
Assembly of multiscale linear PDE operators

Miroslav Kuchta

Abstract In numerous applications the mathematical model consists of different
processes coupled across a lower dimensional manifold. Due to the multiscale cou-
pling, finite element discretization of such models presents a challenge. Assuming
that only singlescale finite element forms can be assembled we present here a sim-
ple algorithm for representing multiscale models as linear operators suitable for
Krylov methods. Flexibility of the approach is demonstrated by numerical examples
with coupling across dimensionality gap 1 and 2. Preconditioners for several of the
problems are discussed.

1 Introduction

This paper is concerned with implementation of the finite element method (FEM)
for multiscale models, that is, systems where the unknowns are defined over domains
of (in general) different topological dimension and are coupled on a manifold, which
is possibly a different domain. The systems arise naturally in applications where
Lagrange multipliers are used to enforce boundary conditions, e.g. [5, 9], or interface
coupling conditions e.g. [8, 4, 24]. In modeling reservoir flows [12], tissue perfusion
[11, 13, 22] or soil-root interaction [21] resolving the interface as a manifold of co-
dimension 1 can be prohibitively expensive. In this case it is convenient to represent
the three-dimensional structures as curves and the model reduction gives rise to
multiscale systems with a dimesionality gap 2.

Crucial for the FEM discretization of the multiscale models is the assembly of
coupling terms, in particular, integration over the coupling manifold. There exists a
number of open source FEM libraries, e.g. [7, 1, 19, 16], which expose this (low-
level) functionality and as such can be used for implementation. However, for rapid

Miroslav Kuchta
Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway, e-mail: miroslav@simula.no

1

ar
X

iv
:1

91
2.

09
31

9v
1

 [
m

at
h.

N
A

]
 1

9
D

ec
 2

01
9

miroslav@simula.no

2 Miroslav Kuchta

prototyping, it is advantageous if the new models are described in a more abstract
way which is closer to the mathematical definition of the problem.

FEniCS is a popular open source FEM framework which employs a compiler to
generate low level (C++) assembly code from the high-level symbolic representation
of the variational forms in the UFL language embedded in Python, see [25]. Here
the code generation pipeline provides convenience for the user. At the same time,
implementing new features is complicated by the fact that interaction with all the
components of the pipeline is required. As a result, support for multiscale models
has only recently been added to the core of the library [14] and is currently limited to
problems with dimensionality gap 0 and 1. Moreover, in case of the trace constrained
systems the coupling manifold needs to be triangulated in terms of facets of the bulk
discretization. We remark that similar functionality for multiscale systems is offered
by the FEniCS based library [2].

Here we present a simple algorithm1 which extends FEniCS to support a more
general class of multiscale systems by transforming symbolic variational forms in
UFL language into a domain specific language [26] which represents (actions of)
discrete linear operators. As this representation targets solutions by iterative methods
preconditioning strategies shall also be discussed. Our work is structured as follows.
Section 2 details the algorithm. Numerical examples spanning dimensionality gap
0, 1 and 2 are presented in §3 and §4 respectively.

2 Multiscale assembler

In the following (·, ·)Ω denotes the L2 inner product over a bounded domainΩ ⊂ Rd ,
d = 1, 2, 3. The duality pairing between the Hilbert space V and its dual space V ′

is denoted by (·, ·). Given basis of a discrete finite element space Vh , the matrix
representation of operator A is Ah . Adjoints of A and Ah are denoted as A′ and A′

h
respectively.

Our representation of multiscale systems builds on two observations, which shall
be presented using the Babuška problem [5]. Let Γ = ∂Ω and V = H1(Ω), Q =
H−1/2(Γ), W = V × Q. Then for every L ∈ W ′ there exists a unique solution
w = (u, p) ∈ W satisfying Aw = L where

A =
(
A B′

B 0

)
and

(Au, v) = (∇u,∇v)Ω + (u, v)Ω v ∈ V,

(Bu, q) = (Tu, q)Γ q ∈ Q.
(1)

Here T : H1(Ω) → H1/2(Γ) is the trace operator such that Tu = u|Γ, u ∈ C(Ω). We
remark that (1) is the weak form of −∆u + Iu = f in Ω with u = g on ∂Ω enforced
by the Lagrange multiplier p.

1 Implementation can be found in the Python module FEniCSii https://github.com/MiroK/
fenics_ii

https://github.com/MiroK/fenics_ii
https://github.com/MiroK/fenics_ii

Assembly of multiscale linear PDE operators 3

Given the structure of A in (1) it is natural to represent the operator on a finite
element space Wh as a block structured matrix (rather then a monolithic one).
Moreover, observe that the multiscale operator B : V → Q (operator A : V → V ′

is singlescale) is a composition B = I ◦ T where I : H1/2(Γ) → Q is a singlescale
operator. Therefore, matrix representation of B is a matrix product Bh = IhTh .
Assuming that the FEM library at hand can only assemble singlescale operators, e.g.
I and A, the multiscale operators Bh and Ah can be formed if representation of the
trace operator is available. We remark that the block representation is advantageous
for construction of preconditioners; for example the blocks can be easily shared
between the system and the preconditioner, cf. [20, 26].

Based on the above observations the multiscale systems can be represented as
block structured operators where the blocks are not necessarily matrices. Cbc.block
[26] defines a language for matrix expressions using the lazy evaluation pattern. In
particular, block matrix(block_mat) and matrix product(*) are built-in operators.
We remark that the operators are not formed explicitly, however, they can be evaluated
if e.g. action in amatrix-vector product in a Krylov solver is needed. Using B from (1)
as an examplewe thus aim to build an interpreter which translatesUFL representation
of (Tu, q)Γ into a cbc.block representation Ih∗Th . We remark that Th is here assumed
to be a mapping between primal representations, cf. [27].

The core of the multiscale interpreter is the algorithm (Figure 1) translating be-
tween the two symbolic representations. Observe that in multi_assemble different
reduced assemblers are recursively called on the transformed UFL form with the
singlescale form being the base case. An example of a reduced assembler is the
trace_assemble function which, having found trace-reduced argument (ln. 12) in
form a, e.g. a(u, q) = (Bu, q) = (Tu, q)Γ, u ∈ Vh , q ∈ Qh builds a finite element trace
space V̄h = V̄h(Γ) (ln. 14), an algebraic representation of the operator T : Vh → V̄h

(ln. 15) and delegates assembly of the transformed form I(ū, q) = (ū, q)Γ, ū ∈ V̄h ,
q ∈ Qh (ln. 19) to multi_assemble (ln. 20). As I is singlescale the native FEniCS
assemble function can be used to form the matrix Ih and the symbolic matrix-
matrix product representation can be formed (ln. 20). The translation can thus be
summarized as (Tu, q)Γ → (ū, q)Γ∗Th → Ih∗Th .

Algorithm 1 can be easily extended to different multiscale couplings by adding
a dedicated assembler. In particular, given Ω ⊂ R3 and γ a curve contained in Ω,
the 3d-1d coupled problems [13, 12] require operators T , Π such that for u = C(Ω),
Tu = u|γ and

(Πu)(x) = |CR(x)|−1
∫
CR (x)

u(y) dy. (2)

Here CR(x) is a circle of radius R in a plane {y ∈ R3, (y − x) · dγ
ds (x) = 0} defined by

the tangent vector of γ at x. We remark that assembling 3d-1d constrained operators
follows closely Algorithm 2, with the non-trivial difference being the representation
of Π. We remark that in assembly of Π or T we do not require that γ is discretized
in terms of edges of the mesh of Ω. In fact, the two meshes can be independent.
This is also the case for d–(d − 1) trace. Let us also note that the restriction operator
Ru = u|ω , where ω ⊆ Ω ⊂ Rd can be implemented similar to the trace operator.

4 Miroslav Kuchta

Algorithm 1: multi_assemble
Data: a::UFL.Form or list of UFL.Form
Result: cbc.block matrix expression

1 begin
// Single form

2 if a is UFL.Form then
// Attempt to reduce

3 for assemble ∈ assemblers do
4 tensor = assemble(a)
5 if tensor is not None then
6 return tensor

// Singlescale operator
7 return FEniCS.assemble(a)

// Functional
8 if is_number(form) then
9 return form

10 shape← sizes(form)
// Assemble blocks

11 blocks← map(multi_assemble, form)
// List/List of operators

12 tensor← reshape(blocks, shape)
// Reshape for cbc.block
// Form had test functions only

13 if is_vector(tensor) then
14 return block.block_vec(tensor)

// Bilinear form
15 return block.block_mat(tensor)

Algorithm 2: trace_assemble
Data: a::UFL.Form
Result: cbc.block matrix expression

1 begin
2 trace_integrals← get_trace_integrals(a)
3 all_integrals← integrals(form)
4 if not trace_integrals then
5 return None

// Form is sum of integrals...
6 cs← []
7 for i ∈ all_integrals do
8 if i < trace_integrals then
9 cs += [multi_assemble(Form([i]))]

10 continue
11 intgrnd← integrand(i)
12 u,← trace_terminals(intgrnd)
13 Vh ← function_space(u)
14 V̄h ← trace_space(Vh, u)
15 Th ← trace_matrix(Vh , V̄h)
16 if is_trial_function(u) then
17 ū ← TrialFunction(V̄h)
18 ii← replace(intgrnd, u, ū)
19 I = Form([reconstruct(i, ii)])
20 Bh ← multi_assemble(I)∗T
21 cs += [Bh]

// Handle test/function

// ...cbc.block sum of operators
22 return reduce(+, cs)

Fig. 1: Translation of UFL representation of multiscale variational form into
cbc.block matrix expression. Several passes by different scale assemblers might
be needed to reduce the form into base case singlescale which can be assembled as
matrix or vector by FEniCS. Handling of test function and function type terminals
is omitted for brevity.

Finally, observe that the Algorithm 1 is not limited to forms where the arguments
are reduced to the coupling manifold. Indeed, [12, 18] utilize extension from γ to Ω
by a constant or as Green function of a line source respectively. Such couplings can
be readily handled if realization of the discrete extension operator is available.

We conclude the discussion by listing the limitations of our current implementa-
tion. Unlike in [14, 2] the MPI-parallelism is missing2 as is the support for nonlinear
forms. Moreover, the reduction operators cannot be nested and can only be applied
to terminal expressions in UFL, e.g. T(u + v) cannot be interpreted. In addition,
point constraints are not supported. With the exception of parallelism the limitations
should be addressed by future versions.

2 The serial performance of our pure Python implementation is cca. 2x slower than the native
FEniCS implementation [14]. More precisely, assembling (1) onΩ = [0, 1]2 discretized by 2 ·10242

triangles and continuous linear Lagrange elements (the system matrix size is approx 106, however,
it is not explicitly formed here) takes 3.86s (to be compared with 1.79s). Most of the time is spent
building Th . The trace matrix is reused by the interpreter to evaluate both Bh and B′

h
.

Assembly of multiscale linear PDE operators 5

In the following we showcase the multiscale interpreter by considering coupled
problems with dimensionality gap 0, 1 and 2. We begin by a trace constrained 2d-1d
Darcy-Stokes system.

3 Trace constrained systems

Let Ω1, Ω2 ⊂ R2 be such that Γ = ∂Ω1 ∩ ∂Ω2 and |Γ | , 0. Further let ∂Ωi =

Γ ∪ ΓDi ∪ ΓNi where |Γki | , 0, i = 1, 2, k = N,D and Γ ∩ ΓNi = ∅, cf.Figure 2. We
then wish to solve the Darcy-Stokes problem (with unit parameters)

ΓD1

ΓD1

ΓD2

ΓD2

ΓN1 ΓN2Γ

Ω1 Ω2

n

τ

Fig. 2: Domain for (3).

−∇ · σ = f1 in Ω1, (3a)
∇ · u1 = 0 in Ω1, (3b)

u2 + ∇p2 = 0 in Ω2, (3c)
∇ · u2 = f2 in Ω2, (3d)

u1 · n − u2 · n = 0 on Γ, (3e)
n · σ · n + p2 = 0 on Γ, (3f)

−n · σ · τ − u1 · τ = 0 on Γ. (3g)

Here σ(u1, p1) = D(u1) − p1I with D(u) = 1
2 ((∇u) + (∇u)′). The unknowns u1,

p1 and u2, p2 are respectively the Stokes and Darcy velocity and pressure. The sys-
tem is closed by prescribing Dirichlet conditions on ΓDi and Neumann conditions on
ΓNi .

Let Tn, Tt be the normal and tangential trace operators on Γ. We shall consider
variational formulations of (3) induced by a pair of operators

Ap =
©«
−∇ · D + T ′t Tt −∇ T ′n

div
−Tn −∆

ª®¬ ,Am =

©«
−∇ · D + T ′t Tt −∇ T ′n

div
I −∇ −T ′n
div

Tn −Tn

ª®®®®®¬
. (4)

Using the (mixed) operatorAm problem (3) is solved for both u2, p2 and an additional
unknown, the Lagrangemultiplier, which enforcesmass conservation u1 ·n−u2 ·n = 0
on Γ. In the (primal) operator Ap the condition appears naturally. Observe that the
operator is non-symmetric.

Well-posedness of the primal and mixed formulations as well the corresponding
solution strategies have been studied in a number of works, e.g [15] and [24, 17].
Herewe compare the formulations and discussmonolithic solvers which utilize block
diagonal preconditioners

6 Miroslav Kuchta

Bp = diag
(−∇ · D + T ′t Tt, I,−I

)−1
,

Bm = diag
(
−∇ · D + T ′t Tt, I, I − ∇div, I, (−∆ + I)1/2

)−1
.

(5)

Here the preconditioner Bp has been proposed by [10], while Bm follows from
the analysis [17] by operator preconditioning technique [27]. More precisely, Bm

is a Riesz map with respect to the inner product of the space in which [17] prove
well-posedness ofAm, i.e. H1

0, ΓD1
(Ω1) × L2(Ω1) × H0, ΓD2 (div,Ω2) × L2(Ω2) × H1/2(Γ).

We remark that all the blocks of the preconditioners can be realized by efficient and
order optimal multilevel methods. In particular, we shall use further the multigrid
realization of the fractional Laplace preconditioner [6].

In order to check mesh independence of the preconditioners let us consider the
geometry from Figure 2 and let Ω1 = [0, 0.5] × [0, 1], Ω2 = [0.5, 1] × [0, 1]. In
both Am, Ap the triangulations of the domains shall be independent 3, cf. Figure
2, with the mesh of Γ defined in terms of facets of Ω2. Finally, the finite element
approximation of Ap shall be constructed using P2-P1-P2 elements4 while P2-P1-
RT0-P0-P0 is used for the mixed formulation Am.

2−8 2−7 2−6 2−5 2−4

10−8

10−6

10−4

10−2

100

h3

h2

h

h

◦ u1 4 u2 ?u2 � p2 � p

Ap Am

Fig. 3: Convergence of the primal(red) and
mixed formulation of (3). The approxima-
tion error is computed in the norms ofB−1

p

and B−1
m .

Table 1: Number of iterations
required for convergence of
GMRes(Ap) and MinRes(Am)
using preconditioners (5), see also
implementation in Figure 4. Multi-
grid preconditioner for H1/2 leads
to slightly increased number of
iterations compared to eigenvalue
realization [23].

h BpAp BEIG
p Ap BMG

p Ap

2−3 48 53 59
2−4 48 51 59
2−5 47 50 63
2−6 47 49 65
2−7 46 49 65

Results of the numerical experiment are summarized in Table 1. It can be seen
that the preconditioners (5) are robust with respect to the discretization. Further,
Figure 3 shows that both formulations lead to expected order of convergence in
all the unknowns. The approximation of Stokes variables is practically identical.
We remark that p2 convergence in Ap is reported in the L2 norm for the sake of

3 Details of experimental setup. We discretize Ωi uniformly by first dividing the domains into
n×m rectangles and afterwords splitting each rectangle into two triangles. For Ω1 we havem = n,
m = 2n forΩ2 so that the trace meshes of the domains are different. Krylov solvers are started from
random initial guess. Convergence tolerance for relative preconditioned residual norm of 10−10 is
used. Unless specified otherwise the preconditioner blocks use LU factorization.
4 Finite element space of continuous Lagrange elements of order k is denoted by Pk while RT0
denotes the space of lowest order Raviart-Thomas elements.

Assembly of multiscale linear PDE operators 7

def mixed_darcy_stokes_system(n):
’’’Coupled Stokes-Darcy’’’
Omega1 [0, 0.5]x[0, 1] as nxn, Omega2 nx2n
W = [P2]^2 x P1 x RT0 x P0 x P0
W = [V1, Q1, V2, Q2, Q]

u1, p1, u2, p2, p = map(TrialFunction , W)
v1, q1, v2, q2, q = map(TestFunction , W)
Stokes traces
Tu1, Tv1 = Trace(u1, gamma), Trace(v1, gamma)
Darcy traces
Tu2, Tv2 = Trace(u2, gamma), Trace(v2, gamma)
Coupled integration
dl = Measure(’dx’, domain=gamma)
n, tau = Constant((1, 0)), Constant((0, 1))

a = block_form(W, 2)
Stokes
a.add(inner(sym(grad((u1)), sym(grad(v1)))*dx +

inner(dot(Tu1, tau), dot(Tv1, tau))*dl
-inner(q1, div(u1))*dx
-inner(p1, div(v1))*dx)

Darcy
a.add(inner(u2, v2)*dx-inner(p2, div(v2))*dx-

inner(q2, div(u2))*dx)
Coupling
a.add(
inner(p, dot(Tv1, n))*dl-inner(p, dot(Tv2, n))*dl
+inner(q, dot(Tu1, n))*dl-inner(q, dot(Tu2, n))*dl
)
Define rhs + boundary conditions
A, b = map(ii_assemble , (a, L))

return A, b, W

def mixed_darcy_stokes_preconditioner(W, AA):
’’’H1 x L2 x Hdiv x L2 x H^{0.5}’’’
V1, Q1, V2, Q2, Q = W
Stokes velocity
V1r = LU(AA[0][0])
Stokes pressure
p, q = TrialFunction(Q1), TestFunction(Q1)
Q1r = LU(assemble(inner(p, q)*dx)) # Or AMG

Darcy velocity
mesh2 = V2.mesh()
bcs = DirichletBC(V2,

Constant((0, 0)),
’near(x[1]*(1-x[1]), 0)’)

u, v = TrialFunction(V2), TestFunction(V2)
a = inner(u, v)*dx + inner(div(u), div(v))*dx
L = inner(Constant((0, 0)), v)*dx
Need symmetric assembly
Hdiv_inner , _ = assemble_system(a, L, bcs)
V2r = LU(Hdiv_inner) # or HypreAMS

Darcy pressure
p, q = TrialFunction(Q2), TestFunction(Q2)
Q2r = LU(assemble(inner(p, q)*dx)) # or AMG
Multiplier H^s norm by Eigvp ...
Qr = HsNorm(Q, s=0.5, bcs=False)**-1
... or multigrid
Qr = HsNormMG(Q, s=0.5, bdry=None, s=0.5,

mg_params={’nlevels’: 3,
’eta’: 0.4,
’macro_size: 1’})

return block_diag_mat([V1r, Q1r, V2r, Q2r, Qr])

Fig. 4: Implementation of mixed Darcy-Stokes problem. (Left) Definition of the
problem operator. (Right) Complete implementation of Bm preconditioner using
either eigenvalue [23] or multigrid [6] realization of the fractional Laplacian.

comparison with the mixed formulation. Implementation ofAm and preconditioner
Bm can be found in Figure 4.

4 More general multiscale systems

To show flexibility of the interpreter we finally consider a simple prototypical 3d-1d
coupled problem and an extended Darcy-Stokes problem with 2d-2d-1d coupling.
We will present both problems before discussing the results.

LetΩ ⊂ R3 be a bounded domain and let γ be a curve embedded inΩ. Assuming
γ is a representation of the vasculature (e.g. as center lines) parameterized by arc
length coordinate s a model of tissue perfusion by [13] is given as

−∇ · (k∇u) + β(Πu − p)δγ = 0 in Ω,

− d
ds
(k̂ d

ds
p) − β(Πu − p) = 0 on γ.

(6)

Here k, k̂ are the conductivities of the tissue and the vasculature, while β is the
permeability. Observe that the exchange term is localized in Ω by the Dirac function
δΓ.

8 Miroslav Kuchta

Let next Ωi ⊂ Rd , d = 2, 3, i = 1, 2 be the fluid domain and a porous domain
which share a common interface Γ. A model for transport of a scalar φ in such
a medium Ω = Ω1 ∪ Ω2 was recently analyzed by [3]. Here we shall consider a
simplified, linearized version of the system

−∇ · σ + gφ = f1 in Ω1,

∇ · u1 = 0 in Ω1,

u2 + ∇p2 + gφ = 0 in Ω2,

∇ · u2 = f2 in Ω2,

−∆φ + ∇ · f u1 + ∇ · f u2 = 0 in Ω,

(7)

where g and f are given vector and scalar fields on Ω. We remark that (7) is
considered with the interface conditions (3e)-(3g).

Compared to Babuška problem (1) or Darcy-Stokes problem (4) systems (7) and
(6) introduce new multiscale couplings

Ap =

(−k∆ +T ′Π βT ′

−βΠ −k̂∆ + βI
)
, At =

©«

−∇ · D +T ′tTt −∇ T ′n R′1
div

I −∇ −T ′n R′2
div

Tn −Tn
div ◦ R1 div ◦ R2 −∆

ª®®®®®®®¬
. (8)

Indeed, in the perfusion operator Ap the test functions in the bulk are reduced to γ
by a 3d-1d trace operator while Π in (2) is used for the trial functions. The transport
operator At then uses restriction operators Riφ = φ|Ωi , i = 1, 2 for φ ∈ C(Ω). We
remark that differently weighted Sobolev spaces are required in order for the 3d-1d
reduction operators to be well defined, see [13]. In particular, the trace operator
requires higher than H1 regularity.

We test the abilities of the assembler by considering FEM discretization of (6)
in terms of P1-P1 elements while (7) shall be discretized by P2-P1-RT0-P0-P0-P2.
Here the setup for (6) mirrors §3. However, to simplify the restriction the meshes for
Ω1 and Ω2 are not independent. Instead, they are defined using the triangulation of
Ω. The perfusion problem is then setup on a uniform discretization of [0, 1]3 with γ
a straight line which, in general, is not aligned with the edges of the mesh of Ω.

Figure 5 shows the error convergence of the two approximations. For (7) the error
with respect to the manufactured solution is measured and the expected rates can be
observed. In perfusion problem the relative norm of the refined solution decreases
linearly.

References

1. MFEM:Modular finite elementmethods library. mfem.org. DOI 10.11578/dc.20171025.1248
2. multiphenics - easy prototyping of multiphysics problems in FEniCS. https://mathlab.
sissa.it/multiphenics. Accessed: 2019-12-16

mfem.org
https://mathlab.sissa.it/multiphenics
https://mathlab.sissa.it/multiphenics

Assembly of multiscale linear PDE operators 9

2−7 2−6 2−5 2−4

10−4

10−3

10−2

10−1

100

h2

h

h

‖u1 − u1,h ‖1 ‖p1 − p1,h ‖0
‖u2 − u2,h ‖div ‖p2 − p2,h ‖0
‖p − ph ‖1/2 ‖φ − φh ‖1

2−6 2−5 2−4 2−3 2−2 2−1
10−2

10−1

100

h

h

‖u2h−uh ‖1
‖u2h ‖1

‖p2h−ph ‖1
‖p2h ‖1

Fig. 5: Convergence of the FEM approximation of the 2d-2d-1d coupled problem
(7) and a 3d-1d problem (6).

3. Alvarez, M., Gatica, G.N., Ruz-Baier, R.: A mixed-primal finite element method for the
coupling of Brinkman-Darcy flow and nonlinear transport. IMA Journal of Numerical Analysis
(2019)

4. Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: A Lagrange multiplier method for a
Stokes–Biot fluid–poroelastic structure interaction model. Numerische Mathematik 140(2),
513–553 (2018)

5. Babuška, I.: The finite element method with Lagrangian multipliers. Numerische Mathematik
20(3), 179–192 (1973)

6. Bærland, T., Kuchta, M., Mardal, K.A.: Multigrid methods for discrete fractional Sobolev
spaces. SIAM Journal on Scientific Computing 41(2), A948–A972 (2019)

7. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – a general purpose object oriented finite
element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

8. Bernardi, C.,Maday,Y., Patera,A.T.:Domain decomposition by themortar elementmethod. In:
Asymptotic and numerical methods for partial differential equations with critical parameters,
pp. 269–286. Springer (1993)

9. Bertoluzza, S., Chabannes, V., Prud’Homme, C., Szopos, M.: Boundary conditions involving
pressure for the Stokes problem and applications in computational hemodynamics. Computer
Methods in Applied Mechanics and Engineering 322, 58–80 (2017)

10. Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous
media applications. Journal of computational and appliedmathematics 233(2), 346–355 (2009)

11. Cattaneo, L., Zunino, P.: A computational model of drug delivery through microcirculation to
compare different tumor treatments. International journal for numerical methods in biomedical
engineering 30(11), 1347–1371 (2014)

12. Cerroni, D., Laurino, F., Zunino, P.: Mathematical analysis, finite element approximation and
numerical solvers for the interaction of 3d reservoirs with 1d wells. GEM-International Journal
on Geomathematics 10(1), 4 (2019)

13. D’Angelo, C., Quarteroni, A.: On the coupling of 1d and 3d diffusion-reaction equations:
application to tissue perfusion problems. Mathematical Models and Methods in Applied
Sciences 18(08), 1481–1504 (2008)

14. Daversin-Catty, C., Richardson, C.N., Ellingsrud, A.J., Rognes, M.E.: Abstractions and auto-
mated algorithms for mixed domain finite element methods. arXiv preprint arXiv:1911.01166
(2019)

15. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling
surface and groundwater flows. Applied Numerical Mathematics 43(1-2), 57–74 (2002)

10 Miroslav Kuchta

16. Fournié, M., Renon, N., Renard, Y., Ruiz, D.: CFD parallel simulation using GetFem++ and
MUMPS. In: P. D’Ambra, M. Guarracino, D. Talia (eds.) Euro-Par 2010 - Parallel Processing,
pp. 77–88. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

17. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-
Darcy equations. Electron. Trans. Numer. Anal 26(20), 07 (2007)

18. Gjerde, I.G., Kumar, K., Nordbotten, J.M.: A singularity removal method for coupled 1d-3d
flow models. arXiv preprint arXiv:1812.03055 (2018)

19. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3-4), 251–265 (2012). URL
https://freefem.org/

20. Kirby, R.C., Mitchell, L.: Solver composition across the PDE/linear algebra barrier. SIAM
Journal on Scientific Computing 40(1), C76–C98 (2018)

21. Koch, T., Heck, K., Schröder, N., Class, H., Helmig, R.: A new simulation framework for
soil–root interaction, evaporation, root growth, and solute transport. Vadose Zone Journal
17(1) (2018)

22. Koch, T., Schneider, M., Helmig, R., Jenny, P.: Modeling tissue perfusion in terms of 1d-
3d embedded mixed-dimension coupled problems with distributed sources. arXiv preprint
arXiv:1905.03346 (2019)

23. Kuchta, M., Nordaas, M., Verschaeve, J.C., Mortensen, M., Mardal, K.A.: Preconditioners for
saddle point systems with trace constraints coupling 2d and 1d domains. SIAM Journal on
Scientific Computing 38(6), B962–B987 (2016)

24. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM
Journal on Numerical Analysis 40(6), 2195–2218 (2002)

25. Logg, A., Mardal, K.A., Wells, G.: Automated solution of differential equations by the finite
element method: The FEniCS book, vol. 84. Springer Science & Business Media (2012)

26. Mardal, K.A., Haga, J.B.: Block preconditioning of systems of PDEs, pp. 643–655. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

27. Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential
equations. Numerical Linear Algebra with Applications 18(1), 1–40 (2011)

https://freefem.org/

	Assembly of multiscale linear PDE operators
	Miroslav Kuchta
	1 Introduction
	2 Multiscale assembler
	3 Trace constrained systems
	4 More general multiscale systems
	References
	References

