2(L2) :=
∫ T

0
‖u − uh ‖L2 dt, | |e| |L2(H1) :=

∫ T

0
‖∇u − ∇uh ‖L2 dt,

In the tables below, those norms are approximated using the trapezoidal rule in time,
and quadrature formulas in space (see [5]).

5.1 A polynomial example

Let us consider T = 1, and the exact solution:

u(x, y, t) = 0.5 (0.5 + t) (x2 + 5y2), (x, y) ∈ Ω, t ∈ (0,T ) . (14)

This function is the solution of (1) with the data f (x, y, t) := 0.5
(
x2 + 5y2

)
−

5 (0.5 + t)2, g(x, y, t) := 0.5 (0.5 + t) (x2 + 5y2), and u0(x, y) := 0.25(x2 + 5y2).
The solution (14) is convex for all t ∈ (0,T ). Note that the eigenvalues of the Hessian
D2u are λ1 = (0.5 + t)2 and λ2 = 5 (0.5 + t)2, and are both positive for all t ∈ (0,T ).
Figure 1 illustrates u0,h (x, y) (left) and uh (x, y,T ) (right), while Table 1 shows that
the solution method exhibits appropriate convergence orders (for the discrete version
of the norms | |u − uh | |L2 (0,T ;H1 (Ω)) and | |u − uh | |L2 (0,T ;L2 (Ω))).

Fig. 1 A polynomial example corresponding to the exact solution (14). Numerical approximation
of the solution for h = 1/80 and ∆t = 0.25 · 10−3. Left: initial condition at time t = 0. Right: final
solution at time t = 1.
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Table 1 A polynomial example. Estimated errors of u − uh in corresponding norms, and related
convergence orders for various h and ∆t . Left: structured meshes (withC = 0), right: unstructured
meshes.

h ∆t | |e | |L2 (L2 ) | |e | |L2 (H 1 )
1/20 1.00e-03 1.55e-03 - 7.37e-02 -
1/40 0.50e-03 3.81e-04 2.02 3.68e-02 1.00
1/80 0.25e-03 9.01e-05 2.08 1.84e-02 1.00
1/160 0.125e-03 1.99e-05 2.17 9.20e-03 1.00

h ∆t | |e | |L2 (L2 ) | |e | |L2 (H 1 )
0.062 2.00e-03 2.10e-02 - 3.19e-01 -
0.031 1.00e-03 7.28e-03 1.52 1.51e-01 1.07
0.015 0.50e-03 1.90e-03 1.93 6.14e-02 1.29
0.010 0.33e-03 8.29e-04 2.04 3.49e-02 1.39

5.2 An exponential example

Let us consider T = 1, and the exact solution

u(x, y, t) = e−te
1
2 (x2+y2), (x, y) ∈ Ω, t ∈ (0,T ) . (15)

This function is the solution of (1) with the data

f (x, y, t) := −e−te
1
2 (x2+y2)

(
1 + e−t

(
x2 + y2 + 1

)
e

1
2 (x2+y2)

)
,

together with g(x, y, t) := e−te
1
2 (x2+y2) , and u0(x, y) := e

1
2 (x2+y2) . The solution (15)

is convex for all time t ∈ (0,T ), since the eigenvalues of D2u are λ1 = e−te 1
2 (x2+y2) ,

and λ2 = e−te 1
2 (x2+y2)

(
x2 + y2 + 1

)
, which are both positive for all times t ∈ (0,T ).

Figure 2 illustrates u0,h (x, y) (left) and uh (x, y,T ) (right), while Table 2 shows that
the solution method exhibits nearly optimal convergence orders (for structured and
unstructured mesh we have O(h) and O(h1.5) for the discrete version of the norm
| |e| |L2 (H1) and O(h1.8) and O(h2) for | |e| |L2 (L2) , respectively)

Fig. 2 Exponential example corresponding to the exact solution (15). Numerical approximation of
the solution for h = 1/80 and ∆t = 0.25 · 10−3. Left: initial condition at time t = 0. Right: the final
solution at time t = 1.
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Table 2 Exponential example. Estimated errors of u − uh in corresponding norms, and related
convergence orders for various h and ∆t . Left: structured meshes (withC = 0 when h ≥ 1/80, and
C = 0.1 when h = 1/160), right: unstructured meshes.

h ∆t | |e | |L2 (L2 ) | |e | |L2 (H 1 )
1/20 1.00e-03 8.96e-04 - 3.58e-02 -
1/40 0.50e-03 2.40e-04 1.90 1.79e-02 1.00
1/80 0.25e-03 6.69e-05 1.80 8.96e-03 0.99
1/160 0.125e-03 9.97e-06 2.74 4.44e-03 1.01

h ∆t | |e | |L2 (L2 ) | |e | |L2 (H 1 )
0.062 2.00e-03 1.49e-02 - 2.02e-01 -
0.031 1.00e-03 5.31e-03 1.48 8.93e-02 1.17
0.015 0.50e-03 1.25e-03 2.08 3.27e-02 1.44
0.010 0.33e-03 5.26e-04 2.13 1.81e-02 1.45
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