

 No. 618 December 2019

Basic Machine Learning Approaches for the
Acceleration of PDE Simulations and
Realization in the FEAT3 Software

H. Ruelmann, M. Geveler, D. Ribbrock,
P. Zajac, S. Turek

ISSN: 2190-1767

Basic Machine Learning Approaches for the
Acceleration of PDE Simulations and
Realization in the FEAT3 Software

H. Ruelmann, M. Geveler, D. Ribbrock, P. Zajac, S. Turek

Abstract In this paper we present a holistic software approach based on the FEAT3
software for solving multidimensional PDEs with the Finite Element Method that is
built for amaximum of performance, scalability, maintainability and extensibilty.We
introduce basic paradigms howmodern computational hardware architectures such as
GPUs are exploited in a numerically scalable fashion. We show, how the framework
is extended tomake even themost recent advances on the hardwaremarket accessible
to the framework, exemplified by the ubiquitous trend to customize chips forMachine
Learning. We can demonstrate that for a numerically challenging model problem,
artificial neural networks can be usedwhile preserving a classical simulation solution
pipeline through the incorporation of a neural network preconditioner in the linear
solver.

1 Introduction

Multidimensional PDE-based simulation is one of the most important yet also most
challenging tasks of our time concerning computational resources both hardware-
and software-side. Here the Finite Element Method (FEM) is proven to be a superior
tool on complex geometries that however needs sophisticated software approaches to
be feasible for production in academia and industry: Local performance on each core
/ CPU or device has to be provided by exploiting the underlying hardware. Numerical
scale-up has to be addressed through the design and implementation of advanced
parallelisation techniques. Both aspects have to be taken into account in a holistic
software framework design that also provides maintainability and extensibility.

Hannes Ruelmann, Markus Geveler, Dirk Ribbrock, Peter Zajac and Stefan Turek
TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund,
e-mail:
firstname.lastname@math.tu-dortmund.de

1

2 H. Ruelmann, M. Geveler, D. Ribbrock, P. Zajac, S. Turek

In this paper we offer insight into the third generation of the Finite Element
Analysis Toolbox software family (FEAT3), developed at TU Dortmund University.
In order to address the aforementioned aspects, we introduce the paradigms of
Hardware-oriented Numerics and Unconventional High Performance Computing
(UCHPC) in the context of performance, scalability and maintainability in section 2.

Under the aspect of extensibilty, we demonstrate how the framework is catching up
with modern hardware trends: Machine Learning (ML) opens a variety of options to
support traditional methods of the numerical treatment of solving PDEs particularly
for application-oriented CFD simulations with new algorithms on the software level.
Any such approach provides access to modern hardware, since chip vendors tailor
their designs to ML techniques to satisfy the upcoming and rapidly growing AI-
market. In this paper we demonstrate, how artificial neural networks can assist in
solving PDEs and how this is implemented in the FEAT3 framework in section 3.

2 FEAT3: Unconventional High Performance Finite Elements

2.1 Trends in modern hardware and Green HPC

In the last two decades, it became clear that the continuously increasing single-core
speed, whichwas driven byMoore’s law, will stagnate at some point. In consequence,
hardware vendors are switching their focus to parallelism, both in the sense of
supercomputer clusters as well as various forms of specialized many-core hardware
accelerators such as general-purposeGraphics ProcessingUnits or Tensor Processing
Units, where the latter are custom-designed chips tailored to Machine Learning
applications. From a programmer’s point of view, these specialized hardware units
differ from ordinary CPUs and their built-in vector extensions in the sense that one
cannot simply utilize them by enabling a compiler switch. Instead, new specialized
algorithms, which efficiently exploit the underlying hardware’s strengths, have to be
designed and implemented by using third-party libraries. In the context of scientific
computing, the concept, where the available hardware determines what algorithms
are run on it, can be labeled as Unconventional High Performance Computing.

Another aspect, which is slowly (but steadily) gaining attention, is the continu-
ously increasing energy consumption of supercomputers and the subsequent need for
improved energy efficiency. As a consequence, the Green500 list1 has been launched
in 2007 as a means to benchmark the energy efficiency of supercomputers measured
in Flops per Watt rather than the total compute power measured in Flops that is used
in the famous Top500 list. Again, special accelerator hardware as well as hardware
primarily designed for mobile/embedded systems, which are designed to work with
a limited battery power supply, play a key role when it comes to achieving high
energy efficiency on modern supercomputers.

1 see https://www.top500.org/green500

Title Suppressed Due to Excessive Length 3

2.2 Finite elements and the need for speed

The finite element method has proven to be a powerful numerical tool for solving
PDEs arising from various scientific fields. Researchers in the academia value the
FEM due to its underlying variational formulation, which also forms the backbone
of a rigorous theory for the analysis of PDEs, as well as the properties that can
be derived from this close relationship between mathematical theory and practical
implementability. One noteable example is the large set of methods that can be used
for error estimation and error control. However, simulations of realistic problems
– especially those arising from the industry – result in problem sizes, which are
often several orders of magnitude larger than what the academia is typically dealing
with and therefore require a different focus in software design and implementation. In
consequence, any simulation toolkit that aims to tackle large problems needs to be ca-
pable of utilizing modern large-scale parallel hardware beyond the usual small-scale
workstation setup, which makes parallel programming, hardware-efficient optimiza-
tions and performance engineering indispensable.

2.3 Fast linear solvers based on geometric multigrid methods

One major component of any FEM simulation, which often dominates the overall
runtime, is the solution of (non-)linear systems of equations (LSEs). In addition
to the usual direct factorization solvers and iterative Krylov subspace methods, the
FEM also allows for more specialized solvers that take the underlying discretization
into account. The most prominent class of such specialized linear solvers is the class
of geometric multigrid methods (GMG), which is one of the few solvers that can
solve many LSEs arising from the FEM in linear runtime, thus making it an ideal
candidate for large-scale simulations. The GMG is an iterative method which (in its
simplest form) solves the LSE by recursively restricting the system onto a coarser
mesh, solving the LSE on the coarser mesh, and then projecting the coarse solution
back onto the original LSE and post-processing this coarse solution by a smoother.
The smoother is typically the most costly part of the GMG and its convergence
properties are a crucial ingredient for obtaining the ℎ-independent convergence (and
thus linear runtime) of the GMG, see e.g. [5] [6].

2.4 FEAT3: FEM+GMG meets UCHPC

To tackle the above mentioned challenges that come with modern unconventional
hardware, we have been implementing the Finite Element Analysis Toolbox 3
(FEAT3) software package, which is a modular template-based parallel FEM+GMG
framework written in C++11. FEAT3 utilizes MPI to implement parallelization
paradigms for large-scale supercomputer clusters based on finite element domain

4 H. Ruelmann, M. Geveler, D. Ribbrock, P. Zajac, S. Turek

decomposition, which support both simple data-parallel algorithms as well as more
powerful geometric multigrid solvers based on the concept of scalable recursive
clustering (ScaRC), see [10, 8].

FEAT3 supports 2D and 3D triangular, quadrilateral, tetrahedral and hexahedral
unstructured meshes as well as structured meshes, and is currently being extended
to support PDEs on manifolds. A large variety of finite element ansatz spaces have
already been implemented, including (but not limited to) the standard conforming
Lagrangian elements up to third order, the non-conforming Crouzeix-Raviart and
Rannacher-Turek elements as well as a few higher order elements like the Argyris
element, see e.g. [11].

FEAT3 can assemble the arising LSEs in various floating point formats, including
the standard IEEE-754 single and double precision formats as well as the quadruple
precision format offered by the libquadmath, which is part of the GCC’s standard
library set. We also currently experimenting with various third-party libraries, which
offer simulated support for low-precision data types like the half precision or the
competing bfloat16 format, which is used by many modern TPUs.

Sparse matrices can not only be assembled as generic unstructured matrices in the
well-known compressed sparse rows (CSR) format, but also in various special matrix
formats including banded or stencil-based matrices. In the case of PDE systems with
multiple variables, e.g. the (incompressible) Navier-Stokes equations with velocity
and pressure variables, FEAT3 additionally offers various forms of nested meta-
matrix and -vector class templates. These templates allow for an almost arbitrary
mixing of the array-of-structures and structure-of-arrays data blocking concepts,
which play an important role in the design of flexible and efficient data structures.

As mentioned before, one primary challenge in the context of node-level perfor-
mance engineering is the development of specialized algorithms which are suitable
to utilize the underlying hardware efficiently and unfortunately many of these algo-
rithms cannot be hidden behind an opaque back end which serves as a simple hard-
ware abstraction layer. Based on the experiences we have gained with our previous
software packages, see [7, 8], as well as several specialized benchmarking projects,
see [9], we have realized that it is often necessary to access low-level hardware API
functions throughout the whole simulation code directly and this often competes
with the desire to provide an easy-to-use abstract high-level interface, which is what
most other academic FEM software packages prioritize. FEAT3, on the other hand,
has been designed from ground up to support unconventional hardware (including
GPUs and TPUs) in numerical research software applications, especially by offering
low-level access to all underlying data structures and algorithms, thus making it an
ideal testing ground in early development stages. This focus on specialized hardware
support via transparent class templates is a major distinguishing feature of FEAT3.

It is important to mention that all third-party libraries (including CUDA andMPI)
are supported in an opt-in fashion, i.e. FEAT3 can be compiled and used in a naked
build mode (with reduced functionality) without any other dependencies than the
C++ standard library. This ensures that FEAT3 can be easily ported to new hardware
and operating systems other the usual Linux/Unix ecosystems, even if one or more
third-party libraries cannot be compiled on these platforms, which allows us to easily

Title Suppressed Due to Excessive Length 5

exploit a broad range of hardware from PowerPC Clusters over Windows desktop
machines to embedded ARM systems. FEAT3 has already been tested successfully
on low-energy systems running on solar-powered battery power supplies, see [3, 4].

The build system for FEAT3 is based on the popular CMake system along with
a small set of scripts written in the Python programming language, which help to
enhance the capabilities of CMake to support various build settings via a custom
user-controlled build-id system. Our build system also includes a basic test system
based on the test driver of CMake, which is executed nightly on our Linux compute
servers as well as our university’s cluster LiDO32. The correctness of most core
classes of the FEAT3 kernel is ensured by a set of unit-tests, which test individual
classes and their member functions in an isolated testing environment. In addition,
the test system also contains a basic set of more complex regression test applications,
which help to determine whether changes to the kernel classes have changed the be-
haviour of code that is composed of many interacting classes, which therefore cannot
be tested by isolated unit-tests. These nightly tests are compiled with a set of differ-
ent compilers and different build configurations to continuously ensure the C++11
standard conformity and to detect unexpected changes in code behavior induced by
platform changes or compiler bugs. This unit test system is complemented by several
specialized benchmarking projects, e.g. the CFD Benchmarking Project [2].

The source code of FEAT3 is released under the GPL3 open source license and
is publicly available in the form of a git repository, which can be accessed from the
FEATFLOW website3.

3 A concise Machine Learning framework to accelerate linear
solvers

3.1 Poisson problem and anisotropies

When solving the incompressible Navier-Stokes equation with global Multilevel
Pressure Schur Complement techniques, the so called Pressure Poisson problem is
dominant regarding calculation time [2]. For the sake of simplicity we therefore
choose the Poisson equation to be our model problem, which reads:
Find D : Ω→ R such that

−ΔD = 5 in Ω, D = 0 on mΩ (1)

and discretize it with the Finite Element method.
For the unit square Ω = (0, 1)2 domain the standard quadrilateral triangulation

results in h-independent convergence of the multigrid method with a fixed number of
smoothing basis iterations for different smoother. By introducing some anisotropies

2 see https://www.lido.tu-dortmund.de/cms/en/home/index.html
3 see http://www.featflow.de/en/software/feat3.html

6 H. Ruelmann, M. Geveler, D. Ribbrock, P. Zajac, S. Turek

to the initial mesh, see figure 1, the convergence commences to be dependent on
the grid size. Merely the ILU method with the Reverse Cuthill-McKee renumbering
algorithm maintains the h-independence for the directional anisotropy (fig. 1 a). In
case of aspect ratios in both direction (fig. 1 b) renumbering has no further effect and
the ILU even with renumbering as well as the other smoothing methods will lead to
more multigrid iterations for finer meshes.

a)

lvl dofs Jac (0.5) GS (1.0) SPAI-1(1.0) ILU-0 (0.5) ILU-RCMK
10 2,100,225 109 33 24 26 7
9 525,825 106 32 23 25 7
8 131,841 103 30 22 24 7
7 32,960 98 28 21 23 7
6 8,240 90 25 19 21 6
5 2,060 78 22 17 18 6
4 515 55 16 13 12 6

b)

lvl dofs Jac (0.5) GS (0.7) SPAI-1(1.0) ILU-0 (0.7)
9 2,362,369 654 370 140 102
8 591,361 619 350 130 95
7 148,225 562 319 118 85
6 37,249 486 289 103 75
5 9,409 377 218 80 57
4 2,401 258 166 51 34
3 625 175 96 31 20

Fig. 1 Left: coarse grid; right: Number of multigrid V-cycles for different smoothers with 8 pre-
and post-smoothing steps each. Damping parameter in brackets. Aspect ratio: a) 1:10, b) 1:20

3.2 Approximate Inverses with Neural Network

In this approach we use a neural network prototype trained on function regression
to map the FEM system matrix to its corresponding inverse and thus get a beneficial
approximation of that inverse which we can use as smoother in multigrid methods
or as preconditioner. The structure of the neural network is important to yield strong
approximate inverses which are able to smooth the system or lead to converging
methods when used e. g. in a Richardson iteration solver. On the other hand it
provides a large design space in which we can keep balance between calculation
time and accuracy. In [1] we show that fully-connected feed forward multilayer
perceptrons are able to extrapolate coefficient matrices which are suitable SPAI-
like preconditioners within defect correction methods. In this paper we expand the
working system to anisotropic meshes.

To avoid storage problems for larger matrices we use the online-learning method
plus only feed the non-zero entries of the system matrix to the neural network.
The approximate inverse can be filtered to a sparse matrix thus the assembly of
the preconditioner is one pass of the neural network in addition to the application,

Title Suppressed Due to Excessive Length 7

which is a sparse-matrix-vector-multiplication. With sophisticated matrix formats
this performs in parallel and efficiently on modern hardware accelerators. This
perfectly couples with FEAT3, which is also used to generate the training data
tensor. We randomly shift the inner nodes in order to get a training dataset with
the system matrices and associated inverses. This procedure bases on r-adaption
techniques we want to use during the CFD simulation, with which the node shift is
used to minimize the error.

3.3 Neural Networks for anisotropic meshes

To measure the quality of the approximate inverse out of neural networks we use the
modified Richardson iteration and compare the number of solver iterations with the
conventional damped Jacobi as well as the Gauß-Seidel method. Figure 2 displays
the results for different aspect ratios on disturbed meshes. For higher anisotropies,
e. g. 1:10 (see fig. 2b), the common methods collapse and the Jacobi method reaches
the maximum iteration number. The low number of iterations even for finer meshes
gives strong evidence that neural networks can generate valuable preconditioners.
The number of iterations raise just slightly for different refinements and the behavior
depends on the training parameter of the neural network.

a)

dim Jac (0.7) GS (1.0) NN
25 422 147 26
121 1955 683 39
529 8622 3017 64

b)

dim Jac (0.7) GS (1.0) NN
25 1101 385 22
121 5036 1762 32
529 10000 7939 37

Fig. 2 Number of iterations for damped Jacobi (Jac), Gauß-Seidel and Richardson iteration with
neural networks. Aspect ratio 1:3 (left) and 1:10 (right)

4 Conclusion and future work

We showed that it is possible to combine methods of Machine Learning, which em-
powers several scientific fields and industry, with the numerical treatment of solving
PDEs. Regarding real world CFD simulation, large problem sizes and difficulties like
anisotropies arise. The presented Finite Element Analysis Toolbox 3 is specially tai-
lored to solve such problemswith respect to performance, hardware efficiency as well
as a high accuracy. FEAT3 offers the ability to future-oriented UCHPC along with a
easy-to-use framework for academic researchers. On the one handMachine Learning
fits perfectly into this gap of using modern hardware, since chip vendors specially
adjust their portfolio to satisfy the fast-growing AI-market. And we demonstrated
in a small test scenario, that the designed Machine Learning-based preconditioner

8 H. Ruelmann, M. Geveler, D. Ribbrock, P. Zajac, S. Turek

with a Richardson iteration as solver maintained low numbers of iteration even for
anisotropies with such a high aspect ratio that common solvers fail on the other hand.
This is an evidence that Machine Learning techniques can perfectly empower and
amplify current numerical PDE solving methods.
One of the most important enhancements in future work will be the extension of the
neural network to real applications including large problem sizes.

References

1. Ruelmann, H., Geveler, M., Turek, S.: On the Prospects of Using Machine Learning for the
Numerical Simulation of PDEs: TrainingNeural Networks toAssembleApproximate Inverses,
ECCOMAS Newsletter June 2018, pp. 27 – 32, 2018.

2. Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Compu-
tational Approach, vol. 6. Springer, 1999

3. Geveler, M., Ribbrock, D., Ruelmann, H., Donner, D., Höppke, C., Schneider, D.,
Tomaschewski, D., Turek, S.: The ICARUS white paper: A scalable, energy–efficient, solar–
powered HPC center based on low power GPUs, UcHPC’16 at Euro-Par’16, Grenoble, 2016

4. Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., Turek, S.: Energy efficiency of the sim-
ulation of three-dimensional coastal ocean circulation on modern commodity and mobile
processors-A case study based on the Haswell and Cortex-A15 microarchitectures, LNCS,
ISC’16, Computer Science-Research and Development, 1-10, Workshop on Energy-Aware
HPC, Springer, doi = 10.1007/s00450-016-0324-5, 2016

5. M. Geveler, D. Ribbrock, D. Goeddeke, P. Zajac, S. Turek: Efficient Finite Element Geometric
Multigrid Solvers for Unstructured Grids on Graphics Processing Units; in P. Ivanyi, B.H.V.
Topping, (Editors), ”Proceedings of the Second International Conference on Parallel, Dis-
tributed, Grid and Cloud Computing for Engineering”, Civil-Comp Press, Stirlingshire, UK,
Paper 22, doi:10.4203/ccp.95.22, 2011

6. M. Geveler, D. Ribbrock, D. Goddeke, P. Zajac, S. Turek: Towards a complete FEM-based
simulation toolkit on GPUs: Unstructured grid finite element geometric multigrid solvers with
strong smoothers based on sparse approximate inverses; Computers and Fluids, Vol 80, 2013,
pp. 327-332, doi:10.1016/j.compfluid.2012.01.025

7. S. Turek, D. Göddeke, C. Becker, S.H.M. Buijssen, H. Wobker: FEAST – realization of
hardware-oriented numerics for HPC simulations with finite elements; Concurrency and Com-
putation: Practice and Experience, 2010, Volume 22, Issue 16, doi:10.1002/cpe.1584

8. D. Göddeke: Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations on
GPU Clusters; PhD thesis, Lehrstuhl für angewandte Mathematik und Numerik, Fakultät für
Mathematik, Technische Universität Dortmund, 2010, doi:10.17877/DE290R-8758

9. D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, C. Gutwenger: HONEI:
A collection of libraries for numerical computations targeting multiple processor architec-
tures; Computer Physics Communications, Volume 180, Issue 12, 2009, pp. 2534-2543,
doi:10.1016/j.cpc.2009.04.018

10. S. Turek, C. Becker, S. Kilian: Hardware-oriented numerics and concepts for PDE software;
Future Generation Computer Systems 22 (2006) 217–238, doi:10.1016/j.future.2003.09.007

11. P.G. Ciarlet: The Finite Element Method for Elliptic Problems; North-Holland, 1978,
doi.org:10.1137/1.9780898719208

	EB 618_1. Seite
	EB 618

