Skip to main content

Efficient Solvers for a Stabilized Three-Field Mixed Formulation of Poroelasticity

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1722 Accesses

Abstract

We focus on a three-field (displacement-velocity-pressure) stabilized mixed method for poroelasticity based on piecewise trilinear (Q1), lowest order Raviart-Thomas (RT0), and piecewise constant (P0) approximations for displacement, Darcy’s velocity and fluid pore pressure, respectively. Since the selected discrete spaces do not intrinsically satisfy the inf-sup condition in the undrained/incompressible limit, we propose a stabilization strategy based on local pressure jumps. Then, we focus on the efficient solution of the stabilized formulation by a block preconditioned Krylov method. Robustness and efficiency of the proposed approach are demonstrated in two sets of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. (1941) doi: https://doi.org/10.1063/1.1712886

  2. Lipnikov, K.: Numerical Methods for the Biot Model in Poroelasticity. PhD thesis, University of Houston (2002)

    Google Scholar 

  3. Castelletto, N., White, J. A. and Ferronato, M.: Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Phys. (2016) doi: https://doi.org/10.1016/j.jcp.2016.09.063

  4. Frigo, M., Castelletto, N. and Ferronato, M.: A Relaxed Physical Factorization Preconditioner for Mixed Finite Element Coupled Poromechanics. SIAM J. on Sci. Comp. (2019) doi: https://doi.org/10.1137/18M120645X

  5. Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J. and Zikatanov, L.T.: New stabilized discretizations for poroelasticity and the Stokes’ equations. Comp. Methods Appl. Mech. Engrg. (2018) doi: https://doi.org/10.1016/j.cma.2018.07.003

  6. Silvester, D. and Kechkar, N.: Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comput. Methods Appl. Mech. Engrg. (1990) doi: https://doi.org/10.1016/0045-7825(90)90095-4

  7. Camargo, J. T., White, J. A. and Borja, R. I.: A macroelement stabilization for multiphase poromechanics. Comput. Geosci. (2020) doi: https://doi.org/10.1007/s10596-020-09964-3

  8. Silvester, D., Elman, H. and Wathen, A.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press (2005)

    Google Scholar 

  9. Barry, S. I. and Mercer, G. N.: Exact Solutions for Two-Dimensional Time-Dependent Flow and Deformation Within a Poroelastic Medium. J. Appl. Mech. (1999) doi: https://doi.org/10.1115/1.2791080

Download references

Acknowledgements

Funding was provided by TOTAL S.A. through the FC-MAELSTROM project. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Ferronato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferronato, M., Frigo, M., Castelletto, N., White, J.A. (2021). Efficient Solvers for a Stabilized Three-Field Mixed Formulation of Poroelasticity. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_41

Download citation

Publish with us

Policies and ethics